CS9840
Learning and Computer Vision
Prof. Olga Veksler

Lecture 3

Linear Machines
Information Theory (a little BIT)

Last Time: Supervised Learning

= Training samples (or examples) X',X?,...X"
= Each example is typically multi-dimensional
= Xi,, Xi, ..., Xiy are typically called features, Xi is
sometimes called a feature vector

= How many features and which features do we

take?
= Know desired output for each example (labeled

samples) Y',Y2,...Y"

= This learning is supervised (“teacher” gives desired
outputs).

= Yiare often one-dimensional, but can be
multidimensional

Today

Last Time: Supervised Learning

= Linear Classifier
= Mutual Information

= Next time:

= paper: “Object Recognition with Informative
Features and Linear Classification” by M. Naquet
and S. Ullman
= |gnore section of tree-augmented network

= Wish to design a machine f(X,W) s.t.
f(X,W) = true output value at X
= In classification want f(X,W) = label of X
= How do we choose f?
= when we choose a particular f, we are making implicit
assumptions about our problem
= W is typically multidimensional vector of weights
(also called parameters) which enable the machine
to “learn”
=W o= [wy,Wo,... W]

Training and Testing

= There are 2 phases, training and testing

= Divide all labeled samples X',X2,...X" into 2 sets,
training set and testing set

= Training phase is for “teaching” our machine
(finding optimal weights W)
= Testing phase is for evaluating how well our
machine works on unseen examples
= Training phase

= Find the weights W s.t. f(X,W) = Y “as much as
possible” for the training samples X

= “as much as possible” needs to be defined
= Training can be quite complex and time-consuming

Linear Machine, Continuous Y

= f(X\W) = Wo+Zi1 5 g WiX;
= W, is called bias

= |n vector form, if we let
X = (1,X1,Xy,-..,Xg), then
f(X,W) = WTX
= notice abuse of notation, | made

X=[1X]

= This is standard linear

regression (line fitting)

= assume
LOXYLW) = || HXW) - 2

= optimal W can be found by
solving linear system of
equations W* = [ZXI (X')T]-T ZYiX

Loss Function

= How do we quantify what it means for the machine
f(X,W) do well in the training and testing phases?

f(X,W) has to be “close” to the true output on X

Define Loss (or Error) function L
= This is up to the designer (that is you)
= Typically first define per-sample loss L(X!,Y,W)
= Some examples:
= for classification, L(X,Y,W) = I[f(X,W) = Y],
where I[true] = 1, I[false] = 0
= we just care if the sample has been classified correctly
= For continuous Y, L(X,Y,W) =|| f(X,W) -Y! ||2,
= how far is the estimated output from the correct one?
Then loss function L = X; L(XL,Y,W)
= Number of missclassified example for classification

= Sum of distances from the estimated output to the correct
output

Linear Machine: binary Y

= sign(positive) = 1,
signgﬁegativg) =-1 \
= W, is called bias
= |n vector form, if we let
X =(1,X,X,,...,Xg) then
f(X,W) = sign(WTX)

decision boundary WX = 0

Perceptron Learning Procedure (Rosenblatt 1957)

= Let L(X,Y W) = I[f(X,W) # Yi]. How do we learn W?
= A solution:
= lterate over all training samples

= if f(X,W)=Y (correct label), do nothing

= else W = W + [Y-f(WTX)]X

before after

Optimization

= Need to minimize a function of many variables
J(x) = J(X;50eey X))

= We know how to minimize J(x)
= Take partial derivatives and set them to zero

KB gradient
ax J(x)
: =vJ(x)=0
2 ()
ox,

= However solving analytically is not always easy
= Would you like to solve this system of nonlinear equations?
sin(x?+ x3)+eX =0
{cos(xf +x3)+ Iog(xf Y=o
= Sometimes it is not even possible to write down an analytical
expression for the derivative, we will see an example later today

Perceptron Learning Procedure (Rosenblatt 1957)

= Amazing fact: If the samples are linearly separable,
the perceptron learning procedure will converge to a
solution (separating hyperplane) in a finite amount of
time

= Bad news: If the samples are not linearly separable,
the perceptron procedure will not terminate, it will go
on looking for a solution which does not exist!

= For most interesting problems the samples are not
linearly separable
= |s there a way to learn W in non-separable case?

= Remember, it's ok to have training error, so we don’t have
to have “perfect” classification

Optimization: Gradient Descent

= Gradient VJ(x) points in direction of steepest increase of
J(x),and -VJ(x) in direction of steepest decrease

one dimension two dimensions
400
_aJ (a) 200
J(x) dx , —vJ(a)
200 \
-400.
10
0 L] B 5
; X <10 -10
daJ
dx (a)
a

Optimization: Gradient Descent
J(x) -vJ(x™)

s s
X x2 x@ x®

Gradient Descent for minimizing any function J(x)
set k=1 and x(") to some initial guess for the weight vector
while 77(")‘ VJ(x("))‘ >e

choose learning rate p®
Xtk)= X0 — 1 (9 ()
k=k+1

(update rule)

Optimization: Gradient Descent

= Main issue: how to set parameter 7 (learning rate)
= |f pis too small, need too many iterations

J(x)

¢
J(x)
= If pis too large may
overshoot the minimum
and possibly never find it
(if we keep overshooting) o -
x(N x@

Optimization: Gradient Descent

= Gradient descent is guaranteed to find only a local
minimum
J(x)

X x2 x(3 x;k) global minimum
= Nevertheless gradient descent is very popular

because it is simple and applicable to any
differentiable function

“Optimal” W with Gradient Descent

= If we let L(X,Yi,W) = I[f(X|,W) = Yi], then L(W) is the
number of missclassified examples
= Let Mbe the set of examples misclassified by W
M(W)={sample X' s.t. W' X' Y’}
= Then L(W) = [M(W)], the size of M(W)

= L(W) is piecewise constant, M(W)
gradient descent is useless —_—

<

“Optimal” W with Gradient Descent

= Better choice:
Lw)= Y w'x')y’
X'em
I " . 2
= If X7is misclassified, (WTX)Yi< 0 *
= Thus L(W,X\,Yi) >0 =
= L(W,X\Y) is proportional
to the distance of

misclassified example to
the decision boundary L(W)

= L(W)=ZL(W,X.Y) is
piecewise linear and thus

suitable for gradient decent f w

Single Sample Rule

= Thus gradient decent single sample rule for L(W) is:
wk+) —) 4 7’(k)()(y)

= apply for any sample X misclassified by WK
= must have a consistent way of visiting samples

Batch Rule
Lw,x',y')= 3 (wrx)y

XeM

= Gradientof Lis VvL(W)= (- X)¥
XeM
= M are samples misclassified by W

= |tis not possible to solve VL(W) =0 analytically

Update rule for gradient descent: xt*7)= x(0—p (k) g y(x)

= Thus gradient decent batch update rule for L(W) is:
w k) — w6 +77(k) ZXY

YeM
It is called batch rule because it is based on all
misclassified examples

Convergence
= If classes are linearly separable, and n® is fixed to a
constant, i.e. " =p@=...=p®=c (fixed learning rate)

= both single sample and batch rules converge to a correct
solution (could be any Win the solution space)

= [f classes are not linearly separable:
= Single sample algorithm does not stop, it keeps looking for
solution which does not exist
= However by choosing appropriate learning rate,
heuristically stop algorithm at hopefully good stopping point

7% >0 as k- o

= for example,) 7](‘)
=y

= for this learning rate convergence in the linearly separable
case can also be proven

Learning by Gradient Descent

= Suppose we suspect that the machine has to have functional
form f(X,W), not necessarily linear

Pick differentiable per-sample loss function L(X\,Y|,W)
= We need to find W that minimizes L = ; L(X!,Y,W)

= Use gradient-based minimization:

= Batch rule: W = W - nVL(W)

= Or single sample rule: W = W - nVL (X1, YL,W)

Information theory

= Information Theory regards information as only those
symbols that are uncertain to the receiver

only infrmatn esentil to understnd mst b tranmitd

= Shannon made clear that uncertainty is the very commodity
of communication

= The amount of information, or uncertainty, output by an
information source is a measure of its entropy

= In turn, a source's entropy determines the amount of bits per
symbol required to encode the source's information

= Messages are encoded with strings of 0 and 1 (bits)

Important Questions

= How do we choose the feature vector X?

= How do we split labeled samples into training/testing
sets?

= How do we choose the machine f(X,W)?
= How do we choose the loss function L(Xi,Y,W)?
= How do we find the optimal weights W?

Information theory

= Suppose we toss a fair die with 8 sides

= need 3 bits to transmit the results of each toss

= 1000 throws will need 3000 bits to transmit
= Suppose the die is biased

= side A occurs with probability 1/2, chances of throwing B are 1/4,
C are 1/8, D are 1/16, E are 1/32, F 1/64, G and H are 1/128
Encode A=0,B=10,C =110, D =1110,..., so on until G =
1111110, H=1111111

We need, on average, 1/2+2/4+3/8+4/16+5/32+6/64+7/128+7/128
= 1.984 bits to encode results of a toss

1000 throws require 1984 bits to transmit
Less bits to send = less “information”

Biased die tosses contain less “information” than unbiased die
tosses (know in advance biased sequence will have a lot of A’s)

What'’s the number of bits in the best encoding?

= Extreme case: if a die always shows side A, a sequence of
1,000 tosses has no information, O bits to encode

Information theory

if a die is fair (any side is equally likely, or uniform distribution),

for any toss we need log(8) = 3 bits

Suppose any of n events is equally likely (uniform distribution)
= P(x) = 1/n, therefore -log P = -log(1/n) = log n

In the “good” encoding strategy for our biased die example,

every side x has -log p(x) bits in its code

Expected number of bits is

- p(x)log p(x)

Conditional Entropy of X given Y

Hix|yl=3 p(x, y)logﬁ ==Y p(x,y)log p(x|y)

= Measures average uncertainty about x when
y is known

= Property:
= H[x] = H[x|y], which means after seeing new

data (y), the uncertainty about x is not
increased, on average

Shannon’s Entropy

Hlp(x)]= -3 p(x)iog p(x)= T p(x)log L5

= How much randomness (or uncertainty) is there in the value
of signal x if it has distribution p(x)

= For uniform distribution (every event is equally likely), H[x] is
maximum

= If p(x) = 1 for some event x, then H[x] = 0

= Systems with one very common event have less entropy than
systems with many equally probable events

= Gives the expected length of optimal encoding (in binary
bits) of a message following distribution p(x)
= doesn’t actually give this optimal encoding

Mutual Information of X and Y

I[x,y]= H(x)-H(x| y)

= Measures the average reduction in uncertainty
about x after y is known
= or, equivalently, it measures the amount of
information that y conveys about x
= Properties
= 1(xy) = I(y,X)
= |(x,y) 20
= |f x and y are independent, then I(x,y) = 0
= |(x,x) = H(x)

MI for Feature Selection

I[x,c]=H(c)-H(c|x)

= Let x be a proposed feature and c be the
class

= [f I[x,c] is high, we can expect feature x be
good at predicting class ¢

