CS9840 Learning and Computer Vision Prof. Olga Veksler

Lecture 6 **Boosting**

Some slides are due to Robin Dhamankar Vandi Verma & Sebastian Thrun

Today

- New Machine Learning Topics:
 - Ensemble Learning
 - Bagging
 - Boosting
- Next time two papers:
 - "Rapid Object Detection using a Boosted Cascade of Simple Features" by P. Viola and M. Jones from CVPR2001
 - "Detecting Pedestrians Using Patterns of Motion and Appearance" by P. Viola, M.J.Jones, D. Snow

Ensemble Learning: Bagging and Boosting

- So far we have talked about design of a single classifier that generalizes well (want to "learn" f(x))
- From statistics, we know that it is good to average your predictions (reduces variance)
- Bagging
 - reshuffle your training data to create k different training sets and learn $f_1(x), f_2(x), ..., f_k(x)$
 - Combine the k different classifiers by majority voting $f_{FINAI}(x) = sign[\Sigma \ 1/k \ f_i(x)]$
- Boosting
 - Assign different weights to training samples in a "smart" way so that different classifiers pay more attention to different samples
 - Weighted majority voting, the weight of individual classifier is proportional to its accuracy
 - Ada-boost (1996) was influenced by bagging, and it is superior to bagging

Bagging

- Generate a random sample from training set by selecting I elements (out of n elements available) with replacement
- each classifier is trained on the average of 63.2% of the training examples
 - For a dataset with N examples, each example has a probability of 1-(1-1/N)^N of being selected at least once in the N samples. For N→∞, this number converges to (1-1/e) or 0.632 [Bauer and Kohavi, 1999]
- Repeat the sampling procedure, getting a sequence of k independent training sets
- A corresponding sequence of classifiers f₁(x),f₂(x),...,f_k(x) is constructed for each of these training sets, using the same classification algorithm
- To classify an unknown sample x, let each classifier predict.
- The bagged classifier f_{FINAL}(x) then combines the predictions of the individual classifiers to generate the final outcome, frequently this combination is simple voting

Boosting: motivation

- It is usually hard to design an accurate classifier which generalizes well
- However it is usually easy to find many "rule of thumb" weak classifiers
 - A classifier is weak if it is only slightly better than random guessing
- Can we combine several weak classifiers to produce an accurate classifier?
 - Question people have been working on since 1980's

Ada Boost

- Let's assume we have 2-class classification problem, with y_i∈ {-1,1}
- Ada boost will produce a discriminant function:

$$g(x) = \sum_{t=1}^{T} \alpha_t f_t(x)$$

- where $f_t(x)$ is the "weak" classifier
- As usual, the final classifier is the sign of the discriminant function, that is f_{final}(x) = sign[g(x)]

Idea Behind Ada Boost

- Algorithm is iterative
- Maintains distribution of weights over the training examples
- Initially distribution of weights is uniform
- At successive iterations, the weight of misclassified examples is increased, forcing the weak learner to focus on the hard examples in the training set

More Comments on Ada Boost

- Ada boost is very simple to implement, provided you have an implementation of a "weak learner"
- Will work as long as the "basic" classifier f_t(x) is at least slightly better than random
 - will work if the error rate of f_t(x) is less than 0.5 (0.5 is the error rate of a random guessing classifier for a 2-class problem)
- Can be applied to boost any classifier, not necessarily weak

Ada Boost (slightly modified from the original version)

- d(x) is the distribution of weights over the N training points $\sum d(x_i)=1$
- Initially assign uniform weights $d_0(x_i) = 1/N$ for all x_i
- At each iteration t :
 - Find best weak classifier $f_t(x)$ using weights $d_t(x)$
 - Compute the error rate ε_t as $\varepsilon_t = \sum_{i=1...N} d_t(x_i) \cdot I[y_i \neq f_t(x_i)]$
 - assign weight α_t the classifier f_t 's in the final hypothesis $\alpha_t = \log ((1 - \varepsilon_t)/\varepsilon_t)$
 - For each x_i , $d_{t+1}(x_i) = d_t(x_i) \cdot \exp[\alpha_t \cdot I(y_i \neq f_t(x_i))]$
 - Normalize $d_{t+1}(x_i)$ so that $\sum_{i=1}^{\infty} d_{t+1}(x_i) = 1$
- $f_{FINAI}(x) = \text{sign} \left[\sum \alpha_t f_t(x) \right]$

Ada Boost

- At each iteration t :
 - Find best weak classifier $f_t(x)$ using weights $d_t(x)$
 - Compute ε, the error rate as $\varepsilon_t = \sum d_t(x_i) \cdot I[y_i \neq f_t(x_i)]$
 - assign weight α_t the classifier f_t 's in the final hypothesis $\alpha_t = \log ((1 - \varepsilon_t)/\varepsilon_t)$
 - For each x_i , $d_{t+1}(x_i) = d_t(x_i) \cdot \exp[\alpha_t \cdot I(y_i \neq f_t(x_i))]$

 - Normalize $d_{t+1}(x_i)$ so that $\sum_{t+1} d(x_i) = 1$
- $f_{FINAL}(x) = \text{sign} \left[\sum \alpha_t f_t(x) \right]$
- If the classifier does not take weighted samples, this step can be achieved by sampling from the training samples according to the distribution $d_i(x)$

Ada Boost

- At each iteration t :
 - Find best weak classifier $f_t(x)$ using weights $d_t(x)$
 - Compute ε, the error rate as

$$\varepsilon_t = \sum d_t(x_i) \cdot I[y_i \neq f_t(x_i)]$$

- assign weight α_t the classifier f_t 's in the final hypothesis $\alpha_t = \log ((1 \varepsilon_t)/\varepsilon_t)$
- For each x_i , $d_{t+1}(x_i) = d_t(x_i) \cdot \exp[\alpha_t \cdot I(y_i \neq f_t(x_i))]$
- Normalize $d_{t+1}(x_i)$ so that $\sum d_{t+1}(x_i) = 1$
- $f_{FINAL}(x) = \text{sign} \left[\sum \alpha_t f_t(x) \right]$
- Since the weak classifier is better than random, we expect $\varepsilon_t < 1/2$

Ada Boost

- At each iteration t :
 - Find best weak classifier $f_t(x)$ using weights $d_t(x)$
 - Compute ε_t the error rate as $\varepsilon_t = \sum d(x_i) \cdot I(y_i \neq f_t(x_i))$
 - assign weight α_t the classifier f_t 's in the final hypothesis $\alpha_t = \log ((1 \varepsilon_t)/\varepsilon_t)$
 - For each x_i , $d_{t+1}(x_i) = d_t(x_i) \cdot \exp[\alpha_t \cdot I(y_i \neq f_t(x_i))]$
 - Normalize $d_{t+1}(x_i)$ so that $\sum d_{t+1}(x_i) = 1$
- $f_{FINAL}(x) = \text{sign} \left[\sum \alpha_t f_t(x) \right]$
- Recall that $\varepsilon_t < \frac{1}{2}$
- Thus $(1 \varepsilon_t)/\varepsilon_t > 1 \implies \alpha_t > 0$
- The smaller is ε_t , the larger is α_t , and thus the more importance (weight) classifier $f_t(x)$ gets in the final classifier

$$f_{FINAL}(x) = \text{sign} \left[\sum \alpha_t f_t(x) \right]$$

Ada Boost

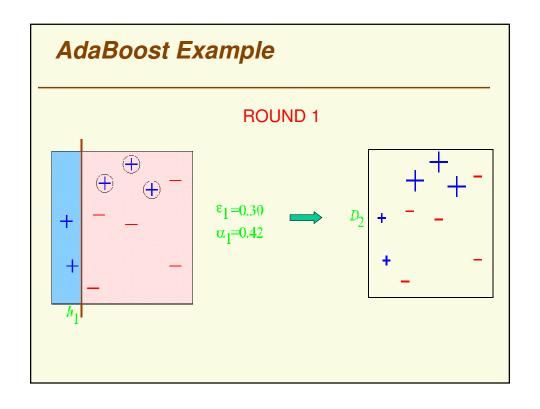
- At each iteration t :
 - Find best weak classifier $f_t(x)$ using weights $d_t(x)$
 - Compute ε_t the error rate as $\varepsilon_t = \sum d_t(x_i) \cdot I(y_i \neq f_t(x_i))$
 - assign weight α_t the classifier f_t 's in the final hypothesis $\alpha_t = \log \left((1 \epsilon_t) / \epsilon_t \right)$
 - For each x_i , $d_{t+1}(x_i) = d_t(x_i) \cdot \exp[\alpha_t \cdot I(y_i \neq f_t(x_i))]$
 - Normalize $d_{t+1}(x_i)$ so that $\sum d_{t+1}(x_i) = 1$
- $f_{FINAL}(x) = \text{sign} \left[\sum \alpha_t f_t(x) \right]$
- Weight of misclassified examples is increased and the new d_{t+1}(x_i)'s are normalized to be a distribution again

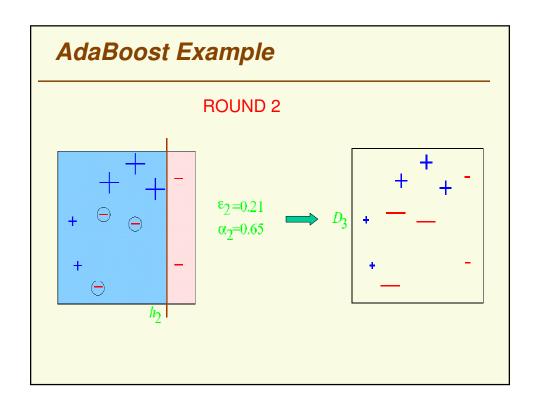
AdaBoost Example

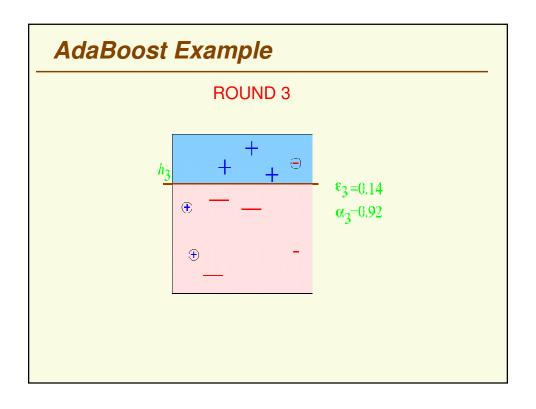
from "A Tutorial on Boosting" by Yoav Freund and Rob Schapire

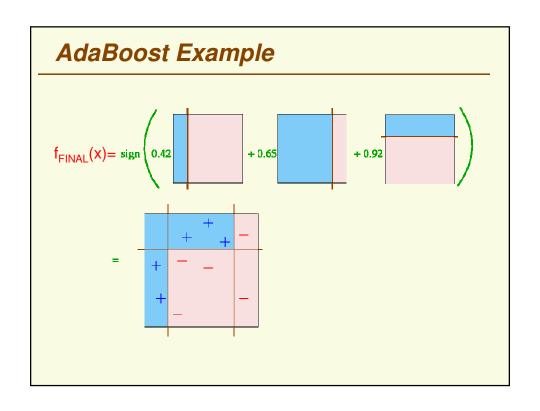
Original Training set: equal weights to all training samples

Note: in the following slides, $h_t(x)$ is used instead of $f_t(x)$, and D instead of d









AdaBoost Comments

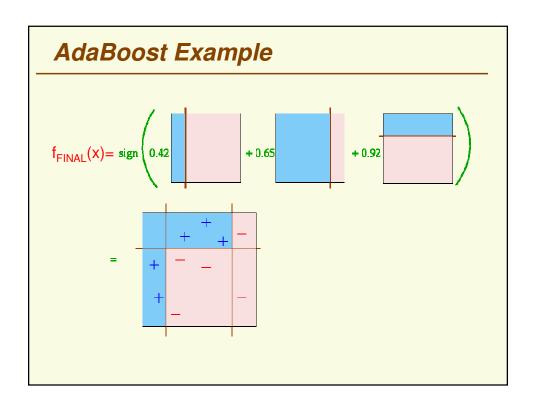
 It can be shown that the training error drops exponentially fast, if each weak classifier is slightly better than random

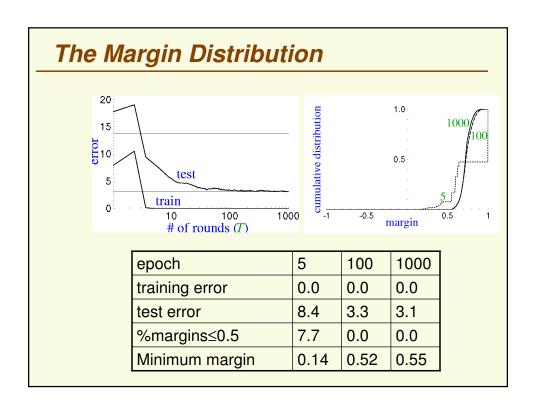
$$Err_{train} \leq \exp(-2\sum_{t} \gamma_{t}^{2})$$

• Here $\gamma_t = \varepsilon_t - 1/2$, where is classification error at round t (weak classifier f_t)

AdaBoost Comments

- But we are really interested in the generalization properties of f_{FINAL}(x), not the training error
- AdaBoost was shown to have excellent generalization properties in practice
 - the more rounds, the more complex is the final classifier, so overfitting is expected as the training proceeds
 - but in the beginning researchers observed no overfitting of the data
 - It turns out it does overfit data eventually, if you run it really long
- It can be shown that boosting "aggressively" increases the margins of training examples, as iterations proceed
 - margins continue to increase even when training error reaches zero
 - Helps to explain empirically observed phenomena: test error continues to drop even after training error reaches zero





Boosting As Additive Model

The final prediction in boosting g(x) can be expressed as an additive expansion of individual classifiers

 $g(x) = \sum_{k=1}^{M} \alpha_k f_k(x; \gamma_k)$

 Typically we would try to minimize a loss function on the N training examples

$$\min_{\alpha_1,\gamma_1,\ldots,\gamma_M,\alpha_M} \sum_{i=1}^N L\left(y_i,\sum_{k=1}^M \alpha_k f_k(x_i;\gamma_k)\right)$$

For example, under squared-error loss:

$$\min_{\alpha_1,\gamma_1,\ldots,\gamma_M,\alpha_M} \sum_{i=1}^N \left(y_i - \sum_{k=1}^M \alpha_k f_k(x_i; \gamma_k) \right)^2$$

Boosting As Additive Model

• Forward stage-wise modeling is iterative and fits the $f_k(x, \gamma_k)$ sequentially, fixing the results of previous iterations

model at iteration
$$t$$
 $g_t(x) = g_{t-1}(x) + \alpha_t f_t(x; \gamma_t)$

• Under the squared difference loss function:

$$L(y_i, g_{t-1}(x_i) + \alpha_t f_t(x_i; \gamma_t)) =$$

$$= (y_i - g_{t-1}(x_i) - \alpha_t f_t(x_i; \gamma_t))^2$$
fixed

 Forward stage-wise optimization seems to produce classifier with better generalization, doing the process stagewise seems to overfit less quickly

Boosting As Additive Model

$$g(x) = \sum_{k=1}^{M} \alpha_k f_k(x; \gamma_k)$$

- It can be shown that AdaBoost uses forward stagewise modeling under the following loss function:
 - $L(y, g(x)) = \exp(-y \cdot g(x))$ -- the exponential loss function
 - At stage (or iteration) **m**, we fit:

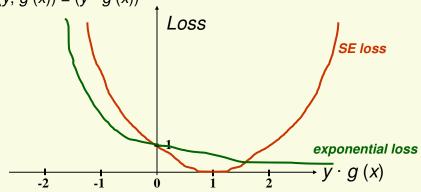
$$arg \min_{\alpha_{m}, f_{m}} \sum_{i=1}^{N} L(y_{i}, g(x_{i})) =$$

$$= arg \min_{\alpha_{m}, f_{m}} \sum_{i=1}^{N} exp(-y_{i} \cdot [g_{m-1}(x_{i}) + \alpha_{m} \cdot f_{m}(x_{i})])$$

$$= arg \min_{\alpha_{m}, f_{m}} \sum_{i=1}^{N} exp(-y_{i} \cdot g_{m-1}(x_{i})) \cdot exp(-y_{i} \cdot \alpha_{m} \cdot f_{m}(x_{i}))$$

Exponential Loss vs. Squared Error Loss

- $L(y, g(x)) = \exp(-y \cdot g(x))$
- $L(y, g(x)) = (y g(x))^2$



- Squared Error Loss penalizes classifications that are "too correct", with $y \cdot g(x) > 1$, and thus it is inappropriate for classification
- Exponential loss encourages large margins, want $y \cdot g(x)$ large

Logistic Regression Model

It can be shown that Adaboost builds a logistic regression model:

$$g(x) = log \frac{Pr(Y = 1/x)}{Pr(Y = -1/x)} = \sum_{k=1}^{M} \alpha_m f_m(x)$$

It can also be shown that the training error on the samples is at most:

$$\sum_{i=1}^{N} exp(-y_{i} \cdot g(x_{i})) = \sum_{i=1}^{N} exp(-y_{i} \cdot \sum_{k=1}^{M} \alpha_{m} f_{m}(x_{i}))$$

Practical Advantages of AdaBoost

- fast
- simple
- Has only one parameter to tune (T)
- flexible: can be combined with any classifier
- provably effective (assuming weak learner)
 - shift in mind set: goal now is merely to find hypotheses that are better than random guessing
- finds outliers
 - The hardest examples are frequently the "outliers"

Caveats

- performance depends on <u>data</u> & <u>weak learner</u>
- AdaBoost can <u>fail</u> if
 - weak hypothesis too complex (overfitting)
 - weak hypothesis too weak ($\gamma_t \rightarrow 0$ too quickly),
 - underfitting
 - Low margins → overfitting
- empirically, AdaBoost seems especially susceptible to noise