
1

1

CS840a: Machine Learning in Computer Vision

Olga Veksler

Lecture 1

Introduction

Nearest Neighbor

2

Outline

 Course overview

 Introduction to Machine Learning

 Simplest Machine Learning Technique:
Nearest Neighbors

2

3

Course Outline

 Prerequisite
 First-year course in Calculus

 Introductory Statistics

 Linear Algebra

 Some Computer Vision/Image Processing

 Grading
 Class participation 10%

 In class paper presentation 30%

 Final Project Presentation 20%

 Written project report + code, 40 %
 Matlab, C/C++, anything else as long as I can run it

4

Course Outline: Content

 Lecture (1/3 of the time), paper
presentation/discussions/video (2/3 of the time)

 Machine Learning Methods (tentatively)
 Nearest neighbor
 Linear classifiers
 Neural nets
 SVM
 Boosting

 Applications in Computer Vision
 Object detection/recognition
 Segmentation
 Tracking
 Inpainting

3

5

Course Outline: Textbook

 No required textbook, but recommended
 “Pattern Classification” by R.O. Duda, P.E. Hart

and D.G. Stork, second edition

 “Machine Learning” by Tom M. Mitchell

 Conference papers, provided

6

Intro: What is Machine Learning?

 How to write a computer program that
automatically improves its performance through
experience

 Machine learning is useful when it is too difficult to
come up with a program to perform a desired task

 Make computer to learn by showing examples
(most frequently with correct answers)
 “supervised” learning or learning with a teacher

 In practice: computer program (or function) which
has a tunable parameters, tune parameters until
the desirable behavior on the examples

4

7

Different Types of Learning
 Supervised Learning: given training examples of inputs

and corresponding outputs, produce the “correct” outputs
for new inputs

 Unsupervised Learning: given only inputs as training,
find structure in the world: e.g. discover clusters

 Reinforcement Learning (similar to animal learning): an
agent takes inputs from the environment, and takes
actions that affect the environment. Occasionally, the
agent gets a reward or punishment. The goal is to learn
to produce action sequences that maximize the expected
reward (e.g. driving a robot without bumping into
obstacles). Not covered in this course

slide is modified from Y. LeCun

8

Sketch of Supervised Machine Learning
 Modeling stage:
 collect a set of training examples with correct answers:

(x1,y1), (x2,y2),…, (xk,yk)
xi= features of the example, usually a vector, also called “input”
yi= answer for the example, usually a scalar, also called “output”

 choose a function f(x,t), where t are the tunable
parameters, x is the feature vector, and the function
outputs the “correct“ answer for training example x

 Training stage:
 Repeatedly present examples (xi,yi) to the function f(x,t),

and change parameters t so that f(x,t) gives the correct
answer yi for most examples xi

 Evaluation stage:
 Evaluate how well your function f(x,t) is able to predict the

answers for examples it hasn’t seen so far

5

9

 None of the stages are easy
 Modeling stage:
 Which features do we extract from training data (which

are usually images in vision). How many features?

 Training stage:
 Which function f(x,t) do we choose? Has to be

expressive enough to model our problem, yet not to
complicated to avoid overfitting

 How do we tweak parameters t to ensure f(x,t) = y for
most training samples (x,y) ? This step is usually done by
optimization, can be quite expensive.

 Evaluation stage
 Good performance on the training data does not

guarantee good performance on data we haven’t seen
yet. In fact, no error on training data frequently means
that we overfitted to the training data

Sketch of Supervised Machine Learning

Two types of Machine Learning
1. Classification (mostly deal

with in this course)
 outputs yi are discrete,

represent categories (ex.:
object categories face, car,
etc.)

 Usually visualize decision
regions and decision
boundary

 f(x,t) is usually called
classifier

class 1

class 2

feature1

fe
at

ur
e

2

decision
boundary

x

y

f(x,t)

2. Regression:
 outputs yi are continuous,

example: temperature
 This is also called “curve

fitting”

6

11

Application: male or female?

male female

classes
Objects (pictures)

12

Application: Character Recognition

 In this case, the classes are all possible
characters: a, b, c,…., z

objects
h e l l o w o r l d

7

13

Application: Medical diagnostics

objects (tumors) cancer not cancer

classes

14

How to design a Classification system?
 Collect data and classify by hand

salmon salmon salmonsea bass sea bass sea bass

 Preprocess by segmenting fish from background

 Extract possibly discriminating features
 length, lightness,width,number of fins,etc.

 Classifier design
 Choose model
 Train classifier on part of collected data (training data)

 Test classifier on the rest of collected data (test data)
i.e. the data not used for training
 Should classify new data (new fish images) well

8

15

Classifier design

 Notice salmon tends to be shorter than sea bass
 Use fish length as the discriminating feature
 Count number of bass and salmon of each length

0

2

4

6

8

10

12

2 4 8 10 12 14

Length

C
o

u
n

t

salmon

sea bass

0151052salmon

5108310bass

141210842

16

Fish length as discriminating feature

 Find the best length L threshold
fish length < L fish length > L

classify as salmon classify as sea bass

0151052salmon

5108310bass

141210842

 For example, at L = 5, misclassified:
 1 sea bass
 16 salmon

 Classification error (total error): 17
50

= 34%

9

17

Fish Length as discriminating feature

0

2

4

6

8

10

12

2 4 8 10 12 14

Length

C
o

u
n

t

salmon

sea bass

fish classified
as salmon

fish classified
as sea bass

 After searching through all possible thresholds L,
the best L= 9, and still 20% of fish is misclassified

18

Next Step

 Lesson learned:
 Length is a poor feature alone!

 What to do?
 Try another feature

 Salmon tends to be lighter

 Try average fish lightness

10

19

Fish lightness as discriminating feature

 Now fish are well separated at lightness threshold
of 3.5 with classification error of 8%

0

2

4

6

8

10

12

14

1 2 3 4 5

Lightness

C
o

u
n

t

salmon

sea bass

016106salmon

1210210bass

54321

20

bass

salm
on

Can do even better by feature combining

 Use both length and lightness features
 Feature vector [length,lightness]

length

lig
ht

ne
ss

decision
boundary

 Classification error 4%

decision regions

11

21

Better decision boundary

 Ideal decision boundary, 0% classification error

length

lig
ht

ne
ss

22

Test Classifier on New Data

 Classifier should perform well on new data

 Test “ideal” classifier on new data: 25% error

length

lig
ht

ne
ss

12

23

What Went Wrong?

 Poor generalization

complicated
boundary

 Complicated boundaries do not generalize well to
the new data, they are too “tuned” to the particular
training data, rather than some true model which
will separate salmon from sea bass well.
 This is called overfitting the data

24

Generalization
training data testing data

 Simpler decision boundary does not perform ideally
on the training data but generalizes better on new
data

 Favor simpler classifiers
 William of Occam (1284-1347): “entities are not

to be multiplied without necessity”

13

25

System Structure
input

feature extraction

decision

classification

segmentation

sensing

post-processing

Patterns should be well separated
and should not overlap.

Extract discriminating features. Good features
make the work of classifier easy.

do
m

a
in

 d

e p
e

nd
e n

t

Use features to assign the object to a category.
Better classifier makes feature extraction easier.
Our main topic in this course

Exploit context (input depending information) to
improve system performance

Tne cat The cat

camera, microphones, medical
imaging devices, etc.

26

How to design a classification system?

collect data

choose model

evaluate classifier

train classifier

choose features

start

end

prior
knowledge

14

27

Design Cycle cont.

collect data

choose model

evaluate classifier

train classifier

choose features

start

end

 Collect Data
 Can be quite costly

 How do we know when
we have collected an
adequately
representative set of
testing and training
examples?

28

Design Cycle cont.

collect data

choose model

evaluate classifier

train classifier

choose features

start

end

 Choose features
 Should be discriminating, i.e.

similar for objects in the same
category, different for objects in
different categories:
good features: bad features:

 Prior knowledge plays a great
role (domain dependent)

 Should be easy to extract
 Insensitive to noise and

irrelevant transformations

15

29

Design Cycle cont.

collect data

choose model

evaluate classifier

train classifier

choose features

start

end

 Choose model
 What type of classifier to

use?

 When should we try to
reject one model and try
another one?

 What is the best classifier
for the problem?

30

Design Cycle cont.

collect data

choose model

evaluate classifier

train classifier

choose features

start

end

 Train classifier
 Process of using data to

determine the parameters of
classifier

 Change parameters of the
chosen model so that the
model fits the collected data

 Many different procedures
for training classifiers

 Main scope of the course

16

31

Design Cycle cont.

collect data

choose model

evaluate classifier

train classifier

choose features

start

end

 Evaluate Classifier
 measure system

performance
 Identify the need for

improvements in system
components
 How to adjust complexity of

the model to avoid over-
fitting? Any principled
methods to do this?
 Trade-off between

computational complexity
and performance

32

Learning is NOT Memorization

 rote learning is easy: just memorize all the training examples
and their corresponding outputs

 When a new input comes in, compare it to all the memorized
samples, and produce the output associated with the
matching sample

 PROBLEM: in general, new inputs are different from training
samples

 The ability to produce correct outputs or behavior on
previously unseen inputs is called GENERALIZAITION

 Rote learning is memorization without generalization
 The big question of Learning Theory (and practice): how to

get good generalization with a limited number of examples

slide is modified from Y. LeCun

17

33

 find k closest neighbors
 Classify unknown point with the most common class

k-Nearest Neighbors

classify as green

classify as red

 How to choose k?

 A good “rule of thumb“ is k = n , where n is the number
of samples
 Interesting theoretical properties

 In practice, k = 1 is often used
 Can find the best k through cross-validation, to be studied

later

34

 kNN rule is certainly simple and intuitive, but does it
work?

 Assume we have an unlimited number of samples
 Theoretically, the best possible error rate is the

Bayes rate E*
 Bayes error rate is the best error rate a classifier can have,

but we do not study it in this course
 Nearest-neighbor rule leads to an error rate greater

than E*
 But even for k =1, as n  , it can be shown that

nearest neighbor rule error rate is smaller than 2E*
 As we increase k, the upper bound on the error gets

better and better, that is the error rate (as n  ) for
the kNN rule is smaller than cE*,with smaller c for
larger k

 If we have a lot of samples, the kNN rule will do very
well !

kNN: How Well Does it Work?

18

35

1NN: Voronoi Cells

36

 Most parametric
distributions would not
work for this 2 class
classification problem:

kNN: Multi-Modal Distributions

 Nearest neighbors will
do reasonably well,
provided we have a lot
of samples

?

?

19

37

 In theory, when the infinite number of samples is
available, the larger the k, the better is
classification (error rate gets closer to the optimal
Bayes error rate)

kNN: How to Choose k?

 But the caveat is that all k neighbors have to be
close to x
 Possible when infinite # samples available

 Impossible in practice since # samples is finite

38

kNN: How to Choose k?

 In practice

1. k should be large so that error rate is
minimized

 k too small will lead to noisy decision
boundaries

2. k should be small enough so that only nearby
samples are included

 k too large will lead to over-smoothed
boundaries

 Balancing 1 and 2 is not trivial

 This is a recurrent issue, need to smooth data,
but not too much

20

39

x1

kNN: How to Choose k?

 For k = 1, …,7 point x gets classified correctly

 red class

 For larger k classification of x is wrong

 blue class

x2

x

40

k-NN versus 1-NN

21

41

kNN: Computational Complexity

 Basic kNN algorithm stores all examples. Suppose
we have n examples each of dimension d

 O(d) to compute distance to one example

 O(nd) to find one nearest neighbor

 O(knd) to find k closest examples examples

 Thus complexity is O(knd)

 This is prohibitively expensive for large number of
samples

 But we need large number of samples for kNN to
work well!

42

removed

Reducing Complexity: Editing 1NN
 If all voronoi neighbors have the same class, a

sample is useless, we can remove it:

 Number of samples decreases

 We are guaranteed that the decision boundaries
stay the same

22

43

kNN: Selection of Distance
 So far we assumed we use Euclidian Distance to

find the nearest neighbor:

 However some features (dimensions) may be
much more discriminative than other features
(dimensions)

  
k

kk babaD 2),(

 Euclidean distance treats each feature as equally
important

44

kNN: Selection of Distance
 Extreme Example

 feature 1 gives the correct class: 1 or 2

 feature 2 gives irrelevant number from 100 to 200

 Suppose we have to find the class of x=[1 100] and
we have 2 samples [1 150] and [2 110]

    5015010011)150
1,100

1(D 22 











    5.1011010021)110
2,100

1(D 22 











 x = [1 100] is misclassified!

 The denser the samples, the less of the problem

 But we rarely have samples dense enough

23

45

1 1.2 1.4 1.6 1.8 2
100

120

140

160

180

 decision boundaries for blue and green classes are in red
 These boundaries are really bad because
 feature 1 is discriminative, but it’s scale is small
 feature 2 gives no class information but its scale is large

kNN: Extreme Example

kNN: Selection of Distance
 Notice the 2 features are on different scales:
 feature 1 takes values between 1 or 2

 feature 2 takes values between 100 to 200

 Need to “normalize” features to be on the same scale
 Two approaches:

1. linearly scale the range of each feature to be, say, in [0,1]

minmax

minold
new ff

ff
f






2. linearly scale to zero mean variance 1:

 If Z is a random variable of mean m and variance s2, then
(Z ‐m)/s has mean 0 and variance 1

 for each feature f, compute its sample mean and variance,
and let the new feature be [f ‐mean(f)]/sqrt[var(f)]

24

47

-1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

kNN: Normalized Features

Scaling to zero mean, unit variance

The decision boundary (in red) is very good now!

48

kNN: Selection of Distance

 However in high dimensions if there are a lot of
irrelevant features, normalization will not help

      
j

2
jj

i

2
ii

k

2
kk bababa)b,a(D

discriminative
feature

noisy
features

 If the number of discriminative features is smaller
than the number of noisy features, Euclidean
distance is dominated by noise

25

49

kNN: Feature Weighting

 Scale each feature by its importance for
classification

 Can learn the weights wk from the validation data

 Increase/decrease weights until classification
improves

  
k

kkk bawbaD 2),(

50

kNN Summary

 Advantages
 Can be applied to the data from any distribution
 Very simple and intuitive
 Good classification if the number of samples is

large enough

 Disadvantages
 Choosing best k may be difficult
 Computationally heavy, but improvements

possible
 Need large number of samples for accuracy
 Can never fix this without assuming parametric

distribution

