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CS840a: Machine Learning in Computer Vision

Olga Veksler

Lecture 1

Introduction

Nearest Neighbor
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Outline

 Course overview

 Introduction to Machine Learning

 Simplest Machine Learning Technique: 
Nearest Neighbors
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Course Outline

 Prerequisite
 First-year course in Calculus

 Introductory Statistics 

 Linear Algebra 

 Some Computer Vision/Image Processing 

 Grading
 Class participation 10%

 In class paper presentation  30%

 Final Project Presentation 20%

 Written project report + code, 40 %
 Matlab, C/C++, anything else as long as I can run it

4

Course Outline: Content

 Lecture (1/3 of the time), paper 
presentation/discussions/video (2/3 of the time)

 Machine Learning Methods (tentatively)
 Nearest neighbor
 Linear classifiers
 Neural nets
 SVM
 Boosting

 Applications in Computer Vision
 Object detection/recognition
 Segmentation
 Tracking
 Inpainting
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Course Outline: Textbook

 No required textbook, but recommended
 “Pattern Classification” by R.O. Duda, P.E. Hart 

and D.G. Stork, second edition 

 “Machine Learning” by Tom M. Mitchell

 Conference papers, provided
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Intro: What is Machine Learning? 

 How to write a computer program that 
automatically improves its performance through 
experience

 Machine learning is useful when it is too difficult to 
come up with a program to perform a desired task

 Make computer to learn by showing examples 
(most frequently with correct answers)
 “supervised” learning or learning with a teacher

 In practice: computer program (or function) which 
has a tunable parameters, tune parameters until 
the desirable behavior on the examples
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Different Types of Learning 
 Supervised Learning: given training examples of inputs 

and corresponding outputs, produce the “correct” outputs 
for new inputs

 Unsupervised Learning: given only inputs as training, 
find structure in the world: e.g. discover clusters

 Reinforcement Learning (similar to animal learning): an 
agent takes inputs from the environment, and takes 
actions that affect the environment. Occasionally, the 
agent gets a reward or punishment. The goal is to learn 
to produce action sequences that maximize the expected 
reward (e.g. driving a robot without bumping into 
obstacles). Not covered in this course

slide is modified from Y. LeCun
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Sketch of Supervised Machine Learning
 Modeling stage:
 collect a set of training examples with correct answers: 

(x1,y1), (x2,y2),…, (xk,yk)
xi= features of the example, usually a vector, also called “input”
yi= answer for the example, usually a scalar, also called “output”

 choose a function f(x,t), where t are the tunable 
parameters, x is the feature vector, and the function 
outputs the “correct“ answer for training example x

 Training stage: 
 Repeatedly present examples (xi,yi) to the function f(x,t), 

and change parameters t so that f(x,t) gives the correct 
answer yi for most examples xi

 Evaluation stage:
 Evaluate how well your function f(x,t) is able to predict the 

answers for examples it hasn’t seen so far



5

9

 None of the stages are easy
 Modeling stage:
 Which features do we extract from training data (which 

are usually images in vision). How many features?

 Training stage:
 Which function f(x,t) do we choose?  Has to be 

expressive enough to model our problem, yet not to 
complicated to avoid overfitting

 How do we tweak parameters t to ensure f(x,t) = y for 
most training samples (x,y) ? This step is usually done by 
optimization, can be quite expensive.

 Evaluation stage
 Good performance on the training data does not 

guarantee good performance on data we haven’t seen 
yet. In fact, no error on training data frequently means 
that we overfitted to the training data

Sketch of Supervised Machine Learning

Two types of Machine Learning
1. Classification (mostly deal 

with in this course)
 outputs yi are discrete, 

represent categories (ex.: 
object categories face, car, 
etc.)

 Usually visualize decision 
regions and decision 
boundary

 f(x,t) is usually called  
classifier

class 1

class 2

feature1 

fe
at

ur
e 

2

decision 
boundary

x

y

f(x,t)

2. Regression: 
 outputs yi are continuous, 

example: temperature
 This is also called “curve 

fitting”
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Application: male or female?

male female

classes
Objects (pictures)
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Application: Character Recognition

 In this case, the classes are all possible 
characters: a, b, c,…., z

objects
h e l l o   w o r l d
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Application: Medical diagnostics

objects (tumors) cancer not cancer

classes
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How to design a Classification system?
 Collect data and classify by hand

salmon salmon salmonsea bass sea bass sea bass

 Preprocess by segmenting fish from background

 Extract possibly discriminating features
 length, lightness,width,number of fins,etc.

 Classifier design
 Choose model
 Train classifier on part of collected data (training data)

 Test classifier on the rest of collected data (test data) 
i.e. the data not used for training
 Should classify new data (new fish images) well
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Classifier design

 Notice salmon tends to be shorter than sea bass
 Use fish length as the discriminating feature
 Count number of bass and salmon of each length
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Fish length as discriminating feature

 Find the best length L threshold
fish length < L fish length > L

classify as salmon classify as sea bass

0151052salmon

5108310bass

141210842

 For example, at  L = 5, misclassified:
 1 sea bass
 16 salmon

 Classification error (total error): 17
50

= 34%



9

17

Fish Length as discriminating feature
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 After searching through all possible thresholds L, 
the best L= 9, and still 20% of fish is misclassified
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Next Step

 Lesson learned:
 Length is a poor feature alone!

 What to do?
 Try another feature

 Salmon tends to be lighter

 Try average fish lightness
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Fish lightness as discriminating feature

 Now fish are well separated at lightness threshold 
of 3.5 with classification error of 8%
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bass

salm
on

Can do even better by feature combining

 Use both length and lightness features
 Feature vector [length,lightness]

length

lig
ht

ne
ss

decision 
boundary

 Classification error 4%

decision regions
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Better decision boundary

 Ideal decision boundary, 0% classification error

length

lig
ht

ne
ss
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Test Classifier on New Data

 Classifier should perform well on new data

 Test “ideal” classifier on new data: 25% error

length

lig
ht

ne
ss
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What Went Wrong?

 Poor generalization

complicated
boundary

 Complicated boundaries do not generalize well to 
the new data, they are too “tuned” to the particular 
training data, rather than some true model which 
will separate salmon from sea bass well.
 This is called overfitting the data
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Generalization
training data testing data

 Simpler decision boundary does not perform ideally 
on the training data but generalizes better on new 
data

 Favor simpler classifiers
 William of Occam (1284-1347): “entities are not 

to be multiplied without necessity”
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System Structure
input

feature extraction

decision

classification

segmentation

sensing

post-processing

Patterns should be well separated 
and should not overlap.

Extract discriminating features. Good features 
make the work of classifier easy.
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Use features to assign the object to a category. 
Better classifier makes feature extraction easier. 
Our main topic in this course

Exploit context (input depending information) to 
improve system performance

Tne cat The cat

camera, microphones, medical 
imaging devices, etc. 
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How to design a classification system?

collect data

choose model

evaluate classifier

train classifier

choose features

start

end

prior
knowledge
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Design Cycle cont.

collect data

choose model

evaluate classifier

train classifier

choose features

start

end

 Collect Data
 Can be quite costly

 How do we know when 
we have collected an 
adequately 
representative set of  
testing and training 
examples?
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Design Cycle cont.

collect data

choose model

evaluate classifier

train classifier

choose features

start

end

 Choose features
 Should be discriminating, i.e. 

similar for objects in the same 
category, different for objects in 
different categories:
good features: bad features:

 Prior knowledge plays a great 
role (domain dependent)

 Should be easy to extract
 Insensitive to noise and 

irrelevant transformations
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Design Cycle cont.

collect data

choose model

evaluate classifier

train classifier

choose features

start

end

 Choose model
 What type of classifier to 

use?

 When should we try to 
reject one model and try 
another one?

 What is the best classifier 
for the problem?
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Design Cycle cont.

collect data

choose model

evaluate classifier

train classifier

choose features

start

end

 Train classifier
 Process of using data to 

determine the parameters of 
classifier

 Change parameters of the 
chosen model so that the 
model fits the collected data

 Many different procedures 
for training classifiers

 Main scope of the course
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Design Cycle cont.

collect data

choose model

evaluate classifier

train classifier

choose features

start

end

 Evaluate Classifier
 measure system 

performance
 Identify the need for 

improvements in system 
components
 How to adjust complexity of 

the model to avoid over-
fitting? Any principled 
methods to do this?
 Trade-off between 

computational complexity 
and performance
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Learning is NOT Memorization

 rote learning is easy: just memorize all the training examples 
and their corresponding outputs

 When a new input comes in, compare it to all the memorized 
samples, and produce the output associated with the 
matching sample

 PROBLEM: in general, new inputs are different from training 
samples

 The ability to produce correct outputs or behavior on 
previously unseen inputs is called GENERALIZAITION

 Rote learning is memorization without generalization
 The big question of Learning Theory (and practice): how to 

get good generalization with a limited number of examples

slide is modified from Y. LeCun
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 find k closest neighbors
 Classify unknown point with the most common class

k-Nearest Neighbors 

classify as green

classify as red

 How to choose k?

 A good “rule of thumb“ is k = n , where n is the number 
of samples
 Interesting theoretical properties

 In practice, k = 1 is often used
 Can find the best k through cross-validation, to be studied 

later
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 kNN rule is certainly simple and intuitive, but does it 
work?

 Assume we have an unlimited number of samples
 Theoretically, the best possible error rate is the 

Bayes rate E*
 Bayes error rate is the best error rate a classifier can have, 

but we do not study it in this course
 Nearest-neighbor rule leads to an error rate greater 

than E*
 But even for k =1,  as  n  , it can be shown that 

nearest neighbor rule error rate is smaller than 2E*
 As we increase k, the upper bound on the error gets 

better and better, that is the error rate (as  n  ) for 
the kNN rule is smaller than cE*,with smaller c for 
larger k

 If we have a lot of samples, the kNN rule will do very 
well !

kNN: How Well Does it Work?
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1NN: Voronoi Cells

36

 Most parametric 
distributions would not 
work for this 2 class 
classification problem:

kNN: Multi-Modal Distributions

 Nearest neighbors will 
do reasonably well, 
provided we have a lot 
of samples

?

?
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 In theory, when the infinite number of samples is 
available, the larger the k, the better is 
classification (error rate gets closer to the optimal 
Bayes error rate)

kNN: How to Choose k?

 But the caveat is that all k neighbors have to be 
close to x
 Possible when infinite # samples available

 Impossible in practice since # samples is finite
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kNN: How to Choose k?

 In practice

1. k should be large so that error rate is 
minimized

 k too small will lead to noisy decision 
boundaries

2. k should be small enough so that only nearby 
samples are included

 k too large will lead to over-smoothed 
boundaries

 Balancing 1 and 2 is not trivial

 This is a recurrent issue, need to smooth data, 
but not too much
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x1

kNN: How to Choose k?

 For k = 1, …,7 point x gets classified correctly

 red class

 For larger k classification of x is wrong

 blue class

x2

x

40

k-NN versus 1-NN
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kNN: Computational Complexity

 Basic kNN algorithm stores all examples. Suppose 
we have n examples each of dimension d

 O(d) to compute distance to one example 

 O(nd) to find one nearest neighbor

 O(knd) to  find k closest examples examples

 Thus complexity is O(knd) 

 This is prohibitively expensive for large number of 
samples

 But we need large number of samples for kNN to 
work well!

42

removed

Reducing Complexity: Editing 1NN
 If all voronoi neighbors have the same class, a 

sample is useless, we can remove it:

 Number of samples decreases

 We are guaranteed that the decision boundaries 
stay the same
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kNN: Selection of Distance
 So far we assumed we use Euclidian Distance to 

find the nearest neighbor:

 However some features (dimensions) may be 
much more discriminative than other features 
(dimensions)

  
k

kk babaD 2),(

 Euclidean distance treats each feature as equally 
important

44

kNN: Selection of Distance
 Extreme Example

 feature 1 gives the correct class: 1 or 2

 feature 2 gives irrelevant number from 100 to 200

 Suppose we have to find  the class of x=[1  100] and 
we have 2 samples [1  150] and [2  110]

    5015010011)150
1,100

1(D 22 











    5.1011010021)110
2,100

1(D 22 











 x = [1  100] is misclassified!

 The denser the samples, the less of the problem

 But we rarely have samples dense enough
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1 1.2 1.4 1.6 1.8 2
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 decision boundaries for blue and green classes are in red
 These boundaries are really bad because
 feature 1 is discriminative, but it’s scale is small
 feature 2 gives no class information but its scale is large

kNN: Extreme Example

kNN: Selection of Distance
 Notice the 2 features are on different scales:
 feature 1  takes values between 1 or 2

 feature 2 takes values between 100 to 200

 Need to “normalize” features  to be on the same scale
 Two approaches:

1. linearly scale the range of each feature to be, say, in [0,1]

minmax

minold
new ff

ff
f






2. linearly scale to zero mean variance 1:

 If Z is a random variable of mean m and variance s2, then 
(Z ‐m)/s has mean 0 and variance 1

 for each feature f, compute its sample mean and variance,
and let the new feature be  [f ‐mean(f)]/sqrt[var(f)]
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kNN: Normalized Features

Scaling to zero mean, unit variance

The decision boundary (in red)  is very good now!
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kNN: Selection of Distance

 However in high dimensions if there are a lot of 
irrelevant features, normalization will not help

      
j

2
jj
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2
ii
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2
kk bababa)b,a(D

discriminative
feature

noisy
features

 If the number of discriminative features is smaller 
than the number of  noisy features, Euclidean 
distance is dominated by noise
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kNN: Feature Weighting

 Scale each feature by its importance for 
classification

 Can learn the weights wk from the validation data

 Increase/decrease weights until classification 
improves

  
k

kkk bawbaD 2),(
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kNN Summary

 Advantages
 Can be applied to the data from any distribution
 Very simple and intuitive
 Good classification if the number of samples is 

large enough

 Disadvantages
 Choosing best k may be difficult
 Computationally heavy, but improvements 

possible
 Need large number of samples for accuracy
 Can never fix this without assuming parametric 

distribution


