CS840a: Machine Learning in Computer Vision Olga Veksler

> Lecture 1 Introduction Nearest Neighbor

Course Outline

Prerequisite

- First-year course in Calculus
- Introductory Statistics
- Linear Algebra
- Some Computer Vision/Image Processing
- Grading
 - Class participation 10%
 - In class paper presentation 30%
 - Final Project Presentation 20%
 - Written project report + code, 40 %
 - Matlab, C/C++, anything else as long as I can runit

Outline

- Course overview
- Introduction to Machine Learning
- Simplest Machine Learning Technique: Nearest Neighbors

Course Outline: Content

- Lecture (1/3 of the time), paper presentation/discussions/video (2/3 of the time)
- Machine Learning Methods (tentatively)
 - Nearest neighbor
 - Linear classifiers
 - Neural nets
 - SVM
 - Boosting
- Applications in Computer Vision
 - Object detection/recognition
 - Segmentation
 - TrackingInpainting

Course Outline: Textbook

- No required textbook, but recommended
 - "Pattern Classification" by R.O. Duda, P.E. Hart and D.G. Stork, second edition
 - "Machine Learning" by Tom M. Mitchell
- Conference papers, provided

Different Types of Learning

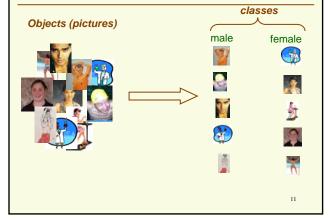
- Supervised Learning: given training examples of inputs and corresponding outputs, produce the "correct" outputs for new inputs
- Unsupervised Learning: given only inputs as training, find structure in the world: e.g. discover clusters
- Reinforcement Learning (similar to animal learning): an agent takes inputs from the environment, and takes actions that affect the environment. Occasionally, the agent gets a reward or punishment. The goal is to learn to produce action sequences that maximize the expected reward (e.g. driving a robot without bumping into obstacles). Not covered in this course

slide is modified from Y. LeCun

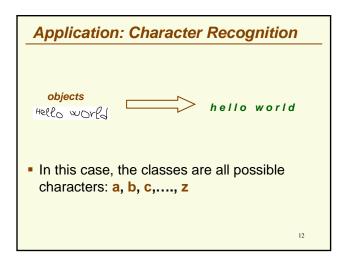
Intro: What is Machine Learning?

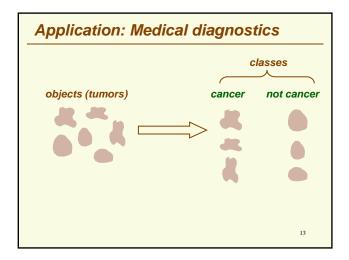
- How to write a computer program that automatically improves its performance through experience
- Machine learning is useful when it is too difficult to come up with a program to perform a desired task
- Make computer to learn by showing examples (most frequently with correct answers)
 "supervised" learning or learning with a teacher
- In practice: computer program (or function) which has a tunable parameters, tune parameters until the desirable behavior on the examples

6

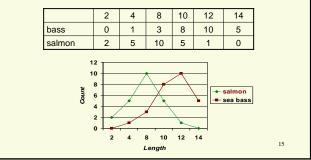

Sketch of Supervised Machine Learning

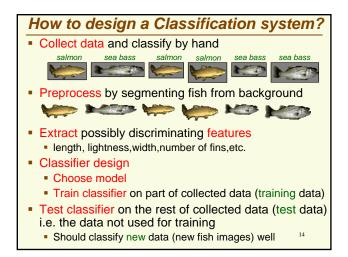
- Modeling stage:
 - collect a set of training examples with correct answers: $(x_1,y_1), (x_2,y_2), \dots, (x_k,y_k)$
 - $x_{i}\text{=}$ features of the example, usually a vector, also called "input" $y_{i}\text{=}$ answer for the example, usually a scalar, also called "output"
 - choose a function f(x,t), where t are the tunable parameters, x is the feature vector, and the function outputs the "correct" answer for training example x
- Training stage:
 - Repeatedly present examples (x_i,y_i) to the function f(x,t), and change parameters t so that f(x,t) gives the correct answer y_i for most examples x_i
- Evaluation stage:
 - Evaluate how well your function f(x,t) is able to predict the answers for examples it hasn't seen so far

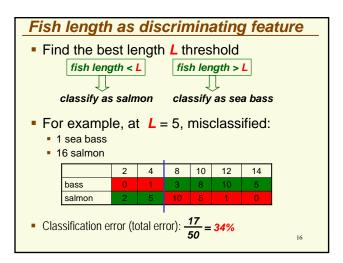

Sketch of Supervised Machine Learning

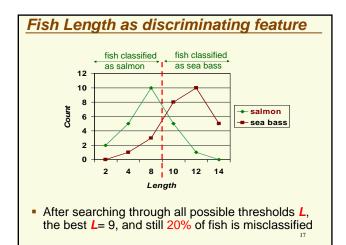

- None of the stages are easy
- Modeling stage:
 - Which features do we extract from training data (which are usually images in vision). How many features?
- Training stage:
 - Which function f(x,t) do we choose? Has to be expressive enough to model our problem, yet not to complicated to avoid overfitting
 - How do we tweak parameters t to ensure f(x,t) = y for most training samples (x,y) ? This step is usually done by optimization, can be quite expensive.
- Evaluation stage
 - Good performance on the training data does not guarantee good performance on data we haven't seen yet. In fact, no error on training data frequently means that we overfitted to the training data

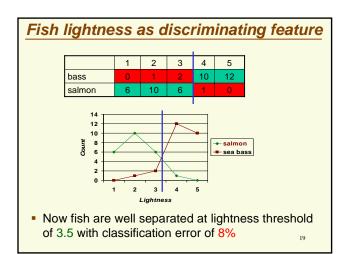
Application: male or female?

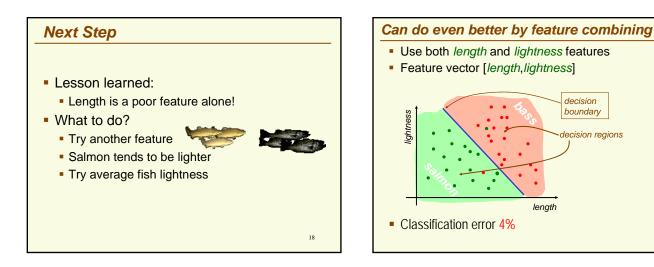

Two types of Machine Learning 1. Classification (mostly deal \sim with in this course) feature outputs y_i are discrete, represent categories (ex.: object categories face, car, etc.) Usually visualize decision regions and decision boundary f(x,t) is usually called feature1 classifier V 2. Regression: outputs y_i are continuous, f(x,t)example: temperature This is also called "curve fitting"

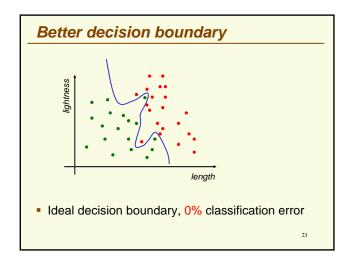


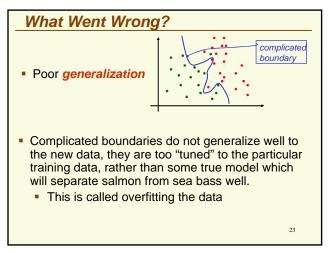


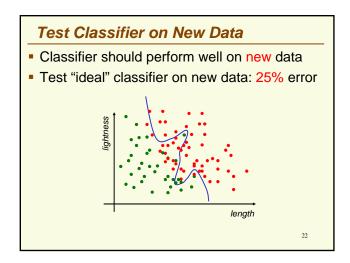

Classifier design

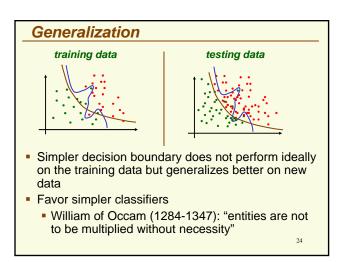

- Notice salmon tends to be shorter than sea bass
- Use fish length as the discriminating feature
- Count number of bass and salmon of each length

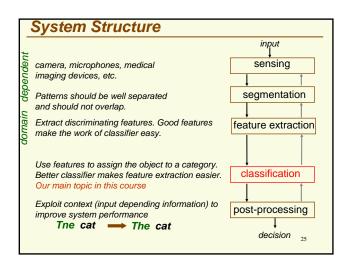


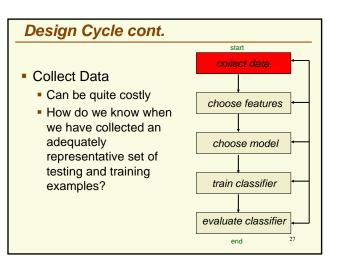


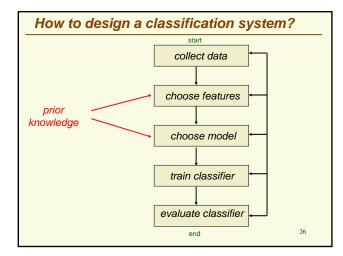


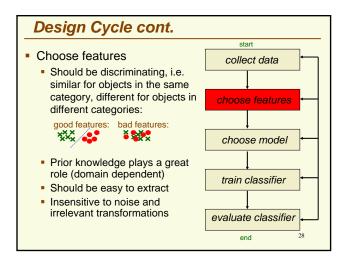

decision boundary

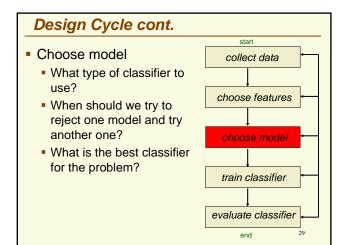

decision regions

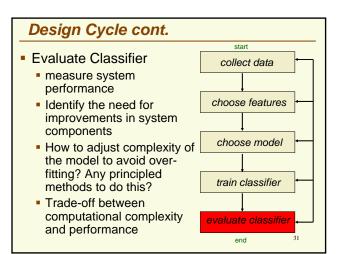


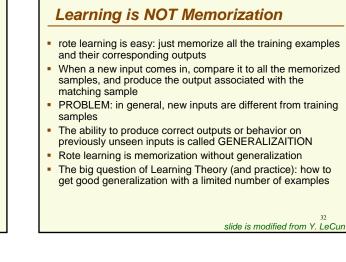


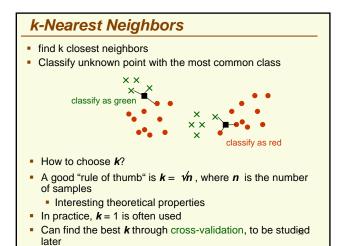


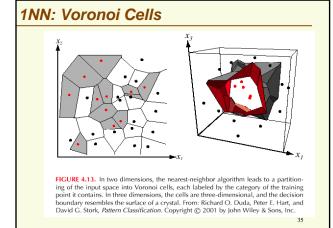




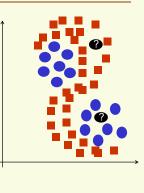






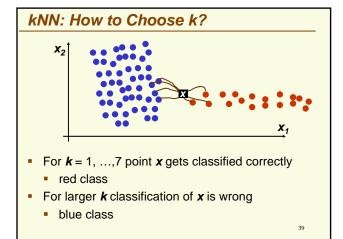


Design Cycle cont.	
	start
 Train classifier 	collect data
 Process of using data to determine the parameters of 	
classifier	choose features
 Change parameters of the 	
chosen model so that the model fits the collected data	choose model
 Many different procedures for training classifiers 	train classifier
Main scope of the course	
	evaluate classifier
	end ³⁰



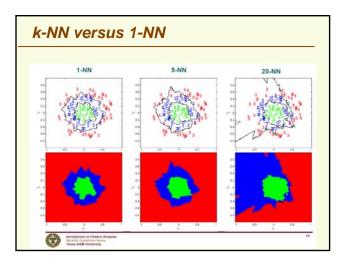
kNN: How Well Does it Work?

- kNN rule is certainly simple and intuitive, but does it work?
- Assume we have an unlimited number of samples
- Theoretically, the best possible error rate is the Bayes rate *E**
 - Bayes error rate is the best error rate a classifier can have, but we do not study it in this course
- Nearest-neighbor rule leads to an error rate greater than *E**
- But even for *k* =1, as *n* → ∞, it can be shown that nearest neighbor rule error rate is smaller than 2*E**
- As we increase k, the upper bound on the error gets better and better, that is the error rate (as $n \to \infty$) for the *kNN* rule is smaller than *cE**,with smaller *c* for larger *k*
- If we have a lot of samples, the kNN rule will do very well !


kNN: Multi-Modal Distributions

- Most parametric distributions would not work for this 2 class classification problem:
- Nearest neighbors will do reasonably well, provided we have a lot of samples

kNN: How to Choose k?


- In theory, when the infinite number of samples is available, the larger the *k*, the better is classification (error rate gets closer to the optimal Bayes error rate)
- But the caveat is that all k neighbors have to be close to x
 - Possible when infinite # samples available
 - Impossible in practice since # samples is finite

37

kNN: How to Choose k?

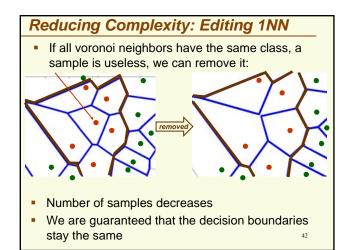
- In practice
 - 1. **k** should be large so that error rate is minimized
 - k too small will lead to noisy decision boundaries
 - 2. *k* should be small enough so that only nearby samples are included
 - k too large will lead to over-smoothed boundaries
- Balancing **1** and **2** is not trivial
 - This is a recurrent issue, need to smooth data, but not too much

kNN: Computational Complexity

- Basic *kNN* algorithm stores all examples. Suppose we have *n* examples each of dimension *d*
 - **O**(**d**) to compute distance to one example
 - O(nd) to find one nearest neighbor
 - **O**(*knd*) to find *k* closest examples examples
 - Thus complexity is O(knd)
- This is prohibitively expensive for large number of samples
- But we need large number of samples for *kNN* to work well!

41

kNN: Selection of Distance

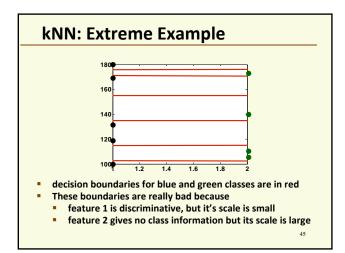

 So far we assumed we use Euclidian Distance to find the nearest neighbor:

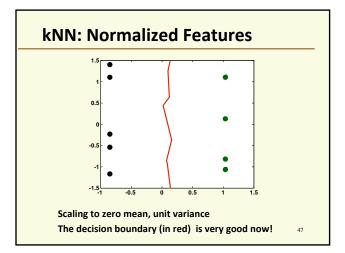
$$D(a,b) = \sqrt{\sum_{k} (a_k - b_k)^2}$$

- However some features (dimensions) may be much more discriminative than other features (dimensions)
- Euclidean distance treats each feature as equally important

43

44


kNN: Selection of Distance


- Extreme Example
 - feature 1 gives the correct class: 1 or 2
 - feature 2 gives irrelevant number from 100 to 200
- Suppose we have to find the class of x=[1 100] and we have 2 samples [1 150] and [2 110]

 $D(\begin{bmatrix} 1\\100 \end{bmatrix}, \begin{bmatrix} 1\\150 \end{bmatrix}) = \sqrt{(1-1)^2 + (100 - 150)^2} = 50$

 $D(\begin{bmatrix} 1\\100 \end{bmatrix}, \begin{bmatrix} 2\\110 \end{bmatrix}) = \sqrt{(1-2)^2 + (100 - 110)^2} = 10.5$

- x = [1 100] is misclassified!
- The denser the samples, the less of the problem
 - But we rarely have samples dense enough

kNN: Selection of Distance Notice the 2 features are on different scales: feature 1 takes values between 1 or 2 feature 2 takes values between 100 to 200 Need to "normalize" features to be on the same scale Two approaches: I. linearly scale the range of each feature to be, say, in [0,1] $f_{new} = \frac{f_{old} - f_{min}}{f_{max} - f_{min}}$ 2. linearly scale to zero mean variance 1:

- If Z is a random variable of mean m and variance s², then (Z - m)/s has mean 0 and variance 1
 - for each feature f, compute its sample mean and variance, and let the new feature be [f - mean(f)]/sqrt[var(f)]

kNN: Selection of Distance

 However in high dimensions if there are a lot of irrelevant features, normalization will not help

$$D(a,b) = \sqrt{\sum_{k} (a_{k} - b_{k})^{2}} = \sqrt{\sum_{i} (a_{i} - b_{i})^{2} + \sum_{j} (a_{j} - b_{j})^{2}}$$

discriminative noisy
features

 If the number of discriminative features is smaller than the number of noisy features, Euclidean distance is dominated by noise

kNN: Feature Weighting

• Scale each feature by its importance for classification

$$D(a,b) = \sqrt{\sum_{k} w_{k} (a_{k} - b_{k})^{2}}$$

- Can learn the weights w_k from the validation data
 - Increase/decrease weights until classification improves

49

kNN Summary

- Advantages
 - Can be applied to the data from any distribution
 - Very simple and intuitive
 - Good classification if the number of samples is large enough
- Disadvantages
 - Choosing best k may be difficult
 - Computationally heavy, but improvements possible
 - Need large number of samples for accuracy
 Can never fix this without assuming parametric distribution