CS9840 Learning and Computer Vision Prof. Olga Veksler

Lecture 2

Some Concepts from Computer Vision
Curse of Dimensionality
PCA

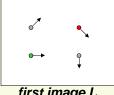
Some Slides are from Cornelia, Fermüller, <u>Mubarak</u> Shah,

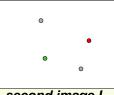
> Gary Bradski, Sebastian Thrun

Outline

- Some Concepts in Image Processing/Vision
 - Optical Flow Field (related to motion field)
 - Correlation
- Curse of Dimensionality and Dimensionality reduction with PCA
- Next time:
 - "Recognizing Action at a Distance" by A. Efros, A.Berg, G. Mori, Jitendra Malik
 - Also: "80 million tiny images: a large dataset for non-parametric object and scene recognition", A. Torralba, R. Fergus, W. Freeman
 - there should be a link to PDF file on our web site

Optical flow





first image I1

second image I₂

- How to estimate pixel motion from image I_1 to image I_2 ?
 - Solve pixel correspondence problem
 - given a pixel in I₁, look for nearby pixels of the same color in I2
- Key assumptions
 - color constancy: a point in I₁ looks the same in I₂
 - For grayscale images, this is brightness constancy
 - small motion: points do not move very far
- This is called the optical flow problem

Optical Flow Field

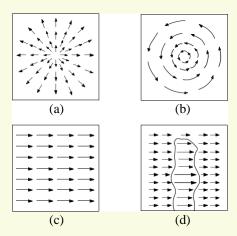
Optical Flow and Motion Field

- Optical flow field is the apparent motion of brightness patterns between 2 (or several) frames in an image sequence
- Why does brightness change between frames?
- Assuming that illumination does not change:
 - changes are due to the RELATIVE MOTION between the scene and the camera
 - There are 3 possibilities:
 - Camera still, moving scene
 - Moving camera, still scene
 - Moving camera, moving scene

Motion Field (MF)

- The MF assigns a velocity vector to each pixel in the image
- These velocities are INDUCED by the RELATIVE MOTION between the camera and the 3D scene
- The MF is the <u>projection</u> of the 3D velocities on the image plane

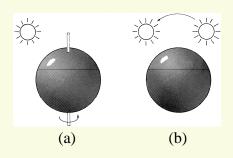
Examples of Motion Fields



(a) Translation perpendicular to a surface. (b) Rotation about axis perpendicular to image plane. (c) Translation parallel to a surface at a constant distance. (d) Translation parallel to an obstacle in front of a more distant background.

Optical Flow vs. Motion Field

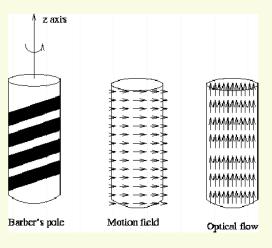
- Recall that Optical Flow is the apparent motion of brightness patterns
- We equate Optical Flow Field with Motion Field
- Frequently works, but now always:

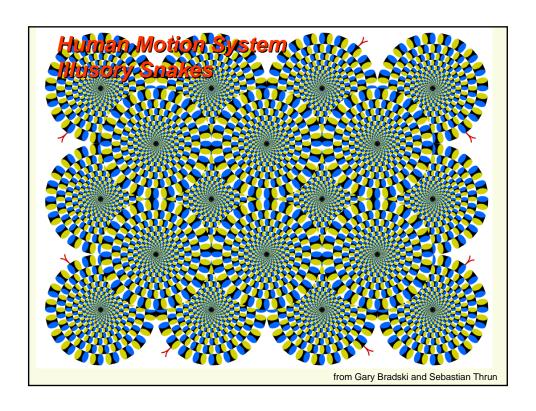


- (a) A smooth sphere is rotating under constant illumination. Thus the optical flow field is zero, but the motion field is not
- (b) A fixed sphere is illuminated by a moving source—the shading of the image changes. Thus the motion field is zero, but the optical flow field is not

Optical Flow vs. Motion Field

 Often (but not always) optical flow corresponds to the true motion of the scene





Computing Optical Flow: Brightness Constancy Equation

- Let P be a moving point in 3D:
 - At time t, P has coordinates (X(t), Y(t), Z(t))
 - Let p=(x(t),y(t)) be the coordinates of its image at time t
 - Let E(x(t), y(t), t) be the brightness at p at time t.
- Brightness Constancy Assumption:
 - As P moves over time, E(x(t),y(t),t) remains constant

Computing Optical Flow: Brightness Constancy Equation

$$E(x(t), y(t), t) = Constant$$

Taking derivative wrt time:

$$\frac{dE(x(t), y(t), t)}{dt} = 0$$

$$\frac{\partial E}{\partial x}\frac{dx}{dt} + \frac{\partial E}{\partial y}\frac{dy}{dt} + \frac{\partial E}{\partial t} = 0$$

Computing Optical Flow: Brightness Constancy Equation

1 equation with 2 unknowns

$$\frac{\partial E}{\partial x}\frac{dx}{dt} + \frac{\partial E}{\partial y}\frac{dy}{dt} + \frac{\partial E}{\partial t} = 0$$

Let

$$abla E = \left[egin{array}{c} rac{\partial E}{\partial x} \\ rac{\partial E}{\partial y} \end{array}
ight]$$
 (Frame spatial gradient)

$$v = \begin{bmatrix} \frac{dx}{dt} \\ \frac{dy}{dy} \end{bmatrix}$$
 (optical flow)

and

$$E_t = \frac{\partial E}{\partial t}$$

(derivative across frames)

Computing Optical Flow: Brightness Constancy Equation

- How to get more equations for a pixel?
 - Basic idea: impose additional constraints
 - most common is to assume that the flow field is smooth locally
 - one method: pretend the pixel's neighbors have the same (u,v)
 - If we use a 5x5 window, that gives us 25 equations per pixel!

$$E_t(\mathbf{p}_i) + \nabla E(\mathbf{p}_i) \cdot [\mathbf{u} \ \mathbf{v}] = \mathbf{0}$$

$$\begin{bmatrix} E_{x}(\mathbf{p}_{1}) & E_{y}(\mathbf{p}_{1}) \\ E_{x}(\mathbf{p}_{2}) & E_{y}(\mathbf{p}_{2}) \\ \vdots & \vdots \\ E_{x}(\mathbf{p}_{25}) & E_{y}(\mathbf{p}_{25}) \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix} = - \begin{bmatrix} E_{t}(\mathbf{p}_{1}) \\ E_{t}(\mathbf{p}_{2}) \\ \vdots \\ E_{t}(\mathbf{p}_{25}) \end{bmatrix}$$
matrix E_{x} vector \mathbf{d}_{x} vector \mathbf{d}_{y} vector \mathbf{d}_{y}

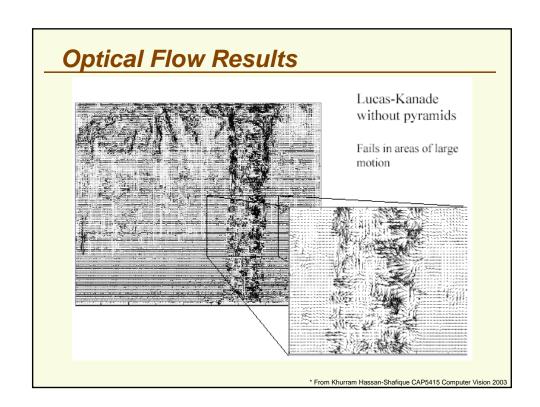
matrix *E* 25x2

vector **d**2x1

vector **b** 25x1

Video Sequence

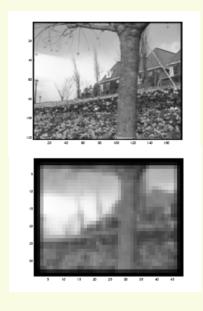
* Picture from Khurram Hassan-Shafique CAP5415 Computer Vision 2003

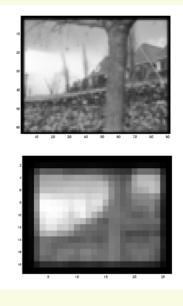


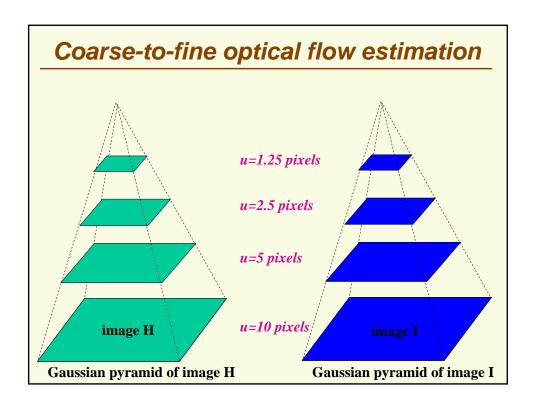
Revisiting the small motion assumption

- Is this motion small enough?
 - Probably not—it's much larger than one pixel (2nd order terms dominate)
 - How might we solve this problem?

Reduce the resolution!

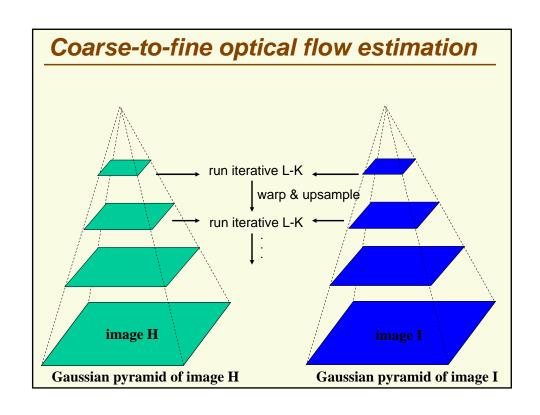


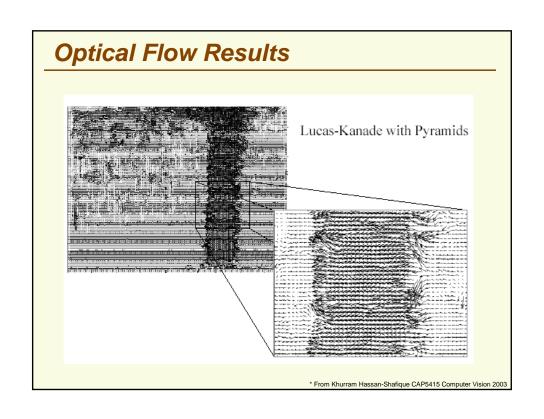




Iterative Refinement

- Iterative Lukas-Kanade Algorithm
 - Estimate velocity at each pixel by solving Lucas-Kanade equations
 - 2. Warp H towards I using the estimated flow field use image warping techniques
 - 3. Repeat until convergence





Other Concepts to Review

 Convolution is the operation of applying a "kernel" to each pixel of an image

image								
III	I 12	I 13	I 14	I 1.5	I 16	I 17	I18	I 19
I21	I 22	I 23	I 24	I 25	I 26	I 27	I 28	I 29
I31	I 32	I 33	I 34	I 35	I 36	I 37	I 38	I 39
I41	I 42	I43	I 44	I 45	I 46	I 47	I48	I 49
I51	I 52	I53	I 54	I55	I 56	I 57	I58	I 59
I61	I 62	I 63	I 64	I 65	I 66	I 67	I 68	I 69

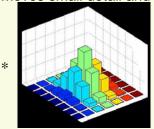
- Result of convolution has the same dimension as the image
- For example:

$$O_{57} = I_{57}K_{11} + I_{58}K_{12} + I_{59}K_{13} + I_{67}K_{21} + I_{68}K_{22} + I_{69}K_{23}$$

Convolution is frequently denoted by *, for example I*K

Other Concepts to Review

 Gaussian smoothing (blurring): convolution operator that is used to `blur' images and removes small detail and noise from an image



	1	4	7	4	1
	4	16	26	16	4
<u>1</u> 273	7	26	41	26	7
	4	16	26	16	4
	1	4	7	4	1

Gaussian Smoothing vs. Averaging

Gaussian Smoothing

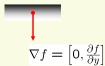
	1	4	7	4	1	
	4	16	26	16	4	
<u>1</u> 273	7	26	41	26	7	
	4	16	26	16	4	
	1	4	7	4	1	

Smoothing by Averaging

Other Concepts to Review

 Image gradient: points in the direction of the most rapid increase in intensity of image f

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$$



Sobel operator to compute gradient:

$$\frac{1}{8} \begin{bmatrix}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1
\end{bmatrix}$$

$$\frac{\partial \mathbf{f}}{\partial \mathbf{x}}$$

$$\frac{1}{8} \begin{bmatrix}
1 & 2 & 1 \\
0 & 0 & 0 \\
-1 & -2 & -1
\end{bmatrix}$$

$$\frac{\partial f}{\partial y}$$

Results:

Other Concepts to Review

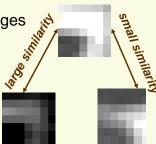
Cross-correlation

$$c(f,g) = \sum_{i=1}^d f(i)g(i)$$

- measures similarity between images (or image regions) f and g
- works OK if there is no change in intensity
- Normalized cross correlation, more popular in image processing

 Insensitive to linear intensity changes between image patches f and g

$$NCC(f,g) = \frac{\sum_{i=1}^{d} (f(i) - \overline{f})(g(i) - \overline{g})}{\left[\sum_{i=1}^{d} (f(i) - \overline{f})^{2} \sum_{k=1}^{d} {}^{2}(g(i) - \overline{g})\right]^{1/2}}$$



Curse of Dimensionality

- Problems of high dimensional data, "the curse of dimensionality"
 - running time
 - overfitting
 - number of samples required
- Dimensionality Reduction Methods
 - Principle Component Analysis

Curse of Dimensionality: Complexity

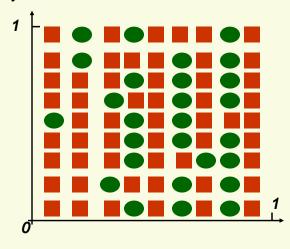
- Complexity (running time) increases with dimension d
- A lot of methods have at least O(nd²) complexity, where n is the number of samples
 - For example if we need to estimate covariance matrix
- So as d becomes large, O(nd²) complexity may be too costly

Curse of Dimensionality: Number of Samples

- Suppose we want to use the nearest neighbor approach with k = 1 (1NN)
- Suppose we start with only one feature

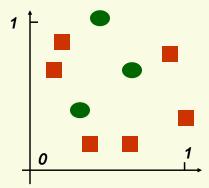
- This feature is not discriminative, i.e. it does not separate the classes well
- We decide to use 2 features. For the 1NN method to work well, need a lot of samples, i.e. samples have to be dense
- To maintain the same density as in 1D (9 samples per unit length), how many samples do we need?

 We need 9² samples to maintain the same density as in 1D



Curse of Dimensionality: Number of Samples

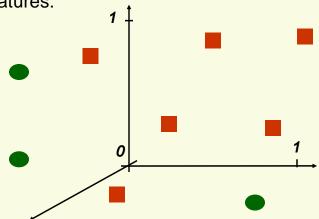
 Of course, when we go from 1 feature to 2, no one gives us more samples, we still have 9



This is way too sparse for 1NN to work well

Curse of Dimensionality: Number of Samples

Things go from bad to worse if we decide to use 3 features:



If 9 was dense enough in 1D, in 3D we need 9³=729 samples!

Curse of Dimensionality: Number of Samples

- In general, if *n* samples is dense enough in 1D
- Then in d dimensions we need nd samples!
- And n^d grows really really fast as a function of d
- Common pitfall:
 - If we can't solve a problem with a few features, adding more features seems like a good idea
 - However the number of samples usually stays the same
 - The method with more features is likely to perform worse instead of expected better

The Curse of Dimensionality

- We should try to avoid creating lot of features
- Often no choice, problem starts with many features
- Example: Face Detection
 - One sample point is k by m array of pixels

- Feature extraction is not trivial, usually every pixel is taken as a feature
- Typical dimension is 20 by 20 = 400
- Suppose 10 samples are dense enough for 1 dimension. Need only 10⁴⁰⁰ samples

The Curse of Dimensionality

Face Detection, dimension of one sample point is km

- The fact that we set up the problem with km dimensions (features) does not mean it is really a km-dimensional problem
- Space of all k by m images has km dimensions
- Space of all k by m faces must be much smaller, since faces form a tiny fraction of all possible images
- Most likely we are not setting the problem up with the right features
- If we used better features, we are likely need much less than *km*-dimensions

Dimensionality Reduction

- High dimensionality is challenging and redundant
- It is natural to try to reduce dimensionality
- Reduce dimensionality by feature combination: combine old features x to create new features y

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_d \end{bmatrix} \to \mathbf{f} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_d \end{bmatrix} = \begin{bmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_k \end{bmatrix} = \mathbf{y} \quad \text{with } \mathbf{k} < \mathbf{d}$$

- For example, $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 + x_2 \\ x_3 + x_4 \end{bmatrix} = y$
- Ideally, the new vector y should retain from x all information important for classification

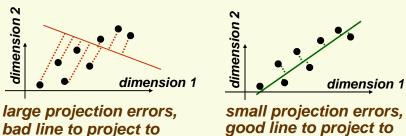
Dimensionality Reduction

- The best f(x) is most likely a non-linear function
- Linear functions are easier to find though
- For now, assume that f(x) is a linear mapping
- Thus it can be represented by a matrix W:

$$\begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \vdots \\ \mathbf{X}_d \end{bmatrix} \Rightarrow \mathbf{W} \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \vdots \\ \mathbf{X}_d \end{bmatrix} = \begin{bmatrix} \mathbf{W}_{11} & \cdots & \mathbf{W}_{1d} \\ \vdots & & \vdots \\ \mathbf{W}_{k1} & \cdots & \mathbf{W}_{kd} \end{bmatrix} \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \vdots \\ \mathbf{X}_d \end{bmatrix} = \begin{bmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_k \end{bmatrix} \quad \text{with } \mathbf{k} < \mathbf{d}$$

Principle Component Analysis (PCA)

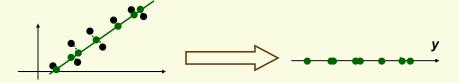
- Main idea: seek most accurate data representation in a lower dimensional space
- Example in 2-D
 - Project data to 1-D subspace (a line) which minimize the projection error



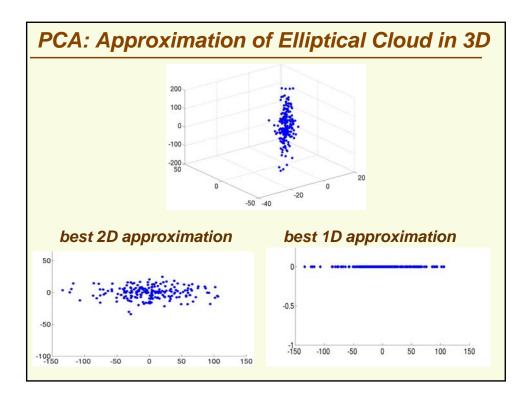
 Notice that the good line to use for projection lies in the direction of largest variance

PCA

 After the data is projected on the best line, need to transform the coordinate system to get 1D representation for vector y

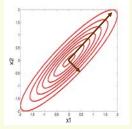


- Note that new data y has the same variance as old data x in the direction of the green line
- PCA preserves largest variances in the data



PCA

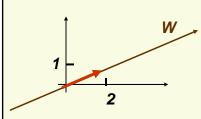
- What is the direction of largest variance in data?
- Recall that if \mathbf{x} has multivariate distribution $N(\mu, \Sigma)$, direction of largest variance is given by eigenvector corresponding to the largest eigenvalue of Σ



 This is a hint that we should be looking at the covariance matrix of the data (note that PCA can be applied to distributions other than Gaussian)

PCA: Linear Algebra Review

- Let V be a d dimensional linear space, and W be a k dimensional linear subspace of V
- We can always find a set of d dimensional vectors {e₁, e₂,...,e_k} which forms an orthonormal basis for W
 <e_i,e_i> = 0 if i is not equal to j and <e_i,e_i> = 1
- Thus any vector in \mathbf{W} can be written as $\alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 + ... + \alpha_k \mathbf{e}_k = \sum_{i=1}^k \alpha_i \mathbf{e}_i$ for scalars $\alpha_1, ..., \alpha_k$

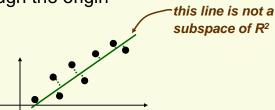


Let $V = \mathbb{R}^2$ and W be the line x-2y=0. Then the orthonormal basis for W is

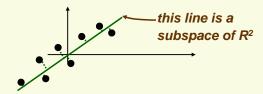
 $\left\{ \begin{bmatrix} 2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix} \right\}$

PCA: Linear Algebra

 Recall that subspace W contains the zero vector, i.e. it goes through the origin

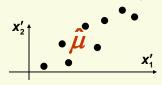


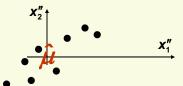
It is convenient to project to subspace W: thus we need to shift everything



PCA Derivation: Shift by the Mean Vector

- Before PCA, subtract sample mean from the data $x \frac{1}{n} \sum_{i=1}^{n} x_i = x \hat{\mu}$
- The new data has zero mean: E(X-E(X)) = E(X)-E(X) = 0
- All we did is change the coordinate system





- Another way to look at it:
 - first step of getting **y** is to subtract the mean of **x**

$$x \rightarrow y = f(x) = g(x - \hat{\mu})$$

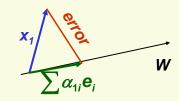
PCA: Derivation

- We want to find the most accurate representation of data D={x₁,x₂,...,x_n} in some subspace W which has dimension k < d
- Let $\{e_1, e_2, ..., e_k\}$ be the orthonormal basis for W. Any vector in W can be written as $\sum_{i=1}^k \alpha_i e_i$
- Thus x_1 will be represented by some vector in W

$$\sum_{i=1}^k \alpha_{1i} \mathbf{e}_i$$

Error this representation:

$$error = \left\| \mathbf{x}_1 - \sum_{i=1}^k \alpha_{1i} \mathbf{e}_i \right\|^2$$



PCA: Derivation

- To find the total error, we need to sum over all x_i 's
- Any \mathbf{x}_{j} can be written as $\sum_{i=1}^{k} \alpha_{ji} \mathbf{e}_{i}$
- Thus the total error for representation of all data D is: sum over all data points

$$J(\underbrace{\mathbf{e}_{1},...,\mathbf{e}_{k},\alpha_{11},...\alpha_{nk}}) = \sum_{j=1}^{n} \left\| \mathbf{x}_{j} - \sum_{i=1}^{k} \alpha_{ji} \mathbf{e}_{i} \right\|^{2}$$
unknowns
$$error at one point$$

PCA: Derivation

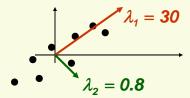
- A lot of math.....to finally get:
- Let S be the scatter matrix, it is just n-1 times the sample covariance matrix

$$\hat{\Sigma} = \frac{1}{n-1} \sum_{j=1}^{n} (\mathbf{x}_{j} - \hat{\mu}) (\mathbf{x}_{j} - \hat{\mu})^{t}$$

To minimize J take for the basis of W the k eigenvectors of S corresponding to the k largest eigenvalues

PCA

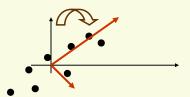
 The larger the eigenvalue of S, the larger is the variance in the direction of corresponding eigenvector



- This result is exactly what we expected: project x into subspace of dimension k which has the largest variance
- This is very intuitive: restrict attention to directions where the scatter is the greatest

PCA

 Thus PCA can be thought of as finding new orthogonal basis by rotating the old axis until the directions of maximum variance are found



PCA as Data Approximation

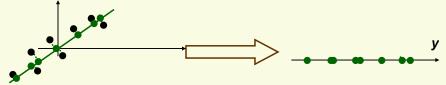
- Let {e₁,e₂,...,e_d} be all d eigenvectors of the scatter matrix S, sorted in order of decreasing corresponding eigenvalue
- Without any approximation, for any sample x_i:
 error of approximation

$$\mathbf{x}_{i} = \sum_{j=1}^{d} \alpha_{j} \, \mathbf{e}_{j} = \underbrace{\alpha_{1} \, \mathbf{e}_{1} + \ldots + \alpha_{k} \, \mathbf{e}_{k}}_{\mathbf{approximation of } \mathbf{x}_{i}} + \underbrace{\alpha_{k+1} \, \mathbf{e}_{k+1} \ldots + \alpha_{d} \, \mathbf{e}_{d}}_{\mathbf{e}_{d}}$$

- coefficients $\alpha_m = \mathbf{x}^t \mathbf{e}_m$ are called *principle components*
 - The larger **k**, the better is the approximation
 - Components are arranged in order of importance, more important components come first
- Thus PCA takes the first k most important components of x_i as an approximation to x_i

PCA: Last Step

- Now we know how to project the data
- Last step is to change the coordinates to get final *k*-dimensional vector *y*



- Let matrix $E = [e_1 \cdots e_k]$
- Then the coordinate transformation is $y = E^t x$
- Under *E^t*, the eigenvectors become the standard basis:

$$E^{t}\mathbf{e}_{i} = \begin{bmatrix} \mathbf{e}_{1} \\ \vdots \\ \mathbf{e}_{i} \\ \vdots \\ \mathbf{e}_{k} \end{bmatrix} \mathbf{e}_{i} = \begin{bmatrix} \mathbf{0} \\ \vdots \\ \mathbf{1} \\ \vdots \\ \mathbf{0} \end{bmatrix}$$

Recipe for Dimension Reduction with PCA

Data $D=\{x_1,x_2,...,x_n\}$. Each x_i is a d-dimensional vector. Wish to use PCA to reduce dimension to k

- 1. Find the sample mean $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- 2. Subtract sample mean from the data $\mathbf{z}_i = \mathbf{x}_i \hat{\boldsymbol{\mu}}$
- 3. Compute the scatter matrix $\mathbf{S} = \sum_{i=1}^{n} \mathbf{z}_{i} \mathbf{z}_{i}^{t}$
- 4. Compute eigenvectors $e_1, e_2, ..., e_k$ corresponding to the k largest eigenvalues of S
- 5. Let $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_k$ be the columns of matrix $\mathbf{E} = [\mathbf{e}_1 \cdots \mathbf{e}_k]$
- 6. The desired y which is the closest approximation to x is $y = E^t z$

PCA Example Using Matlab

- Let $\mathbf{D} = \{(1,2),(2,3),(3,2),(4,4),(5,4),(6,7),(7,6),(9,7)\}$
- Convenient to arrange data in array

$$X = \begin{bmatrix} 1 & 2 \\ \vdots & \vdots \\ 9 & 7 \end{bmatrix} = \begin{bmatrix} X_1 \\ \vdots \\ X_8 \end{bmatrix}$$

- Mean $\mu = mean(X) = [4.6 \ 4.4]$
- Subtract mean from data to get new data array Z

$$Z = X - \begin{bmatrix} \mu \\ \vdots \\ \mu \end{bmatrix} = X - repmat(\mu, 8, 1) = \begin{bmatrix} -3.6 - 4.4 \\ \vdots & \vdots \\ 4.4 & 2.6 \end{bmatrix}$$

Compute the scatter matrix S

$$S = 7 * cov(Z) = \begin{bmatrix} -3.6 & -4.4 \end{bmatrix} \begin{bmatrix} -3.6 \\ -4.4 \end{bmatrix} + ... + \begin{bmatrix} 4.4 & 2.6 \end{bmatrix} \begin{bmatrix} 4.4 \\ 2.6 \end{bmatrix} = \begin{bmatrix} 57 & 40 \\ 40 & 34 \end{bmatrix}$$

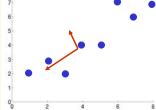
matlab uses unbiased estimate for covariance, so S=(n-1)*cov(Z)

PCA Example Using Matlab

 Use [V,D] =eig(S) to get eigenvalues and eigenvectors of S

$$\lambda_1 = 87$$
 and $\mathbf{e}_1 = \begin{bmatrix} -0.8 \\ -0.6 \end{bmatrix}$

$$\lambda_2 = 3.8$$
 and $\mathbf{e}_2 = \begin{bmatrix} 0.6 \\ -0.8 \end{bmatrix}$



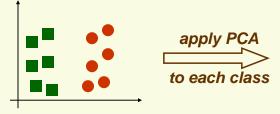
Projection to 1D space in the direction of e₁

$$Y = e_1^t Z^t = \left(\begin{bmatrix} -0.8 & -0.6 \end{bmatrix} \begin{bmatrix} -3.6 & \cdots & 4.4 \\ -4.4 & \cdots & 2.6 \end{bmatrix} \right) = \begin{bmatrix} 4.3 & \cdots & -5.1 \end{bmatrix}$$

$= [y_1 \cdots y_8]$

Drawbacks of PCA

- PCA was designed for accurate data representation, not for data classification
 - Preserves as much variance in data as possible
 - If directions of maximum variance is important for classification, will work
- However the directions of maximum variance may be useless for classification



Next Time

- Paper: "Recognizing Action at a Distance" by A. Efros, A.Berg, G. Mori, Jitendra Malik
 - will watch the conference presentation
- Also: "80 million tiny images: a large dataset for nonparametric object and scene recognition", A. Torralba, R. Fergus, W. Freeman
- When reading papers, think about following:
 - What is the problem paper tries to solve
 - What makes this problem difficult?
 - What is the method used in the paper to solve the problem
 - What is the contribution of the paper (what new does it do)?
 - Do the experimental results look "good" to you?