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Learning and Computer Vision
Prof. Olga Veksler

Lecture 2
Some Concepts from Computer Vision
Curse of Dimensionality
PCA

Some Slides are from Cornelia, Fermiller,

Gary Bradski,
Sebastian Thrun

Optical flow
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= How to estimate pixel motion from image |, to image I, ?

= Solve pixel correspondence problem

= given a pixel in I, look for nearby pixels of the same
colorin I,
= Key assumptions

= color constancy: a pointin I, looks the same in I,

= For grayscale images, this is brightness
constancy

= small motion: points do not move very far
= This is called the optical flow problem

Outline

= Some Concepts in Image Processing/Vision
= Optical Flow Field (related to motion field)
= Correlation

= Curse of Dimensionality and Dimensionality
reduction with PCA

= Next time:

= “Recognizing Action at a Distance” by A. Efros,
A.Berg, G. Mori, Jitendra Malik

= Also: "80 million tiny images: a large dataset for
non-parametric object and scene recognition”, A.
Torralba, R. Fergus, W. Freeman

= there should be a link to PDF file on our web site

Optical Flow Field




Optical Flow and Motion Field

= Optical flow field is the apparent motion of
brightness patterns between 2 (or several) frames
in an image sequence

= Why does brightness change between frames?

= Assuming that illumination does not change:

= changes are due to the RELATIVE MOTION between
the scene and the camera

= There are 3 possibilities:
= Camera still, moving scene
= Moving camera, still scene
= Moving camera, moving scene

Examples of Motion Fields
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(a) Translation perpendicular to a surface. (b) Rotation about axis
perpendicular to image plane. (c) Translation parallel to a surface at a
constant distance. (d) Translation parallel to an obstacle in front of a
more distant background.

Motion Field (MF)

Optical Flow vs. Motion Field

= The MF assigns a velocity vector to each pixel in
the image

= These velocities are INDUCED by the RELATIVE
MOTION between the camera and the 3D scene

= The MF is the projection of the 3D velocities on
the image plane

= Recall that Optical Flow is the apparent motion of
brightness patterns

= We equate Optical Flow Field with Motion Field

= Frequently works, but now always:

(a) A smooth sphere is rotating
under constant illumination.
Thus the optical flow field is
zero, but the motion field is
not

(b) A fixed sphere is illuminated
by a moving source—the
shading of the image
changes. Thus the motion
field is zero, but the optical
flow field is not

(a) (b)




Optical Flow vs. Motion Field

= Often (but not always) optical flow corresponds to the
true motion of the scene
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Computing Optical Flow: Brightness
Constancy Equation

= Let P be a moving point in 3D:
= At time t, P has coordinates (X(t),Y(t),Z(t))

= Let p=(x(t),y(t)) be the coordinates of its image
at time t

= Let E(x(t),y(t),t) be the brightness at p at time t.
= Brightness Constancy Assumption:

= As P moves over time, E(x(t),y(t),t) remains
constant

from Gary Bradski and Sebastian Thrun

Computing Optical Flow: Brightness
Constancy Equation

E(xz(t),y(t),t) = Constant
Taking derivative wrt time:

AE (1), y(1). 1) _

0
dt
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Computing Optical Flow: Brightness
Constancy Equation

1 equation with 2 unknowns

OEdxr OEdy OFE
Let
€ oF (Frame spatial gradient)

{ dz } (optical flow)
v =

and B = 3_E (derivative across frames)

Video Sequence

* Picture from Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Computing Optical Flow: Brightness
Constancy Equation

Optical Flow Results

= How to get more equations for a pixel?
= Basic idea: impose additional constraints
= most common is to assume that the flow field is smooth locally
= one method: pretend the pixel's neighbors have the same (u,v)
= If we use a 5x5 window, that gives us 25 equations per pixel!

E.(p))+VE(p,)-lu v]=0

E.(p.) E,(p) E, gplg
Ex(.pZ) Ey (pz) \L/j = —_ Et .p2
Ex(bZS) Ey (bzs) Et(bzs)
matrix E vector d vector b
25x2 2x1 25x1

Lucas-Kanade
without pyramids

Fails in areas of large
motion

* Fror

m Khurram Hassan-Shafique CAP5415 Computer Vision 2003



Revisiting the small motion assumption

= |s this motion small enough?

= Probably not—it's much larger than one pixel (2"
order terms dominate)

= How might we solve this problem?

Coarse-to-fine optical flow estimation

- u=1.25 pixels
- u=2.5 pixels
u=10 pixels;
Gaussian pyramid of image H Gaussian pyramid of image |

Reduce the resolution!

Ilterative Refinement

= |terative Lukas-Kanade Algorithm
1. Estimate velocity at each pixel by solving Lucas-
Kanade equations
2. Warp H towards | using the estimated flow field
- use image warping techniques
3. Repeat until convergence




Coarse-to-fine optical flow estimation

- ‘_. run iterative L-K -

Iwarp & upsample /

.—’ run iterative L-K +——

Gaussian pyramid of image H

Gaussian pyramid of image |

Other Concepts to Review

= Convolution is the operation of applying a “kernel” to each pixel
of an image

image
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= Result of convolution has the same dimension as the image
= For example:

Oy = IypK1 s B+ Lig K- g+ Ten Kon+ Tgg Kaa — Jog Houg
= Convolution is frequently denoted by *, for example I*K

Optical Flow Results

Lucas-Kanade with Pyramids

 From Khurram HassanShafique CAP5415 Computer Vision 2003

Other Concepts to Review

= Gaussian smoothing (blurring): convolution operator that is used to
“blur' images a}nd removes small detail and noisl_e from an image
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Gaussian Smoothing vs. Averaging

Other Concepts to Review

Gaussian Smoothing
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Smoothing by Averaging

= Cross-correlation

c(t )= £1()a()

= measures similarity between images (or image regions) f
and g

= works OK if there is no change in intensity
= Normalized cross correlation, more
popular in image processing
= Insensitive to linear intensity changes .

)
2
between image patches fand g g %
(F)-FXa()-3) & >

NCC(f,g): a4 = a4 172
[560-1 3 60-0) . :

Other Concepts to Review

= |Image gradient: points in the direction of the most rapid
increase in intensity of image f

I_vf= [3.0] T

K Vf= [%%]

Curse of Dimensionality

— 9.
vi=[0.%]
= Sobel operator to 1 -1j0]1 Q 1
compute gradient: g |2[9]2 3 0
-1)0]1 1
of
ox

= Results:
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= Problems of high dimensional data, “the
curse of dimensionality”
= running time
= overfitting
= number of samples required
= Dimensionality Reduction Methods
= Principle Component Analysis




Curse of Dimensionality: Complexity

= Complexity (running time) increases with
dimension d
= Aot of methods have at least O(nd2) complexity,
where n is the number of samples
= For example if we need to estimate covariance
matrix

= So as d becomes large, O(nd2) complexity may
be too costly

Curse of Dimensionality: Number of Samples

=  We need 92 samples to maintain the same
density as in 1D
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Curse of Dimensionality: Number of Samples

= Suppose we want to use the nearest neighbor
approach with k =1 (1NN)
= Suppose we start with only one feature
0 1
- neoneoneon-
= This feature is not discriminative, i.e. it does not
separate the classes well
= We decide to use 2 features. For the 1NN method
to work well, need a lot of samples, i.e. samples
have to be dense
= To maintain the same density as in 1D (9 samples
per unit length), how many samples do we need?

Curse of Dimensionality: Number of Samples

= Of course, when we go from 1 feature to 2, no
one gives us more samples, we still have 9

1 b ®

= This is way too sparse for 1NN to work well




Curse of Dimensionality: Number of Samples

= Things go from bad to worse if we decide to use 3

features:
11
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= |f 9 was dense enough in 1D, in 3D we need
93=729 samples!

The Curse of Dimensionality

= We should try to avoid creating lot of features
= Often no choice, problem starts with many features
= Example: Face Detection

= One sample point is k by m array of pixels

u-

= Feature extraction is not trivial, usually every
pixel is taken as a feature

= Typical dimension is 20 by 20 = 400

= Suppose 10 samples are dense enough for 1
dimension. Need only 10400 samples

Curse of Dimensionality: Number of Samples

= In general, if n samples is dense enough in 1D

= Then in d dimensions we need n4 samples!

= And nd grows really really fast as a function of d

= Common pitfall:

= |f we can't solve a problem with a few features, adding
more features seems like a good idea

= However the number of samples usually stays the same

= The method with more features is likely to perform
worse instead of expected better

The Curse of Dimensionality

= Face Detection, dimension of one sample point is km
[ 1111
i
[ 1] ]
= The fact that we set up the problem with km
dimensions (features) does not mean it is really
a km-dimensional problem
= Space of all k by m images has km dimensions
= Space of all k by m faces must be much smaller,
since faces form a tiny fraction of all possible images
= Most likely we are not setting the problem up with
the right features
= |If we used better features, we are likely need much
less than km-dimensions




Dimensionality Reduction

Principle Component Analysis (PCA)

= High dimensionality is challenging and redundant

= |tis natural to try to reduce dimensionality
Reduce dimensionality by feature combination:
combine old features x to create new features y

% X Y1
Xa | £ | X2 =|:E:|=y with k <d
X'd X'd s

X =

= For example, X
w2 _)[x1+x2}=y
Xy Xg+ X,
Xy

Ideally, the new vector y should retain from x all
information important for classification

= Main idea: seek most accurate data representation in
a lower dimensional space
= Example in 2-D

= Project data to 1-D subspace (a line) which minimize the
projection error

N o~
s 5
= o
5
E| 7 £
Cle ® dimension 1 il dimension 1
T T
large projection errors, small projection errors,
bad line to project to good line to project to

= Notice that the the good line to use for projection lies
in the direction of largest variance

Dimensionality Reduction

The best f(x) is most likely a non-linear function
= Linear functions are easier to find though
= For now, assume that f(x) is a linear mapping

= Thus it can be represented by a matrix W:

Xy X1 W e W Xy y

11 1d 1
X2 [ w| X2 =[ : : } X2 =[s] with k <d
X‘d X'u Wy, o0 Wiy X’u Yk

PCA

= After the data is projected on the best line, need to
transform the coordinate system to get 1D
representation for vector y

= Note that new data y has the same variance as old
data x in the direction of the green line

= PCA preserves largest variances in the data

10



PCA: Approximation of Elliptical Cloud in 3D

b

50 40

best 2D approximation

best 1D approximation

PCA: Linear Algebra Review

= LetV be a d dimensional linear space, and W be a k
dimensional linear subspace of V
= We can always find a set of d dimensional vectors
{e,.e,.....} which forms an orthonormal basis for W
= <e,g>=0ifiisnotequaltojand <e,e>=1

= Thus any vector in W can be written as

age +ae, +..+ae =y ae for scalars a,..a,
i=1

Let V= RZand W be the line

Lr e gmsdwtee, . W x-2y=0. Then the orthonormal
B e %ﬁ“{‘ "a N basis for W is
» 1
=0 2/£
e s . . " ; 15 00 50 [ 0 W 10 2 1/ \/g
PCA PCA: Linear Algebra

= What is the direction of largest variance in data?

= Recall that if x has multivariate distribution N(g,2),
direction of largest variance is given by eigenvector
corresponding to the largest eigenvalue of ¥

= This is a hint that we should be looking at the
covariance matrix of the data (note that PCA can be
applied to distributions other than Gaussian)

= Recall that subspace W contains the zero vector, i.e.
it goes through the origin

/this lineis not a
subspace of R?

= |t is convenient to project to subspace W: thus we
need to shift everything

A ~—this lineis a
o ® subspace of R2
.

11



PCA Derivation: Shift by the Mean Vector

= Before PCA, subtract sample mean from the data
138 ~
X —ng, =X-4
= The new data has zero mean: E(X-E(X)) = E(X)-E(X) =0

= All we did is change the coordinate system
] "

[ ] L4 X3
X5 ~® .
.
°
.ﬂ. , ° Xf
o ® X1 '
T . ®
°

= Another way to look at it:
= first step of getting y is to subtract the mean of x

x>y =f(x)=9(x-4)

PCA: Derivation

= To find the total error, we need to sum over all X;'s

k
= Any x; can be written as )" a;¢,
i=1

= Thus the total error for representation of all data D is:

sum over all data points

2

k
X; =28

i=1

n
J(el,.--,ek vallv"'ank)z z
- =1

unknowns

error at one point

PCA: Derivation

= We want to find the most accurate representation of
data D={x,X5,...,X,} in some subspace W which has
dimension k <d

= Let {e.e,,....6} bethe orthonorkmal basis for W. Any
vector in W can be written as )" a.e,

i=1
= Thus x,; will be represkented by some vector in W
Zaliei
i=1

= Error this representation:

K 2
Xl_zallel
i=1

error =

PCA: Derivation

= A lot of math....... to finally get:

= Let S be the scatter matrix, it is just n-1 times the
sample covariance matrix

£= o5, - allx, - )

j=1

= To minimize J take for the basis of W the k
eigenvectors of S corresponding to the k largest
eigenvalues

12



PCA

= The larger the eigenvalue of S, the larger is the
variance in the direction of corresponding eigenvector

2, =30

. .° \12=

0.8

= This result is exactly what we expected: project x into
subspace of dimension k which has the largest
variance

= This is very intuitive: restrict attention to directions
where the scatter is the greatest

PCA as Data Approximation

= Let {e,.e,....e4} be all d eigenvectors of the scatter
matrix S, sorted in order of decreasing corresponding
eigenvalue

= Without any approximation, for any sample x;:
error of approximation

d
X =0 @€ =08 +. . +qE + Q€. +e,
j=1
approximation of x;
coefficients a,,, =x';e,, are called principle components

= The larger k, the better is the approximation

= Components are arranged in order of importance, more
important components come first

= Thus PCA takes the first k most important
components of x; as an approximation to X;

PCA

= Thus PCA can be thought of as finding new
orthogonal basis by rotating the old axis until the
directions of maximum variance are found

PCA: Last Step

= Now we know how to project the data

= Last step is to change the coordinates to get final
k-dimensional vector y

R

= Letmatrix E=[e,---e,]
= Then the coordinate transformation is y =E'x

€, 0
= Under E!, the eigenvectors Ele — e‘ o - 1
become the standard basis: N R R I
y 0
ek

13



Recipe for Dimension Reduction with PCA

PCA Example Using Matlab

Data D={xy,X5,...,X,}. Each ¥x; is a d-dimensional
vector. Wish to use PCA to reduce dimension to k

. LS
1. Find the sample mean ﬂ=HZX,

i=1
2. Subtract sample mean from the data

Zi=X;— M

n
3. Compute the scatter matrix S = Zzizi‘
i=1
4. Compute eigenvectors e,,e,,...,e, corresponding to
the k largest eigenvalues of S

5. Lete,,e,,...,e, be the columns of matrix E =[e, ---e,]

6. The desired y which is the closest approximation
toxis y=E'z

= Use [V,D] =eig(S) to get eigenvalues and
eigenvectors of S

A,=87and e, = I::O'g]

: )‘ °
A,=38and e, =|:(_)8 8] D e 2

= Projection to 1D space in the direction of e;
Y =e'z! =[[—0.8 —0.6][: 3.8 ‘Z‘-gD= [43 - -5.1]

=[y, = yel

PCA Example Using Matlab

Drawbacks of PCA

= Let D ={(1,2),(2,3),(3,2),(4,4),(5,4),(6,7),(7,6),(9,7)}
= Convenient to arrange data in array ° °

I

= Mean u=mean(X)=[4.6 4.4] —

= Subtract mean from data to get new data array Z
u -3.6 -44
Z=X-|i|=X-repmat(u81)=| : :

u 44 26

= Compute the scatter matrix S
- —[-36 - -36 4.47_[57 40
S—7*c0\v(Z) [-36 4.4][_4_4]+...+[4.4 2.6][2.6} [40 24

matlab uses unbiased estimate for covariance, so S=(n-1)*cov(Z)

]

= PCA was designed for accurate data
representation, not for data classification
= Preserves as much variance in data as possible

= If directions of maximum variance is important for
classification, will work

= However the directions of maximum variance may
be useless for classification

.. .. apply PCA
(]

L L

Eg o° to each class
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Next Time

= Paper:“Recognizing Action at a Distance” by A. Efros,
A.Berg, G. Mori, Jitendra Malik
= will watch the conference presentation
= Also: "80 million tiny images: a large dataset for non-
parametric object and scene recognition”, A. Torralba,
R. Fergus, W. Freeman
= When reading papers, think about following:
= What is the problem paper tries to solve
= What makes this problem difficult?
* What is the method used in the paper to solve the
problem
= What is the contribution of the paper (what new does it
do)?
= Do the experimental results look “good” to you?
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