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Lecture 4
SVM
Some pictures from C. Burges

SVM

= Said to start in 1979 with Vladimir
Vapnik’s paper

= Major developments throughout
1990’s

= Elegant theory
= Has good generalization properties

= Have been applied to diverse
problems very successfully in the last
10-15 years

= One of the most important
developments in pattern recognition
in the last 10 years




Linear Discriminant Functions

= A discriminant function is linear if it can be written as
g(x) = wix + w,

g(x)>0 = xeclass1
g(x)<0 = xeclass?2

= which separating hyperplane should we choose?

Linear Discriminant Functions

= Training data is just a subset of of all possible data
= Suppose hyperplane is close to sample x;

= If we see new sample close to sample j, it is likely
to be on the wrong side of the hyperplane

x(1)
= Poor generalization (performance on unseen data)




Linear Discriminant Functions

= Hyperplane as far as possible from any sample

x@

N

= New samples close to the old samples will be
classified correctly

= Good generalization

SVM
= |dea: maximize distance to the closest example
X2 o X2

smaller distance larger distance
= For the optimal hyperplane

= distance to the closest negative example = distance to
the closest positive example




SVM: Linearly Separable Case

= SVM: maximize the margin

x

= margqin is twice the absolute value of distance b of
the closest example to the separating hyperplane

= Better generalization (performance on test data)

= in practice
= and in theory

SVM: Linearly Separable Case

x@

‘e
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= Support vectors are the samples closest to the
separating hyperplane
= they are the most difficalt patterns to classify

= Optimal hyperplane is completely defined by support vectors
= of course, we do not know which samples are support vectors without

finding the optimal hyperplane




SVM: Formula for the Marqgin
X(2

= g(x) = wix + W, N
= absolute distance between x
and the boundary g(x) = 0 Fe
W' X+ w,| o 0
[w] (o)

= distance is unchanged for hyperplane
9+(x)=0g (x)

aw'x+aw,| |w'x+w,|

law| — — [w

= Let x; be an example closest to the boundary. Set
WX, +w,|=1

= Now the largest margin hyperplane is unique

SVM: Formula for the Margin

= For uniqueness, set |w'x, +w,|=1 for any example
X; closest to the boundary

= now distance from closest sample x;to g(x) = 0 is

|wi |wi x@

* Thus the margin is
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SVM: Optimal Hyperplane

- , 2
= Maximize margin m=-—
[wi

= subject to constraints
w'x;+w, 21 if x; is positive example
w'x; +w, <-1 if x, is negative example

= Let 1%=1 if x; is positive example
z,=-1 if x; is negative example

= Can convert our problem to

minimize J(w)=%HwH2

constrained to  z,(w'x, +w,)>1 vi

= J(w) is a quadratic function, thus there is a single
global minimum

SVM: Optimal Hyperplane

= Use Kuhn-Tucker theorem to convert our problem to:

maximize  Ly(a)=Ya -1 aazzxix,
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constrained to 20 Vi an

= a={a,,..., a,;} are new variables, one for each sample

= Can rewrite Lp(@) using n by n matrix H:

n a, ' a,
i

= where the value in the ith row and jth column of His

_ t
H,.,. =2Z,Z,X; X;




SVM: Optimal Hyperplane

= Use Kuhn-Tucker theorem to convert our problem to:

maximize  Ly( zn:a,——ZZaa 2,2, X! X,

i
11/1

constrainedto & 20 Vi and Zaz =

" a={a,,..., @} are new variables, one for each sample
= L(a) can be optimized by quadratic programming

* Ly(a) formulated in terms of «
= it depends on w and wjindirectly

SVM: Optimal Hyperplane

= After finding the optimal & ={a;,..., a;}
= For every sample i, one of the following must hold
= ¢;=0 (sample i is not a support vector)
= ;0 and z(w!x+w,- 1) = 0 (sample i is support vector)
= can find wusing W=Zn:a,.z,.x,
= can solve for w, using'any @ > 0 and a|z,(w'x, +w,)-1]=0

t
Wy=—-w'x,
zi

= Final discriminant function:

g(x)= ( Za,z,x,] X+w,

x;eS

= where Sis the set of support vectors
S={x,|a %0}




SVM: Optimal Hyperplane

maximize Ly(a)= ia,. —%iia.a.z.z.x?x.
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constrained to 20 Vi an

L (@) depends on the number of samples, not on
dimension of samples

samples appear only through the dot products x;x;

This will become important when looking for a
nonlinear discriminant function, as we will see soon

Code available on the web to optimize

SVM: Non Separable Case

= Data is most likely to be not linearly separable, but
linear classifier may still be appropriate

X2

outliers

X

= Can apply SVM in non linearly separable case

= data should be “almost” linearly separable for good
performance




SVM: Non Separable Case

= Use non-negative slack variables &,,..., &, (one for
each sample)

= Change constraints from  z(w'x,+w,)21 Vi to
z(w'x, +w,)21-& Vi

= & is a measure of

deviation from the ideal

for sample i .

= £&>1 sample i is on the wrong
side of the separating
hyperplane

= 0< & <1 sample i is on the
right side of separating

hyperplane but within the
region of maximum margin

*

SVM: Non Separable Case
= Would like to minimize

1 # of samples
Jw,é,,....E )= EHWH 2 B not in ideal location

1 if£>0
0 if £<0

= constrainedto z(w'x, +w,)=1-¢ and &3>0 Vi

= where (£ > 0)={

= Bis a constant which measures relative weight of the
first and second terms
= if Bis small, we allow a lot of samples not in ideal position

= if B is large, we want to have very few samples not in ideal
positon




SVM: Non Separable Case

1 # of examples
Jw,é,,....E,) = E”W" Ly not in ideal location

)

x(1)

large 3, few samples not in small g, a lot of samples
ideal position not in ideal position

SVM: Non Separable Case

= Unfortunately this minimization problem is NP-hard
due to discontinuity of functions (&)

1 # of examples
Jw,é,,....E )= E||w|| 4 B not in ideal location

1 if&>0
0 if £<0

= constrainedto z(w'x, +w,)21-¢ and & >0 Vi

= where (& > 0)={
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SVM: Non Separable Case
= Instead we minimize

a measure of
JW, &) = 1|IWI| 2+ B # of misclassified
2 examples

z,.(w’x,. + w,,)z 1-¢& Vi
&20 Vi

= constrained to {

= Can use Kuhn-Tucker theorem to converted to

maximize Ly(a)= ia,. —%iia,.a.z.z.xfx.
i=1 i

i<icjti g

constrainedto  0<e¢,<pg Vi and Y az,=0

n
= find wusing w=) azXx,
i=1

= solve for w,using any 0 <g;< 8 and |z, (w'x, +w,)-1]=0

Non Linear Mapping

= Cover’s theorem:

= “pattern-classification problem cast in a high dimensional
space non-linearly is more likely to be linearly separable
than in a low-dimensional space’

= One dimensional space, not linearly separable

00 -ooo0 00—
3-2 012 35

= Lift to two dimensional space with ¢(x)=(x,x?)
O
= o

O (o)

_—o




Non Linear Mapping

=|In 1D, discriminant function is not linear

To solve a non linear classification problem with a
linear classifier
1. Project data x to high dimension using function ¢(x)

2. Find a linear discriminant function for transformed data ¢(x)
3. Final nonlinear discriminant function is g(x) = w! ¢(x) +w,

¢(X)=(X5X2 ) o

=|n 2D, discriminant function is linear

(1 Q)
Q([;(z)D =[w, Wz][,):(z)] W,

g(x)=w,x+w,x*+w,

Non Linear Mapping: Another Example
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Non Linear SVM

= Can use any linear classifier after lifting data into a
higher dimensional space. However we will have to
deal with the “curse of dimensionality”

1. poor generalization to test data
2. computationally expensive

= SVM avoids the “curse of dimensionality” problems by

1. enforcing largest margin permits good generalization
= |t can be shown that generalization in SVM is a function of the
margin, independent of the dimensionality
2. computation in the higher dimensional case is performed
only implicitly through the use of kernel functions

Non Linear SVM: Kernels

Recall SVM optimization
maximize LD(a)=ia,.—%_

i=1 i

n
Za,.a,.z,.z,.x,? X;

M:

I
-

j=1

= Note this optimization depends on samples x; only
through the dot product x/x;

= [f we lift x; to high dimension using ¢(x), need to

compute high dimensional product ¢(x;)'¢(x))

maximize L,(a)= ia,- —%iia,.a,.z,.zl 0
i=1

i=1 j=1

= Idea: find kernel function K{(x;X;) s.t.

K(x; X)) = ¢(x)'o(x))

13



Non Linear SVM: Kernels

maximize LD(a)=zn:a,—%zn:Z":a,.a,.z,.zI

i=1 i=1 j=1

Then we only need to compute K(x;,x;) instead of

(X)) 'o(x;)
= “kernel trick”: do not need to perform operations in high
dimensional space explicitly

Non Linear SVM: Kernels

Suppose we have 2 features and K(x,y) = (xty)?

Which mapping ¢(x) does it correspond to?
2

KO- ey =[x x5 |J= ey oy

— () 1)y, Y y(2),,(2) (2),,(2)
(X y )2+2(X y )(X y )+(X y )2 .
— (1) (1) y(2) (2) (1 (1),,(2) (2)
(X)Z«/2XX(X)2(y)2~/2yy(y)2

Thus
¢(X)=[(X(1))2 J2x0x@ (X(z))Z]
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Non Linear SVM: Kernels

How to choose kernel function K(x;x;)?
= Kix;x;) should correspond to product ¢(x,)'@(x;) ina
higher dimensional space

= Mercer’s condition tells us which kernel function can be
expressed as dot product of two vectors

= Kernel’s not satisfying Mercer’s condition can be
sometimes used, but no geometrical interpretation

Some common choices (satisfying Mercer’s
condition):
= Polynomial kernel  K(x;, x,)=(x!x, +1)

= Gaussian radial Basis kernel (data is lifted in infinite
dimension)
2
X, - x|

K(Xisxj)= exp(_zj‘_z

Non Linear SVM

search for separating hyperplane in high dimension
wo(x)+w, =0

Choose ¢(x) so that the first (“0”th) dimension is the
augmented dimension with feature value fixed to 1

o(x)=[1 x x@ xx@f

Threshold parameter w, gets folded into the weight

vector w
w, w]|*|i=0
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Non Linear SVM

Will not use notation a =[w, w], we’ll use old
notation w and seek hyperplane through the origin

wo(x)=0

If the first component of ¢(x) is not 7, the above is
equivalent to saying that the hyperplane has to go
through the origin in high dimension
= removes only one degree of freedom

= But we have introduced many new degrees when we lifted
the data in high dimension

Non Linear SVM Recepie

Start with data x;,...,x,, which lives in feature space
of dimension d

Choose kernel K{(x;X;) or function ¢(x;) which takes
sample x; to a higher dimensional space

Find the largest margin linear discriminant function in
the higher dimensional space by using quadratic
programming package to solve:

maximize Ly(@)=Ye, %iiaa.z.z.K(x,.,xj)
i=1 j

constrainedto 0<a,<p Vi and ) az,=0
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Non Linear SVM Recipe

Weight vector win the high dimensional space:

w= ZZ,¢

Xx;eS

= where Sis the set of support vectors S={x, |, =0}

Linear discriminant function of largest margin in the
high dimensional space:

e - [z s J )

x;eS

Non linear discriminant function in the original space

(Z‘g z,(D(X] X)-Zs Z,0'(x x)-Z:sasz ,X)

decide class 1 if g (x) > 0, otherwise decide class 2

Non Linear SVM

Nonlinear discriminant function

g(x)= Z a)|z,|K(x;, x)

X,-es

rom xto

: —=1]| |“inverse distance”
x)= Z weight of support | |F f
g( ) vector X; support vector X;

most important
training samples,

i.e. support vectors K(x;,x)= exp(— 2;_2x,. — x|
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SVM Example: XOR Problem

Class 1: X, =[1,-1], Xy = [-1,1]
Class 2: x3=[1,1], X, = [-1,-1]
Use polynomial kernel of degree 2:

K(x,x;) = (x;' x;+ 1)2
This kernel corresponds to mapping

ox)=f1 vZx J2x® J2x0x® (x0f (x@f]

Need to maximize

4

4 1EE
LD(a)= Zai _Ezzaiaizizj(x;xj + 1)2
i=1 j

i=1 j=1

constrainedto 0<e, Vi and o, +a,-0,-a, =0

SVM Example: XOR Problem

4
= Canrewrite Ly(@)=> o —%a’Ha
i=1

9 1 -1 -1
where a=[o, @ & @« and H=[_] _% ‘; ‘]]
-1 -1 1 9

Take derivative with respect to eand set itto 0

1 9 1 -1 -1

d 1 1 9 -1 -1
Zalo@=|1]-|21 -1 9 "q[@=0
da 1 [-1-1 1 9

Solution to the above is a,= @, = a3 = a, = 0.25

satisfies the constraints Vi, 0<a, and o,+a,-a,—a, =0
all samples are support vectors

18



SVM Example: XOR Problem
ox)=f1 vZx J2x® J2x0x® (x0f (x@f]

=  Weight vector wis:
w= Zaizi¢(xi) = 0.25(¢)(X,)+ ¢(X2)— ¢(X3)— ¢(X4))
) =lo 0 0 -v2 0 o
= Thus the nonlinear discriminant function is:

9(x) = wp(x) = 3. w,p(x) = —2(J2x0x®) = ~2xx?

SVM Example: XOR Problem

g(x)=-2x"x®
J2xM x @)
Xx@
12
- o o
o {’ o 14
V2x®
1 4 Sjssssgessspassgussmje
-1 1 X 2 -1 | 1 1 2
o :, 0 )
i-1 O O
1.2
decision boundaries nonlinear decision boundary is linear
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Degree 3 Polynomial Kernel

In linearly separable case (on the left), decision
boundary is roughly linear, indicating that
dimensionality is controlled

Nonseparable case (on the right) is handled by a
polynomial of degree 3

SVM Summary

Advantages:
= Based on nice theory
= excellent generalization properties
= objective function has no local minima
= can be used to find non linear discriminant functions

= Complexity of the classifier is characterized by the number
of support vectors rather than the dimensionality of the
transformed space

Disadvantages:
= tends to be slower than other methods
= quadratic programming is computationally expensive
= Not clear how to choose the Kernel
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