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Linear Discriminant Functions

= A discriminant function is linear if it can be written as
g(x) =wix +w,

g(x)>0 = xeclass 1
g(x)<0 =xeclass2

= which separating hyperplane should we choose?

SVYm

Linear Discriminant Functions

= Said to start in 1979 with Vladimir
Vapnik’s paper

= Major developments throughout
1990’s

= Elegant theory
= Has good generalization properties

= Have been applied to diverse
problems very successfully in the last
10-15 years

= One of the most important
developments in pattern recognition
in the last 10 years

= Training data is just a subset of of all possible data
= Suppose hyperplane is close to sample x;

= If we see new sample close to sample i, it is likely
to be on the wrong side of the hyperplane

= Poor generalization (performance on unseen data)




Linear Discriminant Functions

= Hyperplane as far as possible from any sample

x@

T
= New samples close to the old samples will be

classified correctly
= Good generalization

SVM: Linearly Separable Case

= SVM: maximize the margin
x2

= margin is twice the absolute value of distance b of
the closest example to the separating hyperplane
= Better generalization (performance on test data)
= in practice
= and in theory

SV

= |dea: maximize distance to the closest example
X2 [ |

larger distance

smaller distance

= For the optimal hyperplane

= distance to the closest negative example = distance to
the closest positive example

SVM: Linearly Separable Case
x2

= Support vectors are the samples closest to the
separating hyperplane
= they are the most difficalt patterns to classify
= Optimal hyperplane is completely defined by support vectors

= of course, we do not know which samples are support vectors without
finding the optimal hyperplane




SVM: Formula for the Margin

= g(x) =wix +w,

= absolute distance between x
and the boundary g(x) = 0

SVM: Optimal Hyperplane

= distance is unchanged for hyperplahe
g+(x)=0g(x)

aw'x+aw,| |w'x+w,|

lawl v
= Let x;be an example closest to the boundary. Set
‘W'Xi+Wo‘=1

= Now the largest margin hyperplane is unique

L . 2
= Maximize margin m=-—

. _ |wi
= subject to constraints
w'x,+w, 21 if x, is positive example
w'x; +w, <1 if x; is negative example

» Let [2=1 If x;is positive example
z,=-1 if x, is negative example

= Can convert our problem to

minimize J(w)= 2w

constrained to  z(w'x, +w,)21 vi

= J(w) is a quadratic function, thus there is a single
global minimum

SVM: Formula for the Margin

= For uniqueness, set |w'x, +w,|=1 for any example
X; closest to the boundary
= now distance from closest sample x;to g(x) = 0 is
‘w'x,.+wo‘ 1
] ~wl x(

= Thus the margin is

=2
|wl

SVM: Optimal Hyperplane

= Use Kuhn-Tucker theorem to convert our problem to:

n n n
maximize  Ly(@)=Ya-1YY aazzxx,
i=1

2544
n

constrained to 20 Vi and Y @z, =0

i=1

* a={a,,..., &,} are new variables, one for each sample
= Can rewrite Ly(a) using nby n matrix H:

z a7 [e
s

= where the value in the ith row and jth column of His

t
H; =2z, x;




SVM: Optimal Hyperplane

= Use Kuhn-Tucker theorem to convert our problem to:

0,22, XX,

n n
maximize  Ly(@)=Ya, —%Z
i=1

n
=] =

@20 Vi and Y @z,=0

i=1

constrained to

* a={ay,..., &,;} are new variables, one for each sample

L(a@) can be optimized by quadratic programming

Ly(a) formulated in terms of @
= it depends on wand wjindirectly

SVM: Optimal Hyperplane

n n n
maximize L,(a)=) —%ZZa,.a,z,z,x,’x,
i=1

i=1 j=1

@20 Vi and Y @z,=0

i=1

constrained to

= Lp(a) depends on the number of samples, not on
dimension of samples

= samples appear only through the dot products x;x;
= This will become important when looking for a

nonlinear discriminant function, as we will see soon
= Code available on the web to optimize

SVM: Optimal Hyperplane

= After finding the optimal @ = {«,..., &}
= For every sample i, one of the following must hold
= ;=0 (sample i is not a support vector)
= ;20 and z(wix+w,- 1) = 0 (sample i is support vector)
= can find wusing w=Y azXx,
« can solve for w, using any &> 0 and a|z,(w'x, +w,)-1]=0
Wy=—-w'x;
= Final discriminant function:
t
g(x)=(zaizixi] X+Ww,
x;eS
= where S'is the set of support vectors
S={x,|a 0}

SVM: Non Separable Case

= Data is most likely to be not linearly separable, but
linear classifier may still be appropriate
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= Can apply SVM in non linearly separable case

= data should be “almost” linearly separable for good
performance




SVM: Non Separable Case

= Use non-negative slack variables &,,..., &, (one for
each sample)

= Change constraints from z(w'x,+w,)21 Vi to
z,.(w’x,.+wo)21—§,. Vi

= & is a measure of
deviation from the ideal
for sample i 5
= &>1 sample i is on the wrong
side of the separating
hyperplane
0< & <1 sample i is on the
right side of separating
hyperplane but within the
region of maximum margin

.,

SVM: Non Separable Case

1 # of examples
JWw, &, E,) = EHWH 4+ B not in ideal location

x@ e

X(1)

small B, a lot of samples
not in ideal position

large B, few samples not in
ideal position

SVM: Non Separable Case
= Would like to minimize

: # of samples
JW,&,,....£) = 2 |wi%+ B not in ideal location

1 0f&>0
0 if&<0

= constrained to z(w'x, +w,)21-¢ and &3>0 vi

= pis a constant which measures relative weight of the
first and second terms
= if Bis small, we allow a lot of samples not in ideal position
= jf ﬂAis large, we want to have very few samples not in ideal
positon

= where (£ >0)= {

SVM: Non Separable Case

= Unfortunately this minimization problem is NP-hard
due to discontinuity of functions (&)

1 # of examples
JW, &, &) = EHwH 4 B not in ideal location

1 if&>0
0 if £<0

= constrained to z(w'x, +w,)21-¢& and &3>0 vi

= where I(¢ > 0)={




SVM: Non Separable Case

= Instead we minimize ]
a measure o
JW,&,,rnb,) = %HWH 2, of misclassified
examples

. q z,.(w'x,.+wo)21—§,. Vi
constrained to {é,- >0 vi

= Can use Kuhn-Tucker theorem to converted to

n

maximize LD(a)=Za,-—%z":zn:a,.a.z.z.x?x.

i€i%jXiXj
i=1 i=1 j=1

constrained to O<q,<p Vi and Y @z,=0
i=1

w= iaizixi

i=1

= find wusing

= solve for w, using any 0 <a@;< B and a,[z,(w'x, +w,)-1]=0

Non Linear Mapping
= To solve a non linear classification problem with a
linear classifier
1. Project data x to high dimension using function ¢(x)
2. Find a linear discriminant function for transformed data ¢(x)
3. Final nonlinear discriminant function is g(x) = w! ¢(x) +w,

ﬂx)z(xﬂlz)

3 -2 0 1.2 35
R, R, R,

=|n 2D, discriminant function is linear
) | ] X0
9|| x@ [|=W: W v [+W,

=In 1D, discriminant function is not linear  g(x)=w,x+w,x* +w,

Non Linear Mapping

= Cover’s theorem:

= “pattern-classification problem cast in a high dimensional
space non-linearly is more likely to be linearly separable
than in a low-dimensional space”

= One dimensional space, not linearly separable
—bBa BB
-3 -2 012 3 5
= Lift to two dimensional space with @(x)=(x,x?)

o (o)

r ..}
W

Non Linear Mapping: Another Example




Non Linear SVM

= Can use any linear classifier after lifting data into a
higher dimensional space. However we will have to
deal with the “curse of dimensionality”

1. poor generalization to test data
2. computationally expensive

= SVM avoids the “curse of dimensionality” problems by

1. enforcing largest margin permits good generalization
= It can be shown that generalization in SVM is a function of the
margin, independent of the dimensionality
2. computation in the higher dimensional case is performed
only implicitly through the use of kernel functions

Non Linear SVM: Kernels

maximize Ly(e)= Za —%z":ia,azz %

= j=1

Then we only need to compute K(x;,x)) instead of

Px)'p(x)
“kernel trick”: do not need to perform operations in high
dimensional space explicitly

Non Linear SVM: Kernels

Recall SVM optimization
maximize LD(a)=;a,—%ZZ 4,22,

=1 j=1

3

= Note this optimization depends on
through the dot product x;'x;

samples x; only

= If we lift x; to high dimension using ¢(x), need to

compute hlgh dimensional product ¢(x;) ¢()g

o 7 1o
maximize LD(a)=§ai—EZZa,aizizl

i=1 j=1

= ldea: find kernel function K{(x;Xx;) s.t.

Kix;x) = ¢x)) ¢(X )

Non Linear SVM: Kernels

Thus
,,,(,()=[(,{(1))2 J2x0 %@ (X(z))ZI

Suppose we have 2 features and K(x,y) = (xty)?

Which mapping ¢(x) does it correspond to?

2
K(x,y)=(x'yf= [[X“’ X‘z’][f;g))D = (xWy® 4 x@y@F

= (xOyOF +2(x Oy O ) x@y @) 4 (x@y @
=[(,{(1))2 J2x @) (,{(z))2“(y(1))2 J2yny® (y(z)ﬂt




Non Linear SVM: Kernels

How to choose kernel function K(x;x;)?
= Kix;x) should correspond to product g(x)'¢(x;) in a
higher dimensional space

= Mercer’s condition tells us which kernel function can be
expressed as dot product of two vectors

= Kernel’s not satisfying Mercer’s condition can be
sometimes used, but no geometrical interpretation

Some common choices (satisfying Mercer’s
condition):
= Polynomial kernel  K(x,,x,)=(x!x, +1)°

= Gaussian radial Basis kernel (data is lifted in infinite
dimension)

K(x,,x,):exp(—%'zux,. _XIHZJ

Non Linear SVM

Will not use notation a =[w, w], we'll use old
notation w and seek hyperplane through the origin

wo(x)=0

If the first component of ¢(x) is not 17, the above is
equivalent to saying that the hyperplane has to go
through the origin in high dimension
= removes only one degree of freedom

= But we have introduced many new degrees when we lifted
the data in high dimension

Non Linear SVM

search for separating hyperplane in high dimension
wo(x)+w, =0

Choose ¢(x) so that the first (“0”th) dimension is the
augmented dimension with feature value fixed to 1

p(x)=[1 x» x® x"x@]

Threshold parameter w,, gets folded into the weight
vector w
[wo w =0

Non Linear SVM Recepie

Start with data x;,...,x,, which lives in feature space
of dimension d

Choose kernel K(x;x;) or function ¢(x;) which takes
sample x; to a higher dimensional space

Find the largest margin linear discriminant function in
the higher dimensional space by using quadratic
programming package to solve:

maximize LD(a)=Zn:a,-— Z":a,.a,.z,.z,K(x,.,x,)
i=1 j:

1L
2 i=1 j=1

constrained to

i

O<q <p Vi and Y az,=0

i=1




Non Linear SVM Recipe

=  Weight vector win the high dimensional space:
w= Zaizidxi)
x;eS
= where Sis the set of support vectors S={x, | @, #0}

= Linear discriminant function of largest margin in the
high dimensional space:
olo(x) = w'olx)-( Zazplx)| (0

= Non linear discriminant function in the original space

o)~ Znzalx)] o0 = Senei (o) = Zaeh(r )

= decide class 1 if g (x) > 0, otherwise decide class 2

SVM Example: XOR Problem

= Class 1: xy=[1,-1], X, =[-1,1]
Class 2: X3 =[1,1], X4=[-1,-1]
Use polynomial kernel of degree 2:
= Kixpx) = (%! x;+ 1)?
= This kernel corresponds to mapping

¢(x)=[1 J2x0 J2x® [2x0x® (xOF (x<2))2]'

o | O

Need to maximize
4 4 4
L@)=Y e —%zzaiaizizi(X;Xi = 1)2
i=1

i=1 j=t

constrainedto 0<e, Vi and a,+a-a,-a, =0

Non Linear SVM

Nonlinear discriminant function

6(0)= X, a2 [K(x. %)

Xx;eS

ight of support | [7 “inverse distance”
X)= weig . from x to
g( ) Z vector X; support vector x;

most important
_training samples,

i.e. support vectors L

K(x;,x)= exp(— 207 |x, - xi?

SVM Example: XOR Problem

4
= Can rewrite L,,(a)=2a,-—%a’Ha

i=1 9 1 -1 -1
= where a=le, @ & o] and H=|_1 9 -1
1.1 1 9

= Take derivative with respect to aand setitto 0

SNIEEEE
=1 -1 -1 _
gv(“)-}‘-1-1 9 1/@=0

-1-1 1 9

= Solution to the above is &= &, = a3 = a; = 0.25
=  gatisfies the constraints Vi, 0<a; and a,+a, -, —a, =0
= all samples are support vectors




SVM Example: XOR Problem
¢(X)=[| J2x® [2x® J2x0x® (xOF (X(z))Z]'

=  Weight vector wis:
w=_2aizi¢(xi) =0.25(¢(X,)+¢(X2)—¢(X3)—¢(X4))
_ =lo o0 -vz 0 9
= Thus the nonlinear discriminant function is:

9(x)=w(x) = 3w (x) =—/Z({Zx"x®) = ~2x"x®

Degree 3 Polynomial Kernel

In linearly separable case (on the left), decision
boundary is roughly linear, indicating that
dimensionality is controlled

Nonseparable case (on the right) is handled by a
polynomial of degree 3

SVM Example: XOR Problem

g(x)=-2x"x@
J2x0x@
x®

12
o o

o 37 o 17

J2xM
-1 1 0 2 1 | . 1 2

o 4,0 )
1-1 o o

T-2

decision boundaries nonlinear decision boundary is linear

SVM Summary

Advantages:
= Based on nice theory
= excellent generalization properties
= objective function has no local minima
= can be used to find non linear discriminant functions

= Complexity of the classifier is characterized by the number
of support vectors rather than the dimensionality of the
transformed space

Disadvantages:
= tends to be slower than other methods
= quadratic programming is computationally expensive
= Not clear how to choose the Kernel
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