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Today

� New Machine Learning Topics:

� Ensemble Learning

� Bagging 

� Boosting

� Next time two papers:

� “Rapid Object Detection using a Boosted 
Cascade of Simple Features” by P. Viola and 
M. Jones from CVPR2001

� “Detecting Pedestrians Using Patterns of 
Motion and Appearance” by P. Viola, 
M.J.Jones, D. Snow

Ensemble Learning: Bagging and Boosting

� So far we have talked about design of a single classifier 
that generalizes well (want to “learn” f(x) )

� From statistics, we know that it is good to average your 
predictions (reduces variance)

� Bagging
� reshuffle your training data to create k different training sets and  

learn f1(x),f2(x),…,fk(x) 

� Combine the k different classifiers by majority voting

fFINAL(x) =sign[Σ 1/k fi(x) ]

� Boosting
� Assign different weights to training samples in a “smart” way so 

that different classifiers pay more attention to different samples

� Weighted majority voting, the weight of individual classifier is
proportional to its accuracy

� Ada-boost (1996) was influenced by bagging, and it is  superior 
to bagging

Bagging

� Generate a random sample from training set by selecting l
elements (out of n elements available) with replacement

� each classifier is trained on the average of 63.2% of the 
training examples
� For a dataset with N examples, each example has a probability of

1-(1-1/N)N of being selected at least once in the N samples. For N→∞, 
this number converges to (1-1/e) or 0.632 [Bauer and Kohavi, 1999]

� Repeat the sampling procedure, getting a sequence of k
independent training sets

� A corresponding sequence of classifiers f1(x),f2(x),…,fk(x) is 
constructed for each of these training sets, using the same 
classification algorithm 

� To classify an unknown sample x, let each classifier predict.  

� The bagged classifier fFINAL(x) then combines the predictions 
of the individual classifiers to generate the final outcome, 
frequently this combination is simple voting
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Boosting: motivation

� It is usually hard to design an accurate classifier which 

generalizes well

� However it is usually easy to find many “rule of thumb”
weak classifiers

� A classifier is weak if it is only slightly better than random 
guessing

� Can we combine several weak classifiers to produce an 
accurate classifier?

� Question people have been working on since 1980’s

Ada Boost

� Let’s assume we have 2-class classification 

problem, with yi∈ {-1,1}

� Ada boost will produce a discriminant function: 
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� where ft(x) is the “weak” classifier

� As usual, the final classifier is the sign of the 
discriminant function, that is ffinal(x) = sign[g(x)]

Idea Behind Ada Boost

� Algorithm is iterative

� Maintains distribution of weights over the training 
examples

� Initially distribution of weights is uniform

� At successive iterations, the weight of misclassified 
examples is increased, forcing the weak learner to 
focus on the hard examples in the training set

More Comments on Ada Boost

� Ada boost is very simple to implement, provided you 
have an implementation of a “weak learner”

� Will work as long as the “basic” classifier ft(x) is at 
least slightly better than random 

� will work if the error rate of ft(x) is less than  0.5 (0.5 is the 
error rate of a random guessing classifier for a 2-class 
problem)

� Can be applied to boost any classifier, not 
necessarily weak
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Ada Boost (slightly modified from the original version)

� d(x) is the distribution of weights over the N training 
points ∑ d(xi)=1

� Initially assign uniform weights d0(xi) = 1/N for all xi

� At each iteration t :
� Find best weak classifier ft(x) using weights dt(x)

� Compute the error rate  εt  as 

εt= ∑i=1…N dt(xi ) · I[yi ≠ ft(xi )]

� assign weight αt the classifier  ft‘s  in the final hypothesis

αt = log ((1 – εt )/εt )

� For each xi , dt+1(xi ) = dt(xi ) · exp[αt · I(yi ≠ ft(xi ))]

� Normalize dt+1(xi ) so that ∑i=1 dt+1(xi ) = 1

� fFINAL(x) =sign [ ∑ αt ft (x) ]

Ada Boost

� At each iteration t :

� Find best weak classifier ft(x) using weights dt(x)
� Compute εt the error rate as 

εt= ∑ dt(xi ) · I[yi ≠ ft(xi )]

� assign weight αt the classifier  ft‘s  in the final hypothesis

αt = log ((1 – εt )/εt )

� For each xi , dt+1(xi ) = dt(xi ) · exp[αt · I(yi ≠ ft(xi ))]

� Normalize dt+1(xi ) so that  ∑t+1d(xi ) = 1

� fFINAL(x) =sign [ ∑ αt ft (x) ]

� If the classifier does not take weighted samples, this 
step can be achieved by sampling from the training 
samples according to the distribution dt(x)

Ada Boost

� At each iteration t :
� Find best weak classifier ft(x) using weights dt(x)

� Compute εt  the error rate as 

εt= ∑ dt(xi ) · I[yi ≠ ft(xi )]
� assign weight αt  the classifier  ft‘s  in the final hypothesis

αt = log ((1 – εt )/εt )

� For each xi , dt+1(xi ) = dt(xi ) · exp[αt · I(yi ≠ ft(xi ))]

� Normalize dt+1(xi ) so that  ∑ dt+1(xi ) = 1

� fFINAL(x) =sign [ ∑ αt ft (x) ]

� Since the weak classifier is better than random, we 
expect εt < 1/2

Ada Boost

� At each iteration t :
� Find best weak classifier ft(x) using weights dt(x)

� Compute εt the error rate as 

εt= ∑ d(xi ) · I(yi ≠ ft(xi )

� assign weight αt  the classifier  ft‘s  in the final hypothesis

αt = log ((1 – εt )/εt )
� For each xi , dt+1(xi ) = dt(xi ) · exp[αt · I(yi ≠ ft(xi ))]

� Normalize dt+1(xi ) so that  ∑ dt+1(xi ) = 1

� fFINAL(x) =sign [ ∑ αtft (x) ]

� Recall that  εt < ½

� Thus (1- εt)/ εt > 1  ⇒ αt > 0

� The smaller is εt, the larger is αt, and thus the more 
importance (weight) classifier ft(x) gets in the final classifier 

fFINAL(x) =sign [ ∑ αt ft (x) ]
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Ada Boost

� At each iteration t :
� Find best weak classifier ft(x) using weights dt(x)

� Compute εt   the error rate as 

εt= ∑ dt (xi ) · I(yi ≠ ft(xi )

� assign weight αt   the classifier  ft‘s  in the final hypothesis

αt = log ((1 – εt )/εt )

� For each xi , dt+1(xi ) = dt(xi ) · exp[αt · I(yi ≠ ft(xi ))]

� Normalize dt+1(xi ) so that  ∑dt+1(xi ) = 1
� fFINAL(x) =sign [ ∑ αt ft (x) ]

� Weight of misclassified examples is increased and the 
new dt+1(xi)’s are normalized to be a distribution again

AdaBoost Example 
from “A Tutorial on Boosting” by Yoav Freund and Rob Schapire

Original Training set : equal weights to all training 
samples

Note: in the following slides, ht(x) is used instead of ft(x), 
and D instead of d

AdaBoost Example

ROUND 1

AdaBoost Example

ROUND 2
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AdaBoost Example

ROUND 3

AdaBoost Example

fFINAL(x)=

AdaBoost Comments

� It can be shown that the training error drops 
exponentially fast, if each weak classifier is slightly 
better than random

(((( ))))∑∑∑∑−−−−≤≤≤≤
t ttrainErr 22exp γγγγ

� Here γγγγt = εεεεt – 1/2, where is classification error at 
round t (weak classifier ft ) 

AdaBoost Comments

� But we are really interested in the generalization properties of
fFINAL(x), not the training error

� AdaBoost was shown to have excellent generalization 
properties in practice

� the more rounds, the more complex is the final classifier, so overfitting is 
expected as the training proceeds

� but in the beginning researchers observed no overfitting of the data

� It turns out it does overfit data eventually, if you run it really long

� It can be shown that boosting “aggressively” increases the 
margins of training examples, as iterations proceed

� margins continue to increase even when training error reaches zero

� Helps to explain empirically observed phenomena: test error continues 

to drop even after training error reaches zero
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AdaBoost Example

fFINAL(x)=

The Margin Distribution

0.550.520.14Minimum margin

0.00.07.7%margins≤0.5

3.13.38.4test error

0.00.00.0training error

10001005epoch

Boosting As Additive Model

� The final prediction in boosting g(x) can be 
expressed as an additive expansion of individual 
classifiers

);x(f)x(g kk

M

1k

k γγγγαααα∑∑∑∑
====

====

∑∑∑∑ ∑∑∑∑
==== ====








N

1i

M

1k

kikki
,,...,,

);x(f,yLmin
MM11

γγγγαααα
ααααγγγγγγγγαααα

� Typically we would try to minimize a loss function
on the N training examples

� For example, under squared-error loss:
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Boosting As Additive Model

( )2
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� Under the squared difference loss function:

� Forward stage-wise optimization seems to produce 
classifier with better generalization, doing the 
process stagewise seems to overfit less quickly

);()()( 1 ttttt xfxgxg γγγγαααα++++==== −−−−

� Forward stage-wise modeling is iterative and fits 
the fk(x,γk) sequentially, fixing the results of 
previous iterations

model at 
iteration t

fit γγγγt, ααααt to produce 
improved gt(x) 
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Boosting As Additive Model

� It can be shown that AdaBoost uses forward stage-
wise modeling under the following loss function:

� L(y, g (x)) = exp(-y · g (x))  -- the exponential loss function

� At stage (or iteration) m, we fit:
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Exponential Loss vs. Squared Error Loss

� L(y, g (x)) = exp(-y · g (x))

y · g (x)
0-2 -1 1 2

� L(y, g (x)) = (y - g (x))2

1

SE loss

exponential loss

� Squared Error Loss penalizes classifications that are “too 
correct”, with  y · g (x) >1, and thus it is inappropriate for 
classification

� Exponential loss encourages large margins, want y · g (x) large

Loss

Logistic Regression Model

� It can be shown that Adaboost builds a logistic regression 
model:
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� It can also be shown that the the training error on the samples 
is at most:

Practical Advantages of AdaBoost

� fast

� simple

� Has only one parameter to tune (T)

� flexible: can be combined with any classifier 

� provably effective (assuming weak learner)

• shift in mind set: goal now is merely to find hypotheses 
that are better than random guessing

� finds outliers

� The hardest examples are frequently the “outliers”
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Caveats

� performance depends on data & weak learner

� AdaBoost can fail if
� weak hypothesis too complex (overfitting)

� weak hypothesis too weak (γ
t
→0 too quickly),

� underfitting

� Low margins → overfitting

� empirically, AdaBoost seems especially 
susceptible to noise


