
1

CS9840

Learning and Computer Vision

Prof. Olga Veksler

Lecture 5

Boosting
Some slides are due to Robin Dhamankar

Vandi Verma & Sebastian Thrun

Today

� New Machine Learning Topics:

� Ensemble Learning

� Bagging

� Boosting

� Next time two papers:

� “Rapid Object Detection using a Boosted
Cascade of Simple Features” by P. Viola and
M. Jones from CVPR2001

� “Detecting Pedestrians Using Patterns of
Motion and Appearance” by P. Viola,
M.J.Jones, D. Snow

Ensemble Learning: Bagging and Boosting

� So far we have talked about design of a single classifier
that generalizes well (want to “learn” f(x))

� From statistics, we know that it is good to average your
predictions (reduces variance)

� Bagging
� reshuffle your training data to create k different training sets and

learn f1(x),f2(x),…,fk(x)

� Combine the k different classifiers by majority voting

fFINAL(x) =sign[Σ 1/k fi(x)]

� Boosting
� Assign different weights to training samples in a “smart” way so

that different classifiers pay more attention to different samples

� Weighted majority voting, the weight of individual classifier is
proportional to its accuracy

� Ada-boost (1996) was influenced by bagging, and it is superior
to bagging

Bagging

� Generate a random sample from training set by selecting l
elements (out of n elements available) with replacement

� each classifier is trained on the average of 63.2% of the
training examples
� For a dataset with N examples, each example has a probability of

1-(1-1/N)N of being selected at least once in the N samples. For N→∞,
this number converges to (1-1/e) or 0.632 [Bauer and Kohavi, 1999]

� Repeat the sampling procedure, getting a sequence of k
independent training sets

� A corresponding sequence of classifiers f1(x),f2(x),…,fk(x) is
constructed for each of these training sets, using the same
classification algorithm

� To classify an unknown sample x, let each classifier predict.

� The bagged classifier fFINAL(x) then combines the predictions
of the individual classifiers to generate the final outcome,
frequently this combination is simple voting

2

Boosting: motivation

� It is usually hard to design an accurate classifier which

generalizes well

� However it is usually easy to find many “rule of thumb”
weak classifiers

� A classifier is weak if it is only slightly better than random
guessing

� Can we combine several weak classifiers to produce an
accurate classifier?

� Question people have been working on since 1980’s

Ada Boost

� Let’s assume we have 2-class classification

problem, with yi∈ {-1,1}

� Ada boost will produce a discriminant function:

(((()))) (((())))∑∑∑∑
====

====
T

t

tt xfxg
1

αααα

� where ft(x) is the “weak” classifier

� As usual, the final classifier is the sign of the
discriminant function, that is ffinal(x) = sign[g(x)]

Idea Behind Ada Boost

� Algorithm is iterative

� Maintains distribution of weights over the training
examples

� Initially distribution of weights is uniform

� At successive iterations, the weight of misclassified
examples is increased, forcing the weak learner to
focus on the hard examples in the training set

More Comments on Ada Boost

� Ada boost is very simple to implement, provided you
have an implementation of a “weak learner”

� Will work as long as the “basic” classifier ft(x) is at
least slightly better than random

� will work if the error rate of ft(x) is less than 0.5 (0.5 is the
error rate of a random guessing classifier for a 2-class
problem)

� Can be applied to boost any classifier, not
necessarily weak

3

Ada Boost (slightly modified from the original version)

� d(x) is the distribution of weights over the N training
points ∑ d(xi)=1

� Initially assign uniform weights d0(xi) = 1/N for all xi

� At each iteration t :
� Find best weak classifier ft(x) using weights dt(x)

� Compute the error rate εt as

εt= ∑i=1…N dt(xi) · I[yi ≠ ft(xi)]

� assign weight αt the classifier ft‘s in the final hypothesis

αt = log ((1 – εt)/εt)

� For each xi , dt+1(xi) = dt(xi) · exp[αt · I(yi ≠ ft(xi))]

� Normalize dt+1(xi) so that ∑i=1 dt+1(xi) = 1

� fFINAL(x) =sign [∑ αt ft (x)]

Ada Boost

� At each iteration t :

� Find best weak classifier ft(x) using weights dt(x)
� Compute εt the error rate as

εt= ∑ dt(xi) · I[yi ≠ ft(xi)]

� assign weight αt the classifier ft‘s in the final hypothesis

αt = log ((1 – εt)/εt)

� For each xi , dt+1(xi) = dt(xi) · exp[αt · I(yi ≠ ft(xi))]

� Normalize dt+1(xi) so that ∑t+1d(xi) = 1

� fFINAL(x) =sign [∑ αt ft (x)]

� If the classifier does not take weighted samples, this
step can be achieved by sampling from the training
samples according to the distribution dt(x)

Ada Boost

� At each iteration t :
� Find best weak classifier ft(x) using weights dt(x)

� Compute εt the error rate as

εt= ∑ dt(xi) · I[yi ≠ ft(xi)]
� assign weight αt the classifier ft‘s in the final hypothesis

αt = log ((1 – εt)/εt)

� For each xi , dt+1(xi) = dt(xi) · exp[αt · I(yi ≠ ft(xi))]

� Normalize dt+1(xi) so that ∑ dt+1(xi) = 1

� fFINAL(x) =sign [∑ αt ft (x)]

� Since the weak classifier is better than random, we
expect εt < 1/2

Ada Boost

� At each iteration t :
� Find best weak classifier ft(x) using weights dt(x)

� Compute εt the error rate as

εt= ∑ d(xi) · I(yi ≠ ft(xi)

� assign weight αt the classifier ft‘s in the final hypothesis

αt = log ((1 – εt)/εt)
� For each xi , dt+1(xi) = dt(xi) · exp[αt · I(yi ≠ ft(xi))]

� Normalize dt+1(xi) so that ∑ dt+1(xi) = 1

� fFINAL(x) =sign [∑ αtft (x)]

� Recall that εt < ½

� Thus (1- εt)/ εt > 1 ⇒ αt > 0

� The smaller is εt, the larger is αt, and thus the more
importance (weight) classifier ft(x) gets in the final classifier

fFINAL(x) =sign [∑ αt ft (x)]

4

Ada Boost

� At each iteration t :
� Find best weak classifier ft(x) using weights dt(x)

� Compute εt the error rate as

εt= ∑ dt (xi) · I(yi ≠ ft(xi)

� assign weight αt the classifier ft‘s in the final hypothesis

αt = log ((1 – εt)/εt)

� For each xi , dt+1(xi) = dt(xi) · exp[αt · I(yi ≠ ft(xi))]

� Normalize dt+1(xi) so that ∑dt+1(xi) = 1
� fFINAL(x) =sign [∑ αt ft (x)]

� Weight of misclassified examples is increased and the
new dt+1(xi)’s are normalized to be a distribution again

AdaBoost Example
from “A Tutorial on Boosting” by Yoav Freund and Rob Schapire

Original Training set : equal weights to all training
samples

Note: in the following slides, ht(x) is used instead of ft(x),
and D instead of d

AdaBoost Example

ROUND 1

AdaBoost Example

ROUND 2

5

AdaBoost Example

ROUND 3

AdaBoost Example

fFINAL(x)=

AdaBoost Comments

� It can be shown that the training error drops
exponentially fast, if each weak classifier is slightly
better than random

(((())))∑∑∑∑−−−−≤≤≤≤
t ttrainErr 22exp γγγγ

� Here γγγγt = εεεεt – 1/2, where is classification error at
round t (weak classifier ft)

AdaBoost Comments

� But we are really interested in the generalization properties of
fFINAL(x), not the training error

� AdaBoost was shown to have excellent generalization
properties in practice

� the more rounds, the more complex is the final classifier, so overfitting is
expected as the training proceeds

� but in the beginning researchers observed no overfitting of the data

� It turns out it does overfit data eventually, if you run it really long

� It can be shown that boosting “aggressively” increases the
margins of training examples, as iterations proceed

� margins continue to increase even when training error reaches zero

� Helps to explain empirically observed phenomena: test error continues

to drop even after training error reaches zero

6

AdaBoost Example

fFINAL(x)=

The Margin Distribution

0.550.520.14Minimum margin

0.00.07.7%margins≤0.5

3.13.38.4test error

0.00.00.0training error

10001005epoch

Boosting As Additive Model

� The final prediction in boosting g(x) can be
expressed as an additive expansion of individual
classifiers

);x(f)x(g kk

M

1k

k γγγγαααα∑∑∑∑
====

====

∑∑∑∑ ∑∑∑∑
==== ====








N

1i

M

1k

kikki
,,...,,

);x(f,yLmin
MM11

γγγγαααα
ααααγγγγγγγγαααα

� Typically we would try to minimize a loss function
on the N training examples

� For example, under squared-error loss:

∑∑∑∑ ∑∑∑∑
==== ====









−−−−

N

1i

2M

1k

kikki
,,...,,

);x(fymin
MM11

γγγγαααα
ααααγγγγγγγγαααα

fixed

fixed

Boosting As Additive Model

()2

titti1ti);x(f)x(gy γα−−= −

=+−));x(f)x(g,y(L titti1ti γα

� Under the squared difference loss function:

� Forward stage-wise optimization seems to produce
classifier with better generalization, doing the
process stagewise seems to overfit less quickly

);()()(1 ttttt xfxgxg γγγγαααα++++==== −−−−

� Forward stage-wise modeling is iterative and fits
the fk(x,γk) sequentially, fixing the results of
previous iterations

model at
iteration t

fit γγγγt, ααααt to produce
improved gt(x)

7

Boosting As Additive Model

� It can be shown that AdaBoost uses forward stage-
wise modeling under the following loss function:

� L(y, g (x)) = exp(-y · g (x)) -- the exponential loss function

� At stage (or iteration) m, we fit:

∑∑∑∑

∑∑∑∑

∑∑∑∑

====

−−−−

====

−−−−

====

⋅⋅⋅⋅⋅⋅⋅⋅−−−−⋅⋅⋅⋅⋅⋅⋅⋅−−−−====

⋅⋅⋅⋅++++⋅⋅⋅⋅−−−−====

====

N

1i

immii1mi
f,

N

1i

immi1mi
f,

i

N

1i

i
f,

))x(fyexp())x(gyexp(minarg

)])x(f)x(g[yexp(minarg

))x(g,y(Lminarg

mm

mm

mm

αααα

αααα

αααα

αααα

αααα

);x(f)x(g kk

M

1k
k γγγγαααα∑∑∑∑

====

====

Exponential Loss vs. Squared Error Loss

� L(y, g (x)) = exp(-y · g (x))

y · g (x)
0-2 -1 1 2

� L(y, g (x)) = (y - g (x))2

1

SE loss

exponential loss

� Squared Error Loss penalizes classifications that are “too
correct”, with y · g (x) >1, and thus it is inappropriate for
classification

� Exponential loss encourages large margins, want y · g (x) large

Loss

Logistic Regression Model

� It can be shown that Adaboost builds a logistic regression
model:

(((())))
(((())))

(((())))
(((())))∑∑∑∑

====

====
−−−−====

====
====

M

1k
mm xf

x|1YPr

x|1YPr
logxg αααα

(((())))(((()))) (((())))∑∑∑∑ ∑∑∑∑∑∑∑∑
==== ========









⋅⋅⋅⋅−−−−====⋅⋅⋅⋅−−−−

N

1i

M

1k

immi

N

1i

ii xfyexpxgyexp αααα

� It can also be shown that the the training error on the samples
is at most:

Practical Advantages of AdaBoost

� fast

� simple

� Has only one parameter to tune (T)

� flexible: can be combined with any classifier

� provably effective (assuming weak learner)

• shift in mind set: goal now is merely to find hypotheses
that are better than random guessing

� finds outliers

� The hardest examples are frequently the “outliers”

8

Caveats

� performance depends on data & weak learner

� AdaBoost can fail if
� weak hypothesis too complex (overfitting)

� weak hypothesis too weak (γ
t
→0 too quickly),

� underfitting

� Low margins → overfitting

� empirically, AdaBoost seems especially
susceptible to noise

