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Abstract. We propose a novel method for removing irrelevant frames
from a video given user-provided frame-level labeling for a very small
number of frames. We first hypothesize a number of candidate areas
which possibly contain the object of interest, and then figure out which
area(s) truly contain the object of interest. Our method enjoys several
favorable properties. First, compared to approaches where a single de-
scriptor is used to describe a whole frame, each area’s feature descriptor
has the chance of genuinely describing the object of interest, hence it is
less affected by background clutter. Second, by considering the tempo-
ral continuity of a video instead of treating the frames as independent,
we can hypothesize the location of the candidate areas more accurately.
Third, by infusing prior knowledge into the topic-motion model, we can
precisely follow the trajectory of the object of interest. This allows us
to largely reduce the number of candidate areas and hence reduce the
chance of overfitting the data during learning. We demonstrate the effec-
tiveness of the method by comparing it to several other semi-supervised
learning approaches on challenging video clips.

1 Introduction

The endless streams of videos on the Internet often contain irrelevant data. Our
goal is to cut video clips shorter and retain the frames that are relevant to the
user input. We assume the user has an “object of interest” (OOI) in mind, which
can, for example, be a car, a book, or the scene of a forest. The system will infer
which frames contain the OOI. This application can be used, e.g., for shortening
surveillance videos or TV programs.

We consider the case where the system is provided with very limited informa-
tion. Specifically, the user will label at least one frame as relevant and another
frame as irrelevant. These labels are at the frame-level instead of at the pixel-
level. Although pixel-level labeling (such as using a bounding box or segmen-
tation mask to specify the location of the OOI) can provide more information,
we intend to explore the possibility of letting the user provide coarser and less
tedious labeling.

We formulate the task as a self-training multiple instance learning problem.
For each frame, we postulate a number of candidate areas, and use a multiple
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Fig. 1. Frames are unlabeled (top left), labeled as irrelevant (middle left) or relevant
(bottom left). The system will find out what the object of interest is (in this case, the
black vehicle) and remove frames that don’t contain the vehicle.

instance learning algorithm to simultaneously find out whether the OOI exists
in the frame, and if it does, where it is located. The reason that we go one step
beyond our goal (that is, trying to locate the OOI) is because we are able to
exploit the temporal smoothness property of video objects to consolidate their
locations. That is to say, objects tend to move in a continuous manner from
frame to frame.

We use sporadically labeled frames to train a multiple instance learning algo-
rithm called MILBoost [22]. It was originally applied to a face detection problem.
In their work, images are manually labeled by drawing a rectangle around the
head of a person. In our system, we only have frame-level labels, i.e., no rectan-
gles are available.

Our semi-supervised framework can be distinguished from prior work in sev-
eral aspects. Our work does not require pixel-level labeled data. In[17], learning
requires both pixel-level labeled data and frame-level labeled data. An object de-
tector is initially trained on the pixel-level labeled data, and the learned model is
used to estimate labels for the frame-level labeled data. As illustrated in Fig. 1,
we “discover” the OOI since no bounding box is given, which also distinguishes
our work with the video object retrieval work in [20][19], where the OOI is ex-
plicitly labeled at the pixel-level.

Image retrieval systems often allow users to provide positive and negative feed-
back, hence the task of image retrieval can also be cast under the self-training
[14] or multiple instance learning [22] framework. Nonetheless, our system ex-
ploits temporal information of videos in a novel way, which distinguishes itself
from the image retrieval literature. In [16], activities in a video are condensed
into a shorter period by simultaneously showing multiple activities. It does not
intend to discover the frames that contain the user-desired OOI from limited
user input.
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Fig. 2. (a) Labeling at the frame level assumed in this work. Frames can be unlabeled,
or labeled as positive or negative. (b) The bounding box type of labeling provides more
explicit information regarding the object of interest, but is also more tedious in the
labeling process.

Our method is based on the bag-of-words representation, which is part-based.
Different than other part-based methods such as the one-shot learning framework
[7], we leverage motion consistency to improve recognition, while the one-shot
learning framework did not utilize that. We leverage the unsupervised topic-
motion model in [11] and extend it to a semi-supervised setting by incorporat-
ing additional prior models during learning. The problem solved, the application
targeted, as well as the fundamental approach adopted in our paper, are signif-
icantly different from [11].

Our contribution can hence be summarized as follows: 1) A novel applica-
tion that summarizes videos based on the implicitly specified OOI. 2) A novel
system that uses weakly labeled data for object discovery in video. 3) A novel
method that takes advantage of the temporal smoothness property during semi-
supervised learning.

The paper is organized as follows. In section 2 we define the type of user
labeling information that is available to the system. In section 3 we introduce a
baseline method, where features at the frame-level are used for semi-supervised
learning. In section 4 we explain in detail the proposed method. In section 5 we
will compare the proposed method with the baseline method and several variants
of the proposed method. Finally, we conclude in section 6.

2 Frame-Level Labels

The amount of user label information as well as its format has a major impact on
system design. The amount of user label information can range from all frames
being labeled to none. For those frames being labeled, the labeling can be as
detailed as providing bounding boxes for each frame (which we call pixel-level
labeling), or as coarse as “this frame does (or does not) contain the OOI” (which
we call frame-level labeling).
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In this paper, we consider the more challenging task of having as input only
frame-level labeling; see Fig. 2 for a comparison. This kind of ‘weak labeling’ is
very different from traditional object detection; see for example [18], where the
characteristics of the OOI are learned from plenty of pixel-level labeled data.
This is also different from the recent video retrieval work in [20][19]. Traditional
object detection not only involves a lot of human labor for labeling the images
by putting bounding boxes on the OOI, but also has the difficulty of scaling
to multiple categories of objects. Since the OOI in a sequence can be of any
category, it is very difficult to train a comprehensive object detector that covers
all types of objects.

3 Semi-supervised Learning at Frame-Level

Our first attempt to achieve the goal of VideoCut is to use semi-supervised
learning at the frame-level. Each frame is represented as a histogram of visual
words, or textons [9]. To generate visual words, we use the Maximally Stable
Extremal Regions (MSER) operator [8] to find salient patches 1. MSERs are the
parts of an image where local contrast is high. Other operators could also be
used; see [2] for a collection. Features are extracted from these MSERs by Scale
Invariant Feature Transform (SIFT) [12]. In this work we extract MSERs and
SIFT descriptors from grayscale images. Patches and features extracted from
color images [21] can also be used instead. The SIFT features from a video
are vector quantized using K-Means Clustering. The resulting J = 50 cluster
centers form the dictionary of visual words, {w1, ..., wJ}. Each MSER can then
be represented by its closest visual word.

The histograms of the labeled frames along with their labels are fed to the
system to train a classifier. The classifier is then applied to the unlabeled frames.
Frames with high confidence scores are assigned pseudo-labels. The pseudo-
labeled data is combined with the original labeled data and the classifier is
trained again. The classifier we use is Discrete AdaBoost [4]. We will use this
method as a baseline method in the experiments. This kind of self-training [14]
procedure has been used extensively in different domains [10][17] and achieved
top results in the NIPS competition [4].

4 Semi-supervised Learning at Sub-frame Level

There are two issues with the frame-level learning framework in Sec. 3.

1. The OOI can be small and the visual words from the whole frame are usually
dominated by background clutter. Hence the full-frame histogram represen-
tation is not a truthful representation of the OOI.

1 The word ‘region’ should not be confused with the ‘candidate areas’ to be introduced
later. Each candidate area contains a set of MSER patches.
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Fig. 3. Semi-supervised learning at sub-frame level using temporally consistent candi-
date areas

2. Objects in video often follow a smooth trajectory, which we call the temporal
smoothness property. With frame-level learning, the temporal smoothness
property cannot be readily exploited.

We address these issues by learning at a sub-frame level. Fig. 3(a) shows the
proposed system flowchart. In each frame, we propose a number of Random Can-
didate Areas that potentially contain the OOI (illustrated in Fig. 3(b)). This will
be detailed in section 4.1. The candidate areas are passed to a self-training version
of MILBoost (S-MILBoost) and assigned an Area Probability, a score that tells
us how likely this candidate area truly belongs to the OOI. This will be detailed
in section 4.2. After each candidate area receives a score, we assign each image
patch (MSER) a Patch Probability, which is defined as the largest Area Probability
among the candidate areas that cover that image patch. Given the Patch Proba-
bility, in section 4.3 we will explain how to obtain the Temporally Consistent Can-
didate Areas. Basically, this is achieved by fitting a model which simultaneously
discovers the OOI and tracks it across frames. The Temporally Consistent Can-
didate Areas are illustrated in Fig. 3(c); using them, we train S-MILBoost once
again. As we will show in the experiments, this new S-MILBoost classifier will be
more reliable than the previous one trained with the Random Candidate Areas.
Finally, the S-MILBoost classifier gives us the Frame Probability, which tells us
how likely each frame contains the OOI. Using the Frame Probability, we can de-
termine the irrelevant frames and perform VideoCut.

Notice how the two issues mentioned earlier are resolved by using this pro-
posed flowchart. First, the candidate areas are smaller than the whole frame and
hence include less background clutter, which address the first issue mentioned
above. Second, the candidate areas in one frame can be temporally correlated
with the candidate areas in the next frame by performing ‘weak’ object track-
ing (illustrated in Fig. 3(c)), which addresses the second issue. We emphasize
that this ‘weak’ tracking is different from traditional object tracking, as we will
explain later.

In the experiments section we will compare our proposed flowchart with some
other methods, which replace or omit some parts of the modules in Fig. 3(a). In
the following subsections we will explain the details and merits of each compo-
nent in Fig. 3(a).
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4.1 Random Candidate Areas

Fig. 4. Candidate areas, each represented
by a histogram over visual words. In the
experiments, we use a variety of different
densities and spacings of candidate areas.

Since the user labeling does not tell
us where the OOI is located (neither
in the labeled nor in the unlabeled
frames), we need to set the candidate
areas based on prior knowledge, if any.
At the beginning, we use candidate ar-
eas with fixed size and uniform spac-
ing and call them the random can-
didate areas. Each candidate area is
represented as a histogram of visual
words, as shown in Fig. 4. After we
have a rough guess (using the tech-
niques in the next two subsections),
we will refine the candidate areas by placing them more densely around the es-
timated location of the OOI. We call these later candidate areas as temporally
consistent candidate areas. See Fig. 3(b)(c) for illustrations.

4.2 Self-training MILBoost

Using a similar self-training procedure as in Sec. 3, we first use the labeled
frames to train a multiple instance learning [22] classifier. As a result, each
candidate area of the labeled frames is assigned an area probability, which is
the probability that an area contains the OOI. The classifier is then self-trained
with the unlabeled frames and pseudo-labels included. As a result, the area
probabilities of candidate areas in unlabeled frames are obtained as well.

Different than in Sec. 3, we have multiple histograms per frame, instead of
a single one, therefore we use a multiple instance learning classifier, MILBoost
[22]. First let us define some notations. We denote the histogram over visual
words of a candidate area as xk,a, where k indices over frames and a indices over
the candidate areas inside frame k. Let tk ∈ {0, 1} denote the label or pseudo-
label of frame k. Each frame has a frame probability pk, and each candidate
area has an area probability pk,a. The frame probability is the probability that a
frame contains the OOI, and the area probability is the probability that the area
contains the OOI. Since a frame is labeled as positive as long as it contains
the OOI, it is natural to model the relationship between pk and pk,a using
the Noisy-OR model [15], pk = 1 − ∏

a∈k(1 − pk,a). The likelihood is given
by L(C) =

∏
k pk

tk(1 − pk)(1−tk).
As implied by its name, MILBoost produces a strong classifer C(xk,a) in the

form of a weighted sum of weak classifiers: C(xk,a) =
∑

u λucu(xk,a), cu(xk,a) ∈
{−1, +1}. The strong classifier score C(xk,a) translates into the area probabil-
ity, pk,a, by the logistic sigmoid function pk,a = 1/(1 + exp(−C(xk,a))). Using
the AnyBoost [13] method, the boosting weight �k,a of each candidate area is
the derivative of the log-likelihood, easily to be shown as tk−pk

pk
pk,a. In round

u of boosting, one first solves the optimization problem cu(.) = argmaxc′(.)
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∑
k,a c′(xk,a)�k,a. A line search is then performed to seek for the optimal para-

meter λu, i.e., λu = arg maxλ L(C + λcu).
In summary, S-MILBoost produces a classifier that assigns each frame a frame

probability, and each candidate area an area probability. Notice that the S-
MILBoost classifier is always used in a learning mode, during which the area
and frame probabilities are estimated.

4.3 Temporally Consistent Candidate Areas

The accuracy of the frame probabilities depends heavily on the placing of the
candidate areas; as an extreme example, if the OOI appears in a frame but
none of the candidate areas cover it, then there would be no chance we could
have correctly estimated the frame probability. This suggests a refinement of the
placing scheme of candidate areas based on extra information. Notice that, we
haven’t yet exploited the temporal smoothness property of videos.

We would like to use the temporal smoothness property to refine the placing
of the candidate areas. The temporal smoothness property is typically exploited
through tracking the object. However, tracking requires manual initialization of
the object location and size, information which is not available to us.

The topic-motion model [11] simultaneously estimates the appearance and
location of the OOI. However, it was used in an unsupervised setting where one
has no prior knowledge about the label (object vs. background) of each image
patch. In our case, the area probabilities estimated by S-MILBoost provides
information that we could use as prior knowledge.

The topic-motion model was designed for the case where at most one OOI ap-
pears in each frame. But this is not a problem for our system, because as long as
one of the possibly many OOIs is discovered, the frame probability will be high.
In other words, we don’t need to identify every OOI to decide if a frame is relevant
or irrelevant. Also notice that discovering the OOI is not our ultimate goal.

Denote frame k as dk, where k indices over all frames. Each patch in dk is as-
sociated with a visual word w, a position r, and a hidden variable z ∈ {z+, z−}.
Define p(z+|dk) as the probability of a patch being originated from the OOI in
frame k, and likewise p(z−|dk) for the background. We define a spatial distribu-
tion p(r|z+, dk) that models the location of the patches originated from the OOI.
We assume p(r|z+, dk) follows a Gaussian distribution, but other distributions
(such as a mixture of Gaussians) could be used as well. Likewise, p(r|z−, dk)
models the location of patches originated from background and we assume it
follows a uniform distribution. The third distribution is p(w|z+), which models
the appearance of the OOI. It is the normalized histogram over visual words
corresponding to patches originated from the OOI. Likewise, p(w|z−) models
the appearance of the background. We assume that the joint distribution of
word w, position r, and hidden label z of a patch in frame dk is modeled as
p(z, r, w|dk) ≡ p(z|dk)p(r|z, dk)p(w|z).

Define the state s(k) as the unknown position and velocity of the OOI in frame
dk. We assume a constant velocity motion model and the state evolves according
to s(k + 1) = Fs(k) + ξ(k), where F is the state matrix and the process noise
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Fig. 5. Graphical model representation. Dashed lines are not the typical plate repre-
sentation.

sequence ξ(k) is white Gaussian. Suppose at time k there are a number of mk

patches. If a patch is originated from the OOI, then its position can be expressed
as ri(k) = Hs(k)+ζi(k), where H is the output matrix and the observation noise
sequence ζi(k) is white Gaussian; otherwise, the position is modeled as a uniform
spatial distribution. The state estimate can be written as ŝ(k) =

∑mk

i=1 ŝi(k)βi(k),
where ŝi(k) = ŝ(k−) + W(k)εi(k) is the updated state estimate conditioned on
the event that ri(k) is originated from the OOI, where εi(k) = ri(k) − r̂(k−) is
the innovation, r̂(k−) is the observation prediction, ŝ(k−) is the state prediction,
and W(k) is the Kalman Filter gain [3]. The state estimation equations are
essentially the same as in the PDA filter [3]. The association probability βi(k)
is defined as βi(k) ∝ N(εi(k)|0,Υ(k))p(zi(k)|wj , ri(k), dk), where the first term
contains motion information, the second term contains appearance and location
information, and Υ(k) is the innovation covariance.

Parameter Estimation. The distributions P (w|z), P (z|d), and P (r|z, d) are
estimated using the Expectation-Maximization (EM) algorithm [6], which max-
imizes the log-likelihood R =

∑
k

∑
j

∑
i nkji log p(dk, wj , ri(k)), where nkji ≡

n(dk, wj , ri(k)) is a count of how many times a patch in dk at position ri(k) has
appearance wj . The EM algorithm consists of two steps. The E-step computes
the posterior probabilities for the hidden variables:

p(zl|dk, wj , ri(k)) =
p(zl|dk)p(wj |zl)p(ri(k)|zl, dk)

∑
R p(zl|dk)p(wj |zl)p(ri(k)|zl, dk)

(1)

The M-step maximizes the expected complete data likelihood. We adopt a
Bayesian approach to estimating the probabilities, using m-probability-
estimation [5]. First, notice that the area probability, pk,a, computed from S-
MILBoost contains prior knowledge about the OOI. This prior knowledge should
be incorporated into the detection of temporally consistent candidate areas. This
is a significant improvement over the algorithm in [11], which was completely
unsupervised.

Noticing that each patch can belong to multiple candidate areas, we define the
patchprobability as the largestareaprobability amongthecandidateareas thatcover
an image patch. The patch probability is written as pMIL(zl|dk, wj , ri(k)), with the
subscript“MIL”emphasizing that thisprobability is estimated fromtheoutcomeof
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S-MILBoost.Asimplifiedgraphicalmodel is illustrated inFig. 5,where thevariable
r is omitted to simplify illustration. Dashed lines indicate groups of image patches
having the same value of pMIL. More specifically, dashed lines in red correspond to
the redbox (candidate area) in the picture, and blue (yellow)nodes in the graphical
model correspond to blue (yellow) ellipses in the picture. We then obtain:

p(zl|dk) =

∑
j,i nkjipMIL(zl|dk, wj , ri(k)) +

∑
j,i nkjip(zl|dk, wj , ri(k))

∑
l,j,i nkjipMIL(zl|dk, wj , ri(k)) +

∑
l,j,i nkjip(zl|dk, wj , ri(k))

(2)

p(wj |zl) =

∑
k,i nkjipMIL(zl|dk, wj , ri(k)) +

∑
k,i nkjip(zl|dk, wj , ri(k))

∑
j,k,i nkjipMIL(zl|dk, wj , ri(k)) +

∑
j,k,i nkjip(zl|dk, wj , ri(k))

(3)

p(ri(k)|z+, dk) = N (ri(k)|̂r(k), Σdk
) (4)

where zl ∈ {z+, z−} is the value taken by zi(k) and r̂(k) = Hŝ(k) is the posi-
tion estimate. The covariance Σdk

in the Normal distribution in Eq.(4) is the
weighted covariance matrix of the observations ri(k). The weighted covariance
matrix is the covariance matrix with a weighted mass for each data point, with
weights equal to the association probabilities βi(k). As a result, if the associa-
tion probabilities have high uncertainty, the spatial distribution p(r|z+, d) will
be flatter; if low uncertainty, it will be sharper around the position of the OOI.

Finally, we propose a number of temporally consistent candidate areas that
have r̂(k) as center and with various sizes, as shown in Fig. 3(c). We use a
1.2 scale ratio between two areas, with the smallest one equal to the variance
specified by Σdk

in Eq.(4), and with no more than 5 areas in total. Using various
sizes is to increase system robustness in case of inaccurate size estimates.

5 Experiments

We use 15 video clips from YouTube.com and TRECVID [1]. Sample frames are
shown in Fig. 6. Most of the clips are commercial advertisements with a well
defined OOI and range from 20 to 356 seconds in length. We sample each video
at two frames per second. In total, there are 3128 frames of size 320× 240. The
frames have visible compression artifacts.

The video frames are ground-truthed as positive or negative according to
whether they contain the OOI; e.g., in a PEPSI commercial, we assume the PEPSI
logo is the OOI. Each video clip is run twenty runs, where in each run we randomly
select Np frames from the positive frames and Nn frames from the negative frames
as labeled data, where Np and Nn are one or three. The rest of the frames are
treated as unlabeled data. Results are averaged over the twenty runs. Notice that
the labeled frames are labeled at the frame-level but not pixel-level.

Table 1 shows the average precision (area under precision-recall curve) of
different methods. In the following, we will introduce the different comparative
methods listed in Table 1 while we discuss the results. In general, we have the
following observations:
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Fig. 6. Sample frames. Name of video clip, from top to bottom: Knorr, Benz, Pepsi,
Whiskas.

Method 1: Supervised learning using only labeled data is consistently out-
performed by the semi-supervised variants. When the number of labeled frames
is low, its performance is close to by chance.

Method2:Semi-supervisedlearningat framelevelperformsonlymarginally
better than supervised learning when the number of labeled frames is as low as
(1+, 1−), but improves significantly as the number of labeled frames increases.

Method 3: Semi-supervised learning at sub-frame level with random
areas consistently outperforms semi-supervised learning at the frame level. This
justifies our claim in Sec. 4 that frame-level learning can be hindered when back-
ground clutter dominates the appearance features. Using sub-frames (candidate
areas) helps the learning process to focus on the features originated from the
OOI. The candidate areas consist of rectangles of size 160 × 120 with equal
spacing between each other. In addition, a rectangle of size 320 × 240 covering
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the whole frame is used in here, in Method 4, and in the proposed method, in
order to take care of large objects and inaccurate size estimates. After train-
ing S-MILBoost, we did not refine the placing of candidate areas, as we do in
Method 4 and in the proposed method.

We experimented with different numbers of rectangles by changing the spacing
between them and obtained different performances as shown in Fig. 7. There is
a sweet spot at the number of 10 areas, which shows that the more candidate
areas does not necessarily yield better performance. Even though increasing the
number of areas will increase the chance that one of the candidate areas faithfully
represents the OOI, the chance of overfitting also increases, hence the drop in
performance. We also experimented with placing the areas more concentrated
around the center of the frame but obtained similar results.

Table 1. Comparing the average precision (%). The number of labeled frames are one
positive (1+) and one negative (1−) in the upper row, and three positives and three
negatives in the lower row for each video sequence.

Method 3 Method 4 Proposed

1+,1- 32.6 26.0 28.9 31.7 29.3 38.7
3+,3- 32.5 29.1 52.9 54.6 48.8 58.3
1+,1- 34.1 32.6 34.3 41.9 39.1 42.3
3+,3- 33.7 39.4 53.9 57.7 50.6 63.2
1+,1- 43.7 49.0 54.2 62.6 64.1 65.3
3+,3- 43.5 53.9 71.2 77.0 78.1 73.8
1+,1- 3.9 2.8 5.2 10.7 10.7 6.5
3+,3- 2.0 4.1 11.3 21.2 22.5 22.7
1+,1- 21.2 14.4 15.5 45.4 41.8 36.1
3+,3- 19.4 21.1 41.9 51.4 57.6 62.2
1+,1- 39.0 40.5 41.7 62.7 65.1 66.9
3+,3- 38.2 58.2 76.0 91.4 91.4 91.4
1+,1- 27.1 26.5 27.0 31.4 29.9 36.0
3+,3- 25.5 23.8 32.6 42.7 34.7 36.2
1+,1- 25.9 39.3 53.7 67.6 58.9 58.9
3+,3- 24.1 58.4 67.5 67.6 70.2 70.2
1+,1- 20.7 20.4 32.2 44.2 62.1 59.4
3+,3- 18.5 20.2 48.9 57.2 69.4 67.7
1+,1- 18.4 19.8 20.0 26.4 30.3 30.3
3+,3- 14.7 18.6 22.1 25.3 36.4 38.0
1+,1- 10.8 15.4 43.5 42.6 53.5 59.6
3+,3- 10.5 18.7 50.7 44.4 40.8 62.1
1+,1- 4.8 2.8 2.8 3.5 3.7 4.2
3+,3- 4.2 3.6 12.7 27.7 27.3 25.1
1+,1- 11.6 8.5 38.1 27.8 33.9 44.9
3+,3- 11.2 46.9 56.3 40.9 48.5 56.1
1+,1- 24.1 14.7 15.0 36.1 33.8 35.2
3+,3- 23.8 41.6 47.2 56.9 56.7 56.1
1+,1- 11.2 15.8 18.4 22.6 28.3 34.1
3+,3- 10.5 18.0 41.3 44.1 48.9 54.6

1+,1- 21.9 21.9 28.7 37.1 39.0 41.2

3+,3- 20.8 30.4 45.8 50.7 52.1 55.8
Average
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Fig. 9. Sample frames that are inferred as positive. A yellow box shows the candidate
area with highest area probability. Name of video clip, from top to bottom: Knorr,
Benz, Pepsi, Whiskas.

Method 4: Most confident area propagation: This method is the closest
to the proposed method. Instead of using ‘weak’ tracking, we assume the OOI is
stationary within a shot. As illustrated in Fig. 8, each unlabeled frame obtains
its ‘base’ candidate area by replicating, from the nearest labeled frame, the size
and position of the most confident area. Nearness can be defined as the visual
similarity between frames or as the time difference between frames. We found
the latter to work better. The base area is then resized and replicated within
the frame using a 1.2 scale ratio between two areas, with the smallest one equal
to the size of the base area, and no more than 5 areas in total. Since videos
often contain multiple scene transitions or shots, we only allow the replication
to happen within a shot and not across shots. If there are no labeled frames
within a shot, we place random candidate areas in that shot.

In summary, the proposed method outperforms all the other methods (Table 1).
Togetherwith Fig. 7, this justifies our earlier expectation that properly placed can-
didate areas are crucial to the performance; using a huge number of candidate areas
overfits the data and lowers the performance. The temporally consistent candidate
areas reduce the need for a large number of uninformative candidate areas. Finally,
in Fig. 9, we display some frames that are inferred by the proposed method.

6 Conclusion and Future Work

We have presented an approach for removing irrelevant frames in a video by
discovering the object of interest. Through extensive experiments, we have shown
that this is not easily achieved by directly applying supervised or semi-supervised
learning methods in the literature developed for still images.



VideoCut: Removing Irrelevant Frames by Discovering the Object of Interest 453

On a higher level, our method can be considered as a tracking system but
without manual track initialization; the system finds out itself what the “best
track” is, with the objective of agreeing with the user’s labeling on which frames
contain the object of interest.
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