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Segmentation of Brain MR Images Through a
Hidden Markov Random Field Model and the

Expectation-Maximization Algorithm
Yongyue Zhang*, Michael Brady, and Stephen Smith

Abstract—The finite mixture (FM) model is the most commonly
used model for statistical segmentation of brain magnetic reso-
nance (MR) images because of its simple mathematical form and
the piecewise constant nature of ideal brain MR images. However,
being a histogram-based model, the FM has an intrinsic limita-
tion—no spatial information is taken into account. This causes the
FM model to work only on well-defined images with low levels of
noise; unfortunately, this is often not the the case due to artifacts
such as partial volume effect and bias field distortion. Under these
conditions, FM model-based methods produce unreliable results.
In this paper, we propose a novel hidden Markov random field
(HMRF) model, which is a stochastic process generated by a MRF
whose state sequence cannot be observed directly but which can be
indirectly estimated through observations. Mathematically, it can
be shown that the FM model is a degenerate version of the HMRF
model. The advantage of the HMRF model derives from the way
in which the spatial information is encoded through the mutual in-
fluences of neighboring sites. Although MRF modeling has been
employed in MR image segmentation by other researchers, most
reported methods are limited to using MRF as a general prior in
an FM model-based approach. To fit the HMRF model, an EM al-
gorithm is used. We show that by incorporating both the HMRF
model and the EM algorithm into a HMRF-EM framework, an
accurate and robust segmentation can be achieved. More impor-
tantly, the HMRF-EM framework can easily be combined with
other techniques. As an example, we show how the bias field cor-
rection algorithm of Guillemaud and Brady (1997) can be incor-
porated into this framework to achieve a three-dimensional fully
automated approach for brain MR image segmentation.

Index Terms—Bias field correction, expectation-maximization,
hidden Markov random field, MRI, segmentation.

I. INTRODUCTION

M agnetic resonance imagine (MRI) is an advanced
medical imaging technique providing rich information

about the human soft tissue anatomy. It has several advan-
tages over other imaging techniques enabling it to provide
three-dimensional (3-D) data with high contrast between soft
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tissues. However, the amount of data is far too much for manual
analysis/interpretation, and this has been one of the biggest ob-
stacles in the effective use of MRI. For this reason, automatic or
semi-automatic techniques of computer-aided image analysis
are necessary. Segmentation of MR images into different tissue
classes, especially gray matter (GM), white matter (WM) and
cerebrospinal fluid (CSF), is an important task.

Brain MR images have a number of features, especially
the following: First, they are statistically simple: MR Images
are theoretically piecewise constant with a small number
of classes. Second, they can have relatively high contrast
between different tissues. Unlike many other medical imaging
modalities, the contrast in an MR image depends strongly upon
the way the image is acquired. By altering radio-frequency
(RF) and gradient pulses, and by carefully choosing relaxation
timings, it is possible to highlight different components in the
object being imaged and produce high-contrast images. These
two features facilitate segmentation. On the other hand, ideal
imaging conditions are never realized in practice. The piece-
wise-constant property is degraded considerably by electronic
noise, the bias field (intensity inhomogeneities in the RF field)
and the partial-volume effect (multiple tissue class occupation
within a voxel), all of which cause classes to overlap in the
image intensity histogram. Moreover, MR images are not
always high-contrast. Many -weighted and proton density
images have low contrast between GM and WM. Therefore, it
is important to take advantage of useful data while at the same
time overcoming potential difficulties.

A wide variety of approaches have been proposed for brain
MR image segmentation. Statistical approaches, especially
parametric ones, are widely employed [7], [8]. This type of
method labels pixels according to probability values, which are
determined based on the intensity distribution of the image.
With a suitable assumption about the distribution, statistical
approaches attempt to solve the problem of estimating the
associated class label, given only the intensity for each pixel.
Such an estimation problem is necessarily formulated from
an established criterion. Maximuma posteriori (MAP) or
maximum likelihood (ML) principles are two such examples.
But before those criteria can be assessed, the formula for the
density function of the pixel intensity has to be chosen care-
fully [9]. Finite mixture(FM) models, in particular thefinite
Gaussian mixture(FGM) model when the Gaussian likelihood
distribution is assumed [10], [6], is one of the most widely
used models in segmentation. FM models have a number of
elegant features and are mathematically simple. However,
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being a histogram-based model, the FM has an intrinsic lim-
itation—spatial information is not taken into account because
all the data points are considered to be independent samples
drawn from a population. Such a limitation causes the FM
model to work only on well-defined images with low levels of
noise; unfortunately, this is often not the case with MR images
due to artifacts such as the partial volume effect and bias field
distortion. Under these conditions, FM model-based methods
produce unreliable results.

In order to address this problem, we have developed a hidden
Markov random field (HMRF) model, which is a stochastic
process generated by a MRF whose state sequence cannot be
observed directly but which can be observed through a field of
observations. The importance of the HMRF model derives from
MRF theory, in which the spatial information in an image is
encoded through contextual constraints of neighboring pixels.
By imposing such constraints, we expect neighboring pixels to
have the same class labels (in the case of piecewise constant
images) or similar intensities (in the case of piecewise contin-
uous images). This is achieved through characterizing mutual
influences among pixels using conditional MRF distributions.

Any model requires descriptive parameters and a model is
only complete when all its parameters are known; therefore, a
parameter estimation step is also essential to our HMRF model.
In this paper an expectation-maximization (EM) algorithm for
solving ML estimation of the model parameters is derived. We
show that by incorporating both the HMRF model and the EM
algorithm into a mathematically sound HMRF-EM framework,
an accurate and robust segmentation approach can be achieved,
which is demonstrated through experiments on both simulated
images and real data, and comparison made with the FM-EM
framework. Being a flexible approach, the HMRF-EM can be
easily combined with other techniques to improve the segmen-
tation performance. As an example, we show how the bias field
correction algorithm of Guillemaud and Brady [6] is incorpo-
rated into it.

Although MRF modeling and its application in image
segmentation have been investigated by many other researchers
[11]–[13], only in recently years has MRF theory become
popular in MR image segmentation. However, most reported
methods use MRF only as a general prior in an FM model-based
parametric approach to build the MAP estimation. They either
lack a proper parameter estimation step to fit the FM model
[1], [2] or the parameter estimation procedure they use, such
as ML or EM [3]–[5], suffers from the limitation of the FM
model mentioned above. In general, although an MRF prior
can improve the performance, the FM assumption is still a big
limitation.

As to the problem of brain MR image segmentation, we focus
on segmenting normal brains without apparent diseases into
three tissues: Gray Matter (GM), White Matter (WM) and CSF.
The algorithm starts with an initial estimation step to obtain ini-
tial tissue parameters and classification. It is then followed by
a three-step EM process which updates the class labels, tissue
parameters and bias field iteratively. During the iterations, an
MRF-MAP approach is used to estimate class labels, MAP is
applied to estimate the bias field, and the tissue parameters are
estimated by ML. Since we are not interested in the skull or

scalp, we have removed these parts of the image from all data,
before applying segmentation. The resulting output from the al-
gorithm is segmented tissues, estimated bias field and the re-
stored image (without bias field). The rest of this paper is orga-
nized as follows: Section II presents the mathematical details of
the HMRF model. Section III gives simulation examples from
both the HMRF model and the FM model. Section IV introduces
the concept of MRF-MAP classification for estimating the class
labels. The complete HMRF-EM framework for classification,
as well as parameter estimation through the EM algorithm, is
presented in Section V. An additional step for estimating bias
field for brain MR images is discussed and incorporated into
the framework in Section VII. Comparison with other methods
and experimental results are also shown, followed by discus-
sions and future work in the final section.

II. HMRF MODEL

Let and be two alphabets:

Let be the set of indexes and
denote any family of random variables indexed by, in

which each random variable takes a value in its state
space. Such a family is called a random field. The joint event

is simplified to where
is aconfigurationof , corresponding to a re-

alization of this random field. Let and be two such random
fields whose state spaces areand , respectively, so that for

we have and . Let denote a configura-
tion of and be the set of all possible configurations so that

Similarly, let be a configuration of and be the set of all
possible configurations so that

Given follows a conditional probability distribution

(1)

where is the set of parameters. For all, the function family
has the same known analytic form. We also assume that
is pairwise independent, meaning

(2)

In order to develop the HMRF model, we first take the stan-
dard FM model as a comparison.

A. Finite Mixture Model

For every and

is independent of the individual sites and called amixing
parameter. We take as the model parameter set with
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Consider two configurations and . From (1) and
(2), we can compute the joint probability distribution ofand

dependent on the model parameters (is treated as a set of
random variables), namely

(3)

We can compute the marginal distribution of , dependent
on the parameter set

(4)

This is the so-calledfinite mixture(FM) model.
Although this mathematically simple model is widely used

[14], it is not considered to be a complete model in practice be-
cause it only describes the data statistically—no spatial infor-
mation about the data is utilized. In other words, the FM model
is spatially independent and can, therefore, be specified fully by
the histogram of the data. However, images with the same inten-
sity distribution may have totally different structural properties.
To overcome this drawback, certain spatial considerations need
to be incorporated into the model. Under certain intensity dis-
tributions, we want the model to be “adaptive” to structural in-
formation or spatially dependent in order to fit the actual image
better. This leads to the consideration of MRF theory and our
HMRF model.

B. MRF Theory

The spatial property can be modeled through different as-
pects, amongst which thecontextual constraintis a general and
powerful one. MRF theory provides a convenient and consistent
way to model context-dependent entities such as image pixels
and correlated features. This is achieved by characterizing mu-
tual influences among such entities using conditional MRF dis-
tributions.

In an MRF, the sites in are related to one another via a
neighborhood system, which is defined as ,
where is the set of sites neighboring and

. A random field is said to be an MRF on with
respect to a neighborhood systemif and only if

Note, the neighborhood system can be multidimensional. Ac-
cording to the Hammersley–Clifford theorem [15], an MRF can
equivalently be characterized by a Gibbs distribution. Thus

(5)

where is a normalizing constant called thepartition function,
and is anenergy functionof the form

(6)

which is a sum ofclique potentials over all possible
cliques . A clique is defined as a subset of sites inin which
every pair of distinct sites are neighbors, except for single-site
cliques. The value of depends on the local configuration
of clique . For more detail on MRF and Gibbs distribution see
[11].

C. HMRF Model

The concept of ahidden Markov random fieldmodel is de-
rived fromhidden Markov models(HMM), which are defined as
stochastic processes generated by a Markov chain whose state
sequence cannot be observed directly, only through a sequence
of observations. Each observation is assumed to be a stochastic
function of the state sequence. The underlying Markov chain
changes its state according to a transition probability ma-
trix, where is the number of states. HMMs have been applied
successfully to speech recognition [16], [17] and handwritten
script recognition [18].

Since original HMMs were designed as one-dimensional
(1-D) Markov chains with first-order neighborhood systems, it
cannot directly be used in two-dimensional (2-D)/3-D problems
such as image segmentation. Here, we consider a special case
of an HMM in which the underlying stochastic process is
a MRF instead of a Markov chain, therefore, not restricted
to one dimension. We refer to this special case as ahidden
Markov random fieldmodel. Mathematically, an HMRF model
is characterized by the following:

• Hidden Random Field (MRF)
The random field is an underlying MRF
assuming values in a finite state spacewith probability
distribution (5). The state of is unobservable.

• Observable Random Field
is a random field with a finite state

space . Given any particular configuration , every
follows a known conditional probability distribution

of the same functional form , where
are the involved parameters. This distribution is called

theemission probability functionand is also referred to
as theemitted random field.

• Conditional Independence
For any , the random variables are conditional

independent

(7)

Based on the above, we can write the joint probability of
as
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Image simulation by the FGM model and the GHMRF model. The first row shows the 3-class case. (a) FGM model; (b)–(d) GHMRF model with standard
deviation 0.23, 0.4, 0.5, respectively. The second row shows the five-class case. (e) FGM model; (f)–(h) GHMRF model with standard deviation 0.3, 0.47, 0.55,
respectively.

According to the local characteristics of MRFs, the joint prob-
ability of any pair of , given ’s neighborhood config-
uration , is

(8)

Thus, we can compute the marginal probability distribution
of dependent on the parameter set(in this case, we treat
as a random variable) and

(9)

where . We call this thehidden Markov random
fieldmodel. Note, the concept of an HMRF is different from that
of an MRF in the sense that the former is defined with respect
to a pair of random variable families while the latter is
only defined with respect to .

If we assume the random variables are independent of
each other, which means that for and , we have

then (9) reduces to

which is the definition of the finite mixture model. Therefore,
an FM model is a degenerate special case of an HMRF model.

It is obvious from the above that the fundamental difference
between the FM model and the HMRF model lies in their dif-
ferent spatial properties. The FM model is spatially independent

whereas the HMRF model may be spatially dependent. There-
fore, the HMRF model is more flexible for image modeling in
the sense that it has the ability to encode both the statistical and
spatial properties of an image.

With a Gaussian emission distribution, the FM model is
usually known as thefinite Gaussian Mixture(FGM) or finite
normal mixture(FNM) model. More specifically, the observ-
able random variables have the following density function:

(10)

where and

(11)

Similarly, an HMRF model with a Gaussian emission distri-
bution can be specified as

(12)

where and are defined as in (11). We refer to this type
of HMRF model as theGaussian hidden Markov random field
(GHMRF) model.

III. M ODEL SIMULATION AND IMAGE SYNTHESIS

Simulation is often used to verify statistical models. In this
case, simulation is used to generate synthetic images by drawing
random samples from the model distribution using stochastic
sampling methods. Here, the Gibbs sampler proposed by Geman
and Geman [11] is employed. Many different experiments have
been carried out to compare the FGM model and the GHMRF
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model. Fig. 1 shows two examples, in which the number of in-
tensity levels was set equal to the number of classes and the
Gaussian emission distributions have the same standard devi-
ation for all classes. For the GHMRF model, a homogeneous
and isotropic MRF model is employed to generate the prior dis-
tribution with clique potential . The two
rows in Fig. 1 correspond, respectively, to simulations with three
and five classes. The first column is the sample drawn from
the FGM model while the other three columns show samples
drawn from the GHMRF model with different standard devia-
tions. Apparently, the FGM model generates meaningless noise
images whereas the GHMRF model generates images with con-
trollable spatial structures—the smaller the standard deviation,
the clearer the spatial structures.

IV. MRF-MAP CLASSIFICATION

The image classification problem we consider involves as-
signing to each pixel a class label taking a value from the set

. The pixels are indexed by a 2-D or 3-D rectangular lattice
and each pixel is characterized by an intensity valuefrom

the set . A labeling of is denoted by , where
is the corresponding class label of pixel. We write for the
true but unknown labeling configuration andfor an estimate
of , both of which are interpreted as particular realizations of
a random field , which is an MRF with a specified distribution

. The observable image itself is denoted by, which is a
realization of a GHMRF as described in Section II. The problem
of classification is the problem of recovering, given the ob-
served image .

A. MRF-MAP Estimation

We seek a labeling of an image, which is an estimate of the
true labeling , according to the MAP criterion

(13)

From (13), we need to compute the prior probability of the class
and the likelihood probability of the observation. Sinceis con-
sidered as a realization of an MRF, its prior probability can be
derived from

(14)

It is also assumed that the pixel intensity follows a
Gaussian distribution with parameters , given the
class label

(15)

Based on the conditional independence assumption of(7), we
have the joint likelihood probability

which can be written as

(16)

with the likelihood energy

(17)

and the constant normalization term . It is easy
to show that

(18)

where

const (19)

is theposterior energy. The MAP estimation is equivalent to
minimizing the posterior energy function

(20)

Although mathematically simple, this type of MAP esti-
mation clearly presents a computationally infeasible problem.
Therefore, optimal solutions are usually computed using some
iterative optimization (minimization) techniques. In this paper,
we adopt theiterated conditional modes(ICM) algorithm
proposed by Besag [12], which uses the “greedy” strategy in
the iterative local minimization and convergence is guaranteed
after only a few iterations. Given the data and the other
labels , the algorithm sequentially updates each

into by minimizing , the conditional
posterior probability, with respect to .

V. MODEL FITTING USING THE EM ALGORITHM

A statistical model is complete only if both its functional
form and its parameters are determined. The procedure for esti-
mating the unknown parameters is known asmodel fitting. For
an HMRF model, the parameter set is what to
be solved. If the Gaussian emission function is assumed for the
observable random variable, the mean and standard deviation
of each Gaussian class are the parameters, so that .

Since both the class label and the parameters are unknown and
they are strongly interdependent, the data set is said to be “in-
complete” and the problem of parameter estimation is regarded
as an “incomplete-data” problem. Many techniques have been
proposed to solve this problem, among which the EM algorithm
[19] is the one most widely used.

The strategy underlying the EM algorithm consists of the
following: estimate the missing part asgiven the current
estimate and then use it to form the complete data set ;
new can be estimated by maximizing the expectation of the
complete-data log likelihood, . Mathemati-
cally, the EM algorithm can be described by the following.

StartAn initial estimate .
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The E-stepCalculate the conditional expectation

(21)

The M-stepmaximize to obtain the next esti-
mate

(22)

Let and repeat from the E-step.
Under certain reasonable conditions, EM estimates converge lo-
cally to the ML estimates [20].

For the GHMRF field model, the intensity distribution func-
tion, dependent on the parameter set, is

(23)

where is the locally dependent probability of
and the parameter set .

The -function is then formulated as

(24)

where

and .
Applying the EM algorithm, we obtain

(25)

(26)

which are the same update equations for the FGM model [9],
except that

(27)

The calculation of the conditional probability in-
volves estimation of the class labels, which are obtained through
MRF-MAP estimation (20). We refer to this HMRF model-
based EM algorithm as a HMRF-EM algorithm and the stan-
dard FM model-based EM algorithm as a FM-EM algorithm.

VI. SEGMENTATION USING THEHMRF-EM FRAMEWORK

The EM algorithm presented in Section V not only provides
an effective method for parameter estimation, but also a com-
plete framework for unsupervised classification using iterative
updating.

(a)

(b) (c) (d)

(e) (f) (g)

Fig. 2. Test images with three classes. Intensity means are 20, 125, 220, and
proportions are 0.372, 0.299, and 0.329, respectively. (a) The original image.
(b)–(d) Noisy images with SNR 3.4(� = 28), 2.0(� = 47), and 1.0(� = 95).
(e)–(g) Histogram of (b)–(d).

A. Initial Parameter Estimation

Since both the EM model fitting algorithm and the ICM la-
beling algorithm converge locally, the choice of initial condi-
tions, including the initial parameter set and the classification,
is important.

Without prior information, histogram analysis is widely used
to estimate statistics such as means and variances of a distribu-
tion. From the standpoint of classification, we want the classes
to be widely separated from each other while at the same time
having relatively low intraclass variances. According to this,
we carry out initial estimation using a discriminant measure-
based thresholding method proposed by Otsu [21]. The basic
idea is to find thresholds maximizing the interclass variances,
thus, also minimizing the intraclass variances. According to the-
ories of discriminant analysis, such thresholds are optimal solu-
tions. Once the optimal thresholds have been determined, the
mean and the standard deviation for each class type can
then be used as the initial parameters for further estimation. The
initial classification can also be obtained either directly through
the thresholding, or through an ML estimation with those known
parameters.

B. Experiments

We illustrate the performance of HMRF-EM segmentation
with reference to a number of examples. First, we show a
comparison between the standard FM-EM method and our
HMRF-EM method for segmenting and parameter estimating
piecewise-constant images with small numbers of classes.
Fig. 2(a) shows a simulated three-class image sampled from an
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TABLE I
THREE-CLASS PARAMETER ESTIMATION USING THEFM-EM ALGORITHM.

(a) (b)

Fig. 3. Three-class segmentation for Fig. 2(b) using the standard FM-EM
algorithm. (a) The reconstructed histogram and (b) the segmentation with
MCR 5.82%.

MRF model using the Gibbs sampler. The intensities for the
three classes are 30, 125 and 220 respectively. Fig. 2(b)–(d)
shows the same images with added Gaussian noise with
standard deviation of 28, 47, and 95. Because image contrast
is what we are most interested in for examining qualities of an
image, a measurement of the noise is more meaningful with
image contrast being taken into account. Thus, we define the
signal-to-noise ratio (SNR) as the following:

SNR
mean interclass contrast

standard deviation of the noise

Thus, the SNRs of the four test images are 3.4, 2.0, and 1.0, re-
spectively. Fig. 2(e)–(g) shows their intensity histograms. With
high levels of noise, different classes in the histogram exhibit
severe overlap. To measure the segmentation accuracy, we also
define the misclassification ratio (MCR), which is

number of mis-classified pixels
total number of pixels

The standard FM-EM algorithm and the HMRF-EM algo-
rithm are then applied to the three test images. Without any
limitation to the maximum number of iterations, the standard
FM-EM algorithm only converges for the first image with the
lowest level of noise (SNR 3.4). In that case, the estimation
results and the number of iterationsare shown in Table I. With
the estimated parameters, we reconstruct the histogram and ob-
tain the segmentation, as shown in Fig. 3. Note that, the param-
eter estimation is not accurate compared to the truth.

The HMRF-EM algorithm rapidly converges for all the three
test images. Fig. 4 and Table II show the results. Clearly, the
results of the HMRF-EM algorithm are much better than those
of the standard FM-EM algorithm.

In the second example, we compare both algorithms on
a more difficult problem, using a relatively large number of
classes and lower image quality. In Fig. 5, we show a simulated
5-class image with three different levels of noise and their
histograms. We then apply both methods; the FM-EM method
failed for all the three cases whilst the HMRF-EM method gave
reasonably good results, shown in Fig. 6 and Table III.

Fig. 4. Three-class segmentation for Fig. 2(b)–(d) using the HMRF-EM
algorithm. Top row: the reconstructed histograms; bottom row: the
segmentations.

TABLE II
THREE-CLASS PARAMETER ESTIMATION USING THEHMRF-EM ALGORITHM

From the above examples we can conclude that the FM-EM
method is sensitive to noise and not robust in terms of conver-
gence. It normally only performs well with limited numbers
of classes and takes long to converge. In contrast to this, the
HMRF-EM method can reasonably overcome all the drawbacks
of the FM-EM method and, therefore, be considered as a supe-
rior approach.

VII. SEGMENTATION OF BRAIN MR IMAGES WITH BIAS FIELD

CORRECTION

Since it is a complete approach to segmenting piecewise-con-
stant images, the HMRF-EM framework can be applied to brain
MR images. However, MR images are often corrupted by a low
(spatial) frequency artifact known as thebias fieldarising from
inhomogeneities in the RF field. Although such an artifact has
little impact on visual diagnosis, the performance of most auto-
matic image analysis techniques, especially intensity-based seg-
mentation, can degrade dramatically. Therefore, a robust, auto-
matic, and inexpensive way of correcting for this artifact is re-
quired.

A. Bias Field Correction Through Modified EM Algorithm

One of the most successful methods for dealing with the bias
field problem was developed by Wellset al. [10], in which the
bias field is modeled as a multiplicative

-dimensional random vector with zero mean Gaussian prior
probability density , where is the
covariance matrix. Let and
be the observed and the ideal intensities of a given image respec-
tively. The degradation effect of the bias field at pixel

can be expressed as follows:

(28)

After logarithmic transformation of the intensities, the bias field
effect can be treated as an additive artifact. Letand denote,
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(a)

(b) (c) (d)

(e) (f) (g)

Fig. 5. Test images with five classes. Intensity means are 30, 77, 125, 172, and
220, and proportions are 0.28, 0.273, 0.113, 0.187, and 0.147, respectively. (a)
The original image; (b)–(d) noisy images with SNR 2.0(� = 23), 1.4 (� =
33), and 1.0(� = 47); (e)–(g) histogram of (b)–(d).

Fig. 6. Five-class segmentation for Fig. 5(b)–(d) using the HMRF-EM
algorithm. Top row: the reconstructed histograms; bottom row: the
segmentations.

respectively, the observed and the ideal log-transformed inten-
sities: then . Given the class labels, it is further as-
sumed that the ideal intensity value at pixelfollows a Gaussian
distribution with parameter

(29)

With the bias field taken into account, the above distribution
can be written in terms of the observed intensityas

(30)

Thus, the intensity distribution is modeled as a Gaussian mix-
ture, given the bias field. It follows that

(31)

The MAP principle is then employed to obtain the optimal
estimate of the bias field, given the observed intensity values

(32)

A zero-gradient condition is then used to assess this maximum,
which leads to (see [10] for detail)

(33)

with (34)

where is themean residualfor pixel

(35)

is themean inverse covariance

if
otherwise

(36)

and is a low-pass filter. is the posterior probability that
pixel belongs to class given the bias field estimate.

The EM algorithm is applied to (33) and (34). The E step
assumes that the bias field is known and calculates the posterior
tissue class probability . In the M step, the bias field is
estimated given the estimated in the E step. Once the bias
field is obtained, the original intensity is restored by dividing

by the inverse log of . Initially, the bias field is assumed to
be zero everywhere.

Wells et al.’s algorithm is found to be problematic when
there are classes in an image that do not follow a Gaussian
distribution. The variance of such a class tends to be very large
and consequently the mean cannot be considered representative
[6]. Such situations are commonly seen in the regions of CSF,
pathologies and other nonbrain classes. Bias field estimation
can be significantly affected by this type of problem. To
overcome this problem, Guillemaud and Brady [6] unify all
such classes into an outlier class, which is called “other”,
with uniform distribution. Let denote the set of labels for
Gaussian classes and the class label for the “other” class.
The intensity distribution of the image is still a finite mixture
except for an additional non-Gaussian class

(37)

where is the density of the uniform distribution. Due to the
large variance of the uniform distribution, the bias field is only
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TABLE III
FIVE-CLASS PARAMETER ESTIMATION USING THE HMRF-EM ALGORITHM.

Fig. 7. HMRF-EM algorithm for brain MR image segmentation and bias field
correction.

estimated with respect to the Gaussian classes. The same itera-
tive EM method can be applied, except for a slight modification
to the formulation of mean residual (35)

(38)

With such a modification, the performance of the EM algo-
rithm can be significantly improved in certain situations. This
approach is referred to as the modified EM (MEM) algorithm.

B. HMRF-EM Framework for Brain MR Image Segmentation

As has been stated in the previous section, FM model-based
segmentation methods do not utilize any spatial information
and, therefore, are not robust in many cases. The MEM algo-
rithm for brain MR image segmentation suffers from the same
problem. But as an effective way to remove bias field, the MEM
algorithm is worth improving by overcoming this drawback.
We show in this section how the HMRF-EM framework can be
easily extended to incorporate an additional bias field correc-
tion step. More specifically, we seek an EM solution for three
dependent unknowns: the bias field, the image classification and

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 8. Comparison of the MEM and the HMRF-EM algorithm on simulated
2-D images. (a) The original image with 3% noise. (b) Bias field estimation
for (a) by both the algorithms. (c) Segmentation for (a) by both the algorithms.
(d) The original image with 15% noise. (e) Bias field estimation for (d) by the
MEM algorithm. (f) Segmentation for (d) by the MEM algorithm. (g) Bias field
estimation for (d) by HMRF-EM algorithm. (h) Segmentation for (d) by the
HMRF-EM algorithm.

the model parameters. In the E step, we calculate the MAP esti-
mate of the bias field and the class labels to form the-function.
In the M step, we calculate the ML estimate of the parameters
using the estimated bias field and the class labels in the E step.

• E step

(39)

(40)

• M step

(41)

The complete algorithm is described in Fig. 7.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 9. Comparison of the MEM and the HMRF-EM algorithm on real 2-D MR images with simulated bias field. (a) The original image; (b) the image with
simulated bias field; (c) histogram of (b); (d) best thresholding on (b); (e)–(h) the results from the MEM algorithm; (i)–(l) the results from HMRF-EMalgorithm.
For the last two rows, from left to right: the estimated bias field (the checkerboard is used to represent the background which is assumed to have no biasfield), the
segmentation, the restored image and the histogram of the restored image.

VIII. E XPERIMENTS

Various experiments have been carried out on real and sim-
ulated data, in both two and three dimensions. For the MEM
algorithm, parameters are manually estimated since it does not
deal with parameter estimation itself. For the HMRF-EM algo-
rithm, parameters are estimated automatically.

The first experiment shown here tests the noise sensitivity
of the two algorithms. Two images consisting of two constant
regions with the same simulated bias field but with different
levels of Gaussian noise were generated [Fig. 8(a), (d)]. Two
Gaussian classes, corresponding to the two regions, are used.
For Fig. 8(a), both algorithms give perfect estimates, as shown
in Fig. 8(b) and (c). However, for Fig. 8(d), the estimate from
the MEM algorithm gives a poor result.

The second experiment tests the performance of the two al-
gorithms on real 2-D MR images but with a simulated bias field.
Fig. 9(a) shows one slice of a proton density image and Fig. 9(b)
shows the image with a simulated circular bias field. Fig. 9(c)
is the histogram of Fig. 9(b), from which a substantial inten-
sity overlap between WM and GM can be seen. Fig. 9(d) shows
the best result that can be obtained from Fig. 9(b) using global
thresholding. When applying both algorithms two Gaussian dis-
tributions are used for the two tissue classes (WM and GM) and

a uniform distribution (density 0.3) is used for the rest. The
second row of Fig. 9 shows the result from the MEM algorithm
and the last row shows that from the HMRF-EM algorithm.

Although the above two experiments are only simulations
they can still give us some ideas about the two algorithms. Along
with those experiments on general images presented in Sec-
tion V, we can conclude in general that the HMRF-EM algo-
rithm has the advantage over the FM-EM algorithm when the
image noise is not negligible; this is always the case in brain
MRI. More importantly, as the bias field estimation and the
segmentation are mutually influenced by each other, the per-
formance of the segmentation algorithm will have direct influ-
ence on the bias field estimation, as well as the overall perfor-
mance. Thus, we can also conclude that the HMRF-EM segmen-
tation/bias field correction framework is superior to the FM-EM
framework.

In the following, we show several experiments applying our
HMRF-EM algorithm on real 3-D images taken by different
scanners. The first one is on a T1 scan obtained from the Mon-
treal Neurological Institute, McGill University (courtesy of D.
Arnold). The original volume has 50 256 256 slices with
voxel size 0.977 0.977 3.0 mm. Fig. 10 shows the segmen-
tation and bias field estimation results of four different slices.
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Fig. 10. Four slices of a 3-D MR volume image with real bias field. In each row, from left to right: the original slice, the estimated bias field, the restored slice,
and the segmentation.

We also obtained several coronal scans along with their man-
ually guided segmentations from the Internet Brain Segmenta-
tion Repository (IBSR) of the Masachusetts General Hospital.
Two examples with their original images, bias field estimations,
restorations, and both the manually guided segmentation and
our segmentations are shown in three views (coronal, transverse,
and sagittal) in Figs. 11 and 12.

We can see the above two data sets have very different bias
field patterns and image qualities. In both cases, our algorithm
performs well visually. Although a quantitative comparison with
the provided manually guided segmentation could be carried
out, this was not done due to the poor quality of the manually
guided segmentation. The transverse and the sagittal views of
the image show various small structures are missing from the
manual segmentation; also various CSF and nonbrain regions
are misclassified as gray or WM.

IX. DISCUSSIONS ANDCONCLUSION

A practical issue has to be addressed in the 3-D implemen-
tation of the HMRF-EM algorithm. Theoretically the MRF
neighborhood system should be three-dimensionally isotropic.
However, the slice thickness of a 3-D volume is often larger

than the intraslice voxel dimensions. In such a situation, an
isotropic neighborhood system may cause problems. Therefore,
an anisotropic 3-D neighborhood system is used with a smaller
weight across slices.

Although the HMRF-EM framework itself is theoretically
sound, the initial estimation based on thresholding is rather
heuristic. Due to the high variability of brain MR images in
terms of their intensity ranges and contrasts between brain
tissues, it is not guaranteed that the thresholding procedure will
produce perfect results. In most cases, however, the final seg-
mentation results are stable even with slightly different initial
estimates. This is largely attributable to the robust HMRF-EM
algorithm. However, as a local minimization method, the EM
algorithm can be trapped in a local minimum. In some cases,
where the image is poorly defined, the thresholding procedure
may fail to find the right thresholds for brain tissues, especially
the threshold for GM and WM. With an initial condition far
from normal, the EM procedure is likely to give a wrong final
segmentation. In general, the initial estimation is a difficult
problem and it will certainly be an important issue to be studied
in future work.

We found many scanners produce images with strongly
varying bias field across slices. Thus, the very top or bottom
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Fig. 11. Data set I from the IBSR. The three rows show the image in coronal, transverse, and sagittal view respectively. In each row, from left to right: the original
slice, the estimated bias field, the restored slice, our segmentation, and the manually guided segmentation.

Fig. 12. Data set II from the IBSR. The three rows show the image in coronal, transverse, and sagittal view respectively. In each row, from left to right:the original
slice, the estimated bias field, the restored slice, our segmentation, and the manually guided segmentation.

slices can have very different intensities to those in the middle.
This can cause the initial parameter estimation to be totally
wrong as it is done in 3-D and all the pixels in the volume are
considered as a whole. Attempting to carry out the initial esti-
mation two-dimensionally in a slice-by-slice manner is still far
from ideal as there are not enough pixels to compute statistics
in top or bottom slices. It would appear that to effectively solve
this problem certain intensity normalization across slices has
to be performed so that for different slices, the mean intensities
of a given tissue is similar. However, without knowing the

bias field patterna-priori, this normalization is a very difficult
problem.

With respect to the computational load, the whole algorithm
is slightly slower than the original FM model-based MEM al-
gorithm due to the additional MRF-MAP classification and the
EM fitting procedure. However, by employing the fast deter-
ministic ICM method and certain optimizations to the program,
it runs reasonably quickly. Currently, it takes 10 seconds for a

2-D image and less than 10 minutes for a 3-D image
with 40 slices in an Intel PII 400 MHZ-based system.
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To conclude, we have presented a fully automatic approach
for segmenting brain MR images. The method is based on an
HMRF-EM framework, which is a combination of the HMRF
model and the associated MRF-MAP estimation and the EM
fitting procedures. The HMRF model is proposed in this paper
as a substitute for the widely used FM model, which is sensitive
to noise and, therefore, not robust. As a very general method,
the HMRF-EM framework could be applied to many different
image segmentation problems.

We also show that the framework can easily be extended
by incorporating other techniques in order to improve its
performance on certain problems. As an example, we demon-
strated how the bias field correction algorithm by Guillemaud
and Brady [6] can be incorporated into this framework. As
a result, a 3-D fully automatic approach for brain MR image
segmentation is achieved and significant improvements have
been observed in terms of both the bias field estimation and the
tissue classification.
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