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• Curse of Dimensionality 

• Dimensionality reduction with PCA



Curse of Dimensionality

• Problems of high dimensional data, “the curse 

of dimensionality”

• running time

• overfitting

• number of samples required

• Dimensionality Reduction Methods

• Principle Component Analysis 



Curse of Dimensionality: Complexity

• Complexity (running time) increases with dimension d

� A lot of methods have at least O(nd2) complexity, 

where n is the number of samples

� For example if we need to estimate covariance 

matrix

� So as d becomes large,  O(nd2) complexity may 

be too costly



Curse of Dimensionality: Number of Samples

• Suppose we want to use the nearest neighbor 

approach with k = 1 (1NN)

• This feature is not discriminative, i.e. it does not 

separate the classes well

� Suppose we start with only one feature

0 1

• We decide to use 2 features. For the 1NN method 

to work well, need a lot of samples, i.e. samples 

have to be dense

• To maintain the same density as in 1D (9 samples 

per unit length), how many samples do we need?



Curse of Dimensionality: Number of Samples

0

1

� We need 92 samples to maintain the same 

density as in 1D

1



0 1

� Of course, when we go from 1 feature to 2, no 

one gives us more samples, we still have 9

1

� This is way too sparse for 1NN to work well

Curse of Dimensionality: Number of Samples
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� Things go from bad to worse if we decide to use 3 

features:
1

� If 9 was dense enough in 1D, in 3D we need 

93=729 samples!

Curse of Dimensionality: Number of Samples



� In general, if n samples is dense enough in 1D

� Then in d dimensions we need nd samples!

� And nd grows really really fast as a function of d

� Common pitfall:

� If we can’t solve a problem with a few features, adding 

more features seems like a good idea

� However the number of samples usually stays the same

� The method with more features is likely to perform 
worse instead of expected better

Curse of Dimensionality: Number of Samples



� We should try to avoid creating lot of features

The Curse of Dimensionality

� Often no choice, problem starts with many features

� Example: Face Detection

� One sample point is k by m array of pixels
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� Feature extraction is not trivial

� Say pixel intensities are taken as a feature

� Typical dimension is 20 by 20 = 400

� Suppose 10 samples are dense enough for 1 

dimension.  Need only 10400 samples



The Curse of Dimensionality

� Face Detection, dimension of one sample point is km
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� The fact that we set up the problem with km

dimensions (features) does not mean it is really          

a km-dimensional problem

� Most likely we are not setting the problem up with 

the right features

� If we used better features, we are likely need much 

less than km-dimensions

� Space of all k by m images has km dimensions

� Space of all k by m faces must be much smaller, 

since faces form a tiny fraction of all possible images



Dimensionality Reduction

� High dimensionality is challenging and redundant

� It is natural to try to reduce dimensionality
� Reduce dimensionality by feature combination: 

combine old features x to create new features y
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� For example, 

� Ideally, the new vector y should retain from x all 

information important for classification



Dimensionality Reduction

� The best f(x) is most likely a non-linear function

� Linear functions are easier to find though
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� Thus it can be represented by a matrix W:

� For now, assume that f(x) is a linear mapping



• Main idea: seek most accurate data representation in a 

lower dimensional space

Principle Component Analysis (PCA)

� Example in 2-D

� Project data to 1-D subspace (a line) which minimize the 

projection error

large projection errors,
bad line to project to

small projection errors,
good line to project to
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� Notice that the the good line to use for projection lies 

in the direction of largest variance 



PCA

y

� After the data is projected on the best line, need to 

transform the coordinate system to get 1D 

representation for vector y

� Note that  new data y has the same variance as old 

data x in the direction of the green line

� PCA preserves largest variances in the data



PCA: Approximation of Elliptical Cloud in 3D

best 2D approximation best 1D approximation



PCA

� What is the direction of largest variance in data?

� Recall that if x has multivariate distribution N(µµµµ,ΣΣΣΣ), 
direction of largest variance is given by eigenvector 

corresponding to the largest eigenvalue of ΣΣΣΣ

� This is a hint that we should be looking at the 

covariance matrix of the data (note that PCA can be 

applied to distributions other than Gaussian)



PCA: Linear Algebra Review 

� Let V be a d dimensional  linear space, and W be a k

dimensional linear subspace of V

� We can always find a set of d dimensional vectors     

{e1,e2,…,ek} which forms an orthonormal basis for W

� <ei,ej> = 0 if i is not equal to j and <ei,ei> = 1

� Thus any vector in W can be written as 
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Let V = R2 and W be the line        
x-2y=0.  Then the orthonormal
basis for W is
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PCA: Linear Algebra 

� Recall that subspace W contains the zero vector, i.e. 

it goes through the origin
this line is not a 

subspace of R2

� It is convenient to project to subspace W: thus we 

need to shift everything

this line is a 

subspace of R2



PCA  Derivation: Shift by the Mean Vector

� Before PCA, subtract sample mean from the data
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� Another way to look at it:
� first step of getting y is to subtract the mean of x
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� The new data has zero mean:  E(X-E(X)) = E(X)-E(X) = 0
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� All we did is change the coordinate system



PCA: Derivation

� We want to find the most accurate representation of 

data D={x1,x2,…,xn}  in some subspace W  which has 

dimension k < d

� Let {e1,e2,…,ek}  be the orthonormal basis for W. Any 

vector in W can be written as ∑∑∑∑
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� Thus x1 will be represented by some vector in W
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error at one point

PCA: Derivation

� Any xj can be written as ∑∑∑∑
====
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� To find the total error, we need to sum over all xj’s

� Thus the total error for representation of all data D is:
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PCA: Derivation

� A lot of math…….to finally get: 

� To minimize J take for the basis of  W the k

eigenvectors of S corresponding to the  k largest 

eigenvalues

� Let S be the scatter matrix, it is just n-1 times the 

sample covariance matrix 
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PCA

� This result is exactly what we expected: project x into 

subspace of dimension k which has the largest 

variance

� This is very intuitive: restrict attention to directions 

where the scatter is the greatest

� The larger the eigenvalue of S, the larger is the 

variance in the direction of corresponding eigenvector
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PCA

� Thus PCA can be thought of as finding new 

orthogonal basis by rotating the old axis until the 

directions of maximum variance are found



PCA as Data Approximation

� Let  {e1,e2,…,ed }  be all d eigenvectors of the scatter 

matrix S, sorted in order of decreasing corresponding 

eigenvalue

� Without any approximation, for any sample xi:
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error of approximation

approximation of xi

� coefficients ααααm =xt
iem are called principle components

� The larger k, the better is the approximation

� Components are arranged in order of importance, more 
important components come first

� Thus PCA takes the first k most important 

components of xi as an approximation to xi



PCA: Last Step

� Now we know how to project the data

y

� Last step is to change the coordinates to get final       

k-dimensional vector  y

� Let matrix [[[[ ]]]]keeE L1====

� Then the coordinate transformation is xEy t====

� Under Et, the eigenvectors 

become the standard basis:
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Recipe for Dimension Reduction with PCA

Data D={x1,x2,…,xn}. Each xi is a d-dimensional 

vector.  Wish to use PCA to reduce dimension to k

1. Find the sample mean ∑∑∑∑
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2. Subtract sample mean from the data µµµµ̂−−−−==== ii xz

3. Compute the scatter matrix ∑∑∑∑
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4. Compute eigenvectors e1,e2,…,ek corresponding to 

the k largest eigenvalues of S

5. Let e1,e2,…,ek be the columns of matrix [[[[ ]]]]keeE L1====

6. The desired y which is the closest approximation 

to x is zEy t====



Drawbacks of PCA

• PCA was designed for accurate data representation, 
not for data classification

• Preserves as much variance in data as possible

• If directions of maximum variance is important for 
classification, will work

� However  the directions of maximum variance may 

be  useless for classification

apply PCA

to each class


