
CS9840

Machine Learning in Computer Vision

Olga Veksler

Lecture 5

Curse of Dimensionality

PCA

Outline

• Curse of Dimensionality

• Dimensionality reduction with PCA

Curse of Dimensionality

• Problems of high dimensional data, “the curse

of dimensionality”

• running time

• overfitting

• number of samples required

• Dimensionality Reduction Methods

• Principle Component Analysis

Curse of Dimensionality: Complexity

• Complexity (running time) increases with dimension d

� A lot of methods have at least O(nd2) complexity,

where n is the number of samples

� For example if we need to estimate covariance

matrix

� So as d becomes large, O(nd2) complexity may

be too costly

Curse of Dimensionality: Number of Samples

• Suppose we want to use the nearest neighbor

approach with k = 1 (1NN)

• This feature is not discriminative, i.e. it does not

separate the classes well

� Suppose we start with only one feature

0 1

• We decide to use 2 features. For the 1NN method

to work well, need a lot of samples, i.e. samples

have to be dense

• To maintain the same density as in 1D (9 samples

per unit length), how many samples do we need?

Curse of Dimensionality: Number of Samples

0

1

� We need 92 samples to maintain the same

density as in 1D

1

0 1

� Of course, when we go from 1 feature to 2, no

one gives us more samples, we still have 9

1

� This is way too sparse for 1NN to work well

Curse of Dimensionality: Number of Samples

0 1

� Things go from bad to worse if we decide to use 3

features:
1

� If 9 was dense enough in 1D, in 3D we need

93=729 samples!

Curse of Dimensionality: Number of Samples

� In general, if n samples is dense enough in 1D

� Then in d dimensions we need nd samples!

� And nd grows really really fast as a function of d

� Common pitfall:

� If we can’t solve a problem with a few features, adding

more features seems like a good idea

� However the number of samples usually stays the same

� The method with more features is likely to perform
worse instead of expected better

Curse of Dimensionality: Number of Samples

� We should try to avoid creating lot of features

The Curse of Dimensionality

� Often no choice, problem starts with many features

� Example: Face Detection

� One sample point is k by m array of pixels

















====

� Feature extraction is not trivial

� Say pixel intensities are taken as a feature

� Typical dimension is 20 by 20 = 400

� Suppose 10 samples are dense enough for 1

dimension. Need only 10400 samples

The Curse of Dimensionality

� Face Detection, dimension of one sample point is km

















====

� The fact that we set up the problem with km

dimensions (features) does not mean it is really

a km-dimensional problem

� Most likely we are not setting the problem up with

the right features

� If we used better features, we are likely need much

less than km-dimensions

� Space of all k by m images has km dimensions

� Space of all k by m faces must be much smaller,

since faces form a tiny fraction of all possible images

Dimensionality Reduction

� High dimensionality is challenging and redundant

� It is natural to try to reduce dimensionality
� Reduce dimensionality by feature combination:

combine old features x to create new features y

y
xx
xx

x
x
x
x

x
43

21

4

3

2

1

====





++++
++++

→→→→
















====

dkwithy
y

y

x

x
x

f

x

x
x

x
k

dd

<<<<====













====

































→→→→

















==== M
MM

1

2

1

2

1

� For example,

� Ideally, the new vector y should retain from x all

information important for classification

Dimensionality Reduction

� The best f(x) is most likely a non-linear function

� Linear functions are easier to find though

dkwith
y

y

x

x
x

ww

ww

x

x
x

W

x

x
x

k
d

kdk

d

dd

<<<<













====






























====

















⇒⇒⇒⇒

















M
M

L

MM

L

MM

1

2

1

1

111

2

1

2

1

� Thus it can be represented by a matrix W:

� For now, assume that f(x) is a linear mapping

• Main idea: seek most accurate data representation in a

lower dimensional space

Principle Component Analysis (PCA)

� Example in 2-D

� Project data to 1-D subspace (a line) which minimize the

projection error

large projection errors,
bad line to project to

small projection errors,
good line to project to

dimension 1d
im

e
n

s
io

n
 2

dimension 1d
im

e
n

s
io

n
 2

� Notice that the the good line to use for projection lies

in the direction of largest variance

PCA

y

� After the data is projected on the best line, need to

transform the coordinate system to get 1D

representation for vector y

� Note that new data y has the same variance as old

data x in the direction of the green line

� PCA preserves largest variances in the data

PCA: Approximation of Elliptical Cloud in 3D

best 2D approximation best 1D approximation

PCA

� What is the direction of largest variance in data?

� Recall that if x has multivariate distribution N(µµµµ,ΣΣΣΣ),
direction of largest variance is given by eigenvector

corresponding to the largest eigenvalue of ΣΣΣΣ

� This is a hint that we should be looking at the

covariance matrix of the data (note that PCA can be

applied to distributions other than Gaussian)

PCA: Linear Algebra Review

� Let V be a d dimensional linear space, and W be a k

dimensional linear subspace of V

� We can always find a set of d dimensional vectors

{e1,e2,…,ek} which forms an orthonormal basis for W

� <ei,ej> = 0 if i is not equal to j and <ei,ei> = 1

� Thus any vector in W can be written as

k

k

i

iikk scalarsforeeee αααααααααααααααααααααααα ,...,... 1

1

2211 ∑∑∑∑
====

====++++++++++++

Let V = R2 and W be the line
x-2y=0. Then the orthonormal
basis for W is


















5/1

5/2

2

1

W

PCA: Linear Algebra

� Recall that subspace W contains the zero vector, i.e.

it goes through the origin
this line is not a

subspace of R2

� It is convenient to project to subspace W: thus we

need to shift everything

this line is a

subspace of R2

PCA Derivation: Shift by the Mean Vector

� Before PCA, subtract sample mean from the data

µµµµ̂
1

1

−−−−====−−−− ∑∑∑∑
====

xx
n

x
n

i

i

� Another way to look at it:
� first step of getting y is to subtract the mean of x

(((()))) (((())))µµµµ̂−−−−========→→→→ xgxfyx

� The new data has zero mean: E(X-E(X)) = E(X)-E(X) = 0

1x ′′′′

2x ′′′′

1x ′′′′′′′′

2x ′′′′′′′′

µµµµ̂
µµµµ̂

� All we did is change the coordinate system

PCA: Derivation

� We want to find the most accurate representation of

data D={x1,x2,…,xn} in some subspace W which has

dimension k < d

� Let {e1,e2,…,ek} be the orthonormal basis for W. Any

vector in W can be written as ∑∑∑∑
====

k

i

iie
1

αααα

� Thus x1 will be represented by some vector in W

∑∑∑∑
====

k

i

iie
1

1αααα

� Error this representation:
2

1

11 ∑∑∑∑
====

−−−−====
k

i

iiexerror αααα
W

x1

erro
r

∑∑∑∑ iie1αααα

error at one point

PCA: Derivation

� Any xj can be written as ∑∑∑∑
====

k

i

ijie
1

αααα

� To find the total error, we need to sum over all xj’s

� Thus the total error for representation of all data D is:

(((()))) ∑∑∑∑ ∑∑∑∑
==== ====

−−−−====
n

j

k

i

ijijnkk exeeJ
1

2

1

111 ,...,,..., αααααααααααα

sum over all data points

unknowns

PCA: Derivation

� A lot of math…….to finally get:

� To minimize J take for the basis of W the k

eigenvectors of S corresponding to the k largest

eigenvalues

� Let S be the scatter matrix, it is just n-1 times the

sample covariance matrix

(((())))(((())))∑∑∑∑
====

−−−−−−−−
−−−−

====∑∑∑∑
n

j

t
jj xx

n 1

ˆˆ
1

1ˆ µµµµµµµµ

PCA

� This result is exactly what we expected: project x into

subspace of dimension k which has the largest

variance

� This is very intuitive: restrict attention to directions

where the scatter is the greatest

� The larger the eigenvalue of S, the larger is the

variance in the direction of corresponding eigenvector

301 ====λλλλ

8.02 ====λλλλ

PCA

� Thus PCA can be thought of as finding new

orthogonal basis by rotating the old axis until the

directions of maximum variance are found

PCA as Data Approximation

� Let {e1,e2,…,ed } be all d eigenvectors of the scatter

matrix S, sorted in order of decreasing corresponding

eigenvalue

� Without any approximation, for any sample xi:

dd1k1kkk11

d

1j
jji e...eeeex αααααααααααααααααααα ++++++++++++++++======== ++++++++

====

∑∑∑∑ K

error of approximation

approximation of xi

� coefficients ααααm =xt
iem are called principle components

� The larger k, the better is the approximation

� Components are arranged in order of importance, more
important components come first

� Thus PCA takes the first k most important

components of xi as an approximation to xi

PCA: Last Step

� Now we know how to project the data

y

� Last step is to change the coordinates to get final

k-dimensional vector y

� Let matrix [[[[]]]]keeE L1====

� Then the coordinate transformation is xEy t====

� Under Et, the eigenvectors

become the standard basis:


















====



















====

0

1

01

M

M

M

M

i

k

ii

t e

e

e

e

eE

Recipe for Dimension Reduction with PCA

Data D={x1,x2,…,xn}. Each xi is a d-dimensional

vector. Wish to use PCA to reduce dimension to k

1. Find the sample mean ∑∑∑∑
====

====
n

i

ix
n 1

1
µ̂µµµ

2. Subtract sample mean from the data µµµµ̂−−−−==== ii xz

3. Compute the scatter matrix ∑∑∑∑
====

====
n

i

t
iizzS

1

4. Compute eigenvectors e1,e2,…,ek corresponding to

the k largest eigenvalues of S

5. Let e1,e2,…,ek be the columns of matrix [[[[]]]]keeE L1====

6. The desired y which is the closest approximation

to x is zEy t====

Drawbacks of PCA

• PCA was designed for accurate data representation,
not for data classification

• Preserves as much variance in data as possible

• If directions of maximum variance is important for
classification, will work

� However the directions of maximum variance may

be useless for classification

apply PCA

to each class

