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Outline 

• Performance evaluation and model selection 
methods 
• validation 
• cross-validation 

• k-fold 
• Leave-one-out 

 
 



Regression 
• In this lecture, it is 

convenient to show examples 
in the context of regression 

• In regression, labels yi are 
continuous 

• Classification/regression are 
solved very similarly 

• Everything we have done so 
far transfers to regression 
with very minor changes 

• Error: sum of distances from 
examples to the fitted model 
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Training/Test Data Split 
• Talked about splitting data in training/test sets 

• training data is used to fit parameters 
• test data is used to assess how classifier generalizes to 

new data 

• What if classifier has “non-tunable” parameters?  
• a parameter is “non-tunable” if tuning (or training) it 

on the training data leads to overfitting 
• Examples: 

• k in kNN classifier 
• T (number of training epoch) in adaBoost 
• Kernel width in SVM 
• etc 



Example of Overfitting 
• Want to fit a polynomial 

machine f(x,w) 
• Instead of fixing polynomial 

degree, make it  parameter d 
• learning machine  f(x,w,d) 

• Consider just three choices for d 
• degree 1 
• degree 2 
• degree 3 
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• Training error is a bad measure to choose d  
• degree 3 is the best according to the training error, but 

overfits the data 



Training/Test Data Split 

• What about test error? Seems appropriate 
• degree 2 is the best model according to the test error 

• Except what do we report as the test error now? 
• Test error should be computed on data that was not 

used for training at all 
• Here  used “test” data for training, i.e. choosing model 



Validation data 
• Same question when choosing among several classifiers 

• our polynomial degree example can be looked at as choosing 
among 3 classifiers (degree 1, 2, or 3) 

• Solution: split the labeled  data into three parts 

train tunable 
parameters w   

train other 
parameters, 
or to select 

classifier 

labeled data 
Training 
  ≈60% 

Validation  
≈20% 

  
 

Test  
≈20% 

  
 use only to 

assess final 
performance 



Training/Validation/Test Data 

• Validation Data 

validation error: 3.3   validation error: 1.8  validation error: 3.4  

 

• Test Data 
• 1.3 test error computed for d = 2 

 

• d = 2 is chosen 

 

• Training Data 

d = 1  d = 2  d = 3  



Training/Validation 
labeled data 

Training 
  ≈60% 

Validation  
≈20% 

  
 

Test  
≈20% 

  
 • After non-tunable parameters are chosen (using validation data), 

retrain on combined Training+Validation data before computing  
Test error 
 labeled data 

Training 
  ≈60% 

Validation  
≈20% 

  
 

Test  
≈20% 

  
 • The more data to train on, the better is the trained classifier (the 

more reliable test error) 
 



Choosing Parameters: Example 

• Need to choose power p for polynomial classifier 
• The higher degree, the better can fit training data 
• But at some point we overfit the data 

p 

error 

Training Error 

Validation Error 
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Diagnosing Underfitting/Overfitting 

• large training error 
• large validation error 

                  

Underfitting 
 

Just Right 
 • small training error 

• small validation error 

Overfitting 
 • small training error 

• large validation error 



Fixing Underfitting/Overfitting 
• Fixing Underfitting 

• getting more training examples will not help 
• get more features 
• try more complex classifier 

• if using MNN, try more hidden units 

• Fixing Overfitting 
• getting more training examples might help 
• try smaller set of features 
• Try less complex classifier 

• If using MNN, try less hidden units 



Train/Test/Validation Method 
• Good news 

• Very simple 

• Bad news: 
• Wastes data 

• in general, the more data we have, the better are the 
estimated parameters 

• we estimate parameters on  40% less data, since 20% 
removed for test and 20% for validation data 

• If we have a small dataset our test (validation) set 
might just be lucky or unlucky 

• Cross Validation is a method for performance 
evaluation that wastes less data 



Small Dataset 
Linear Model: 

 

 

 

 

 

Mean Squared Error = 2.4 

Quadratic Model: 

 

 

 

 

 

Mean Squared Error = 0.9 
x 

Join the dots Model: 

 

 

 

 

 

Mean Squared Error = 2.2 



LOOCV (Leave-one-out Cross Validation) 
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For k=1 to R 

1. Let (xk,yk) be the k example 
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LOOCV (Leave-one-out Cross Validation) 
For k=1 to n 

1. Let (xk,yk) be the kth example 

2. Temporarily remove (xk,yk) 
from the dataset 
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LOOCV (Leave-one-out Cross Validation) 
For k=1 to n 

1. Let (xk,yk) be the kth example 

2. Temporarily remove (xk,yk) 
from the dataset 

3. Train on the remaining n-1 
examples 
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LOOCV (Leave-one-out Cross Validation) 
For k=1 to n 

1. Let (xk,yk) be the kth example 

2. Temporarily remove (xk,yk) 
from the dataset 

3. Train on the remaining n-1 
examples 

4. Note your error on (xk,yk)  



For k=1 to n 

1. Let (xk,yk) be the kth example 

2. Temporarily remove (xk,yk) 
from the dataset 

3. Train on the remaining n-1 
examples 

4. Note your error on (xk,yk)  

When you’ve done all points, 
report the mean error 
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LOOCV (Leave-one-out Cross Validation) 
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MSELOOCV 
= 2.12 

LOOCV (Leave-one-out Cross Validation) 



LOOCV for Quadratic Regression 
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MSELOOCV
= 0.962 



LOOCV for Join The Dots 
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MSELOOCV
=3.33 



Which kind of Cross Validation? 

Downside Upside 

Test-set may give unreliable  
estimate of future 

performance 

cheap 

Leave-one-
out 

expensive  doesn’t waste 
data 

•    Can we get the best of both worlds? 
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Randomly break the dataset into k 
partitions in this example we’ll have k=3 
partitions colored Red Green and Blue) 

K-Fold Cross Validation 



• Randomly break the dataset into k 
partitions  

• in example have k=3 partitions 
colored red green and blue 

• For the blue partition: train on all 
points not in the blue partition. Find  test-
set sum of errors on blue points 

K-Fold Cross Validation 
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• Randomly break the dataset into k 
partitions  

• in example have k=3 partitions 
colored red green and blue 

• For the blue partition: train on all 
points not in the blue partition. Find  test-
set sum of errors on blue points 

• For the green partition: train on all 
points not in green partition. Find 
test-set sum of errors on green points 

K-Fold Cross Validation 
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• Randomly break the dataset into k 
partitions  

• in example have k=3 partitions 
colored red green and blue 

• For the blue partition: train on all 
points not in the blue partition. Find  test-
set sum of errors on blue points 

• For the green partition: train on all 
points not in green partition. Find 
test-set sum of errors on green points 

• For the red partition: train on all 
points not in red partition. Find the 
test-set sum of errors on red points 

K-Fold Cross Validation 
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Linear Regression 
MSE3FOLD=2.05 
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• Randomly break the dataset into k 
partitions  

• in example have k=3 partitions 
colored red green and blue 

• For the blue partition: train on all 
points not in the blue partition. Find  test-
set sum of errors on blue points 

• For the green partition: train on all 
points not in green partition. Find 
test-set sum of errors on green points 

• For the red partition: train on all 
points not in red partition. Find the 
test-set sum of errors on red points 

• Report the mean error 

K-Fold Cross Validation 



Quadratic Regression 
MSE3FOLD=1.11 

K-Fold Cross Validation 
• Randomly break the dataset into k 

partitions  
• in example have k=3 partitions 

colored red green and blue 
• For the blue partition: train on all 

points not in the blue partition. Find  test-
set sum of errors on blue points 

• For the green partition: train on all 
points not in green partition. Find 
test-set sum of errors on green points 

• For the red partition: train on all 
points not in red partition. Find the 
test-set sum of errors on red points 

• Report the mean error 
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Joint-the-dots 
MSE3FOLD= 2.93 

• Randomly break the dataset into k 
partitions  

• in example have k=3 partitions 
colored red green and blue 

• For the blue partition: train on all 
points not in the blue partition. Find  test-
set sum of errors on blue points 

• For the green partition: train on all 
points not in green partition. Find 
test-set sum of errors on green points 

• For the red partition: train on all 
points not in red partition. Find the 
test-set sum of errors on red points 

• Report the mean error 

K-Fold Cross Validation 



Which kind of Cross Validation? 
Downside Upside 

Test-set may give unreliable  
estimate of future 

performance 
cheap 

Leave-
one-out 

expensive  
 

doesn’t waste data 

10-fold wastes 10% of the data,10 
times more expensive than 

test set 

only wastes 10%, only 10 
times more expensive 

instead of n times 
3-fold wastes more data than 10-

fold, more expensive than 
test set 

slightly better than test-set 

N-fold Identical to Leave-one-out 



Cross-validation for classification 
• Instead of computing the sum squared errors 

on a test set, you should compute… 

from Andrew Moore (CMU) 



Cross-validation for classification 
• Instead of computing the sum squared errors 

on a test set, you should compute… 
The total number of misclassifications on a testset 

from Andrew Moore (CMU) 



Cross-validation for classification 
• Instead of computing the sum squared errors 

on a test set, you should compute… 
The total number of misclassifications on a testset 

• What’s LOOCV of 1-NN? 

• What’s LOOCV of 3-NN? 

• What’s LOOCV of 22-NN? 

 

from Andrew Moore (CMU) 



Cross-Validation for classification 

• Choosing k for k-nearest neighbors 
• Choosing Kernel parameters for SVM 
• Any other “free” parameter of a classifier 
• Choosing Features to use 

• 10 by 10 patches or 15 by 15 patches? 

• Choosing which classifier to use 



CV-based Model Selection 
• We’re trying to decide which algorithm to use. 
• We train each machine and make a table… 

fi Training Error 10-FOLD-CV Error Choice 
f1 
f2 
f3  
f4 

f5 

f6 



CV-based Model Selection 
• Example: Choosing “k” for a k-nearest-neighbor regression. 
• Step 1: Compute LOOCV error for six different model classes: 

• Step 2: Choose model that gave best CV score 
• Train it with all the data, and that’s the final model you’ll use 

Algorithm Training Error 10-fold-CV Error Choice 

k=1 

k=2 

k=3 

k=4  
k=5 

k=6 



CV-based Model Selection 
• Why stop at k=6? 

• No good reason, except it looked like things were 
getting worse as K was increasing 

• Are we guaranteed that a local optimum of K vs 
LOOCV will be the global optimum? 
• No, in fact the relationship can be very bumpy 

• What should we do if we are depressed at the 
expense of doing LOOCV for k = 1 through 
1000? 
• Try: k=1, 2, 4,  8, 16, 32, 64, … ,1024 
• Then do hillclimbing from an initial guess at k 
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