CS9840 Machine Learning in Computer Vision Olga Veksler

Lecture 6

Curse of Dimensionality

PCA

Outline

- Curse of Dimensionality
- Dimensionality reduction with PCA

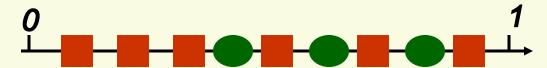
Curse of Dimensionality

- Problems of high dimensional data, "the curse of dimensionality"
 - running time
 - overfitting
 - number of samples required
- Dimensionality Reduction Methods
 - Principle Component Analysis

Curse of Dimensionality: Complexity

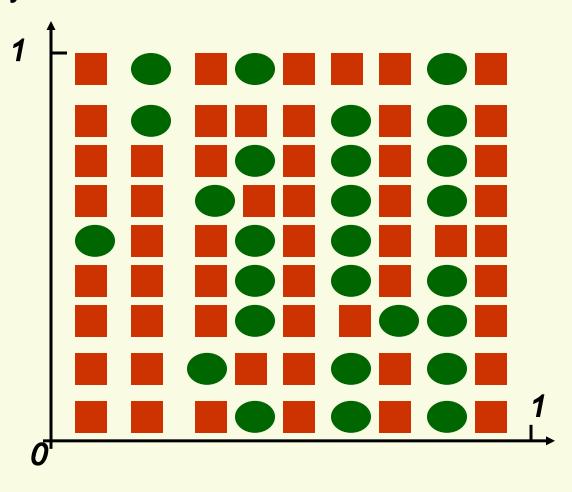
- Complexity (running time) increases with dimension d
- A lot of methods have at least O(nd²) complexity, where n is the number of samples
 - For example if we need to estimate covariance matrix
- So as d becomes large, O(nd²) complexity may be too costly

- Suppose we want to use the nearest neighbor approach with k = 1 (1NN)
- Suppose we start with only one feature

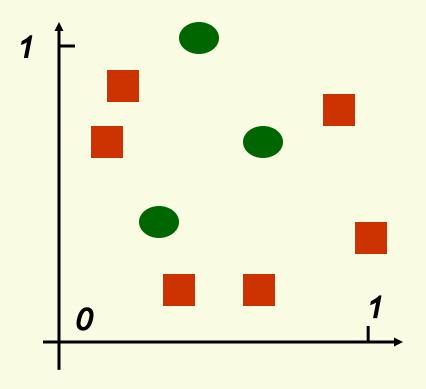


- This feature is not discriminative, i.e. it does not separate the classes well
- We decide to use 2 features. For the 1NN method to work well, need a lot of samples, i.e. samples have to be dense
- To maintain the same density as in 1D (9 samples per unit length), how many samples do we need?

 We need 9² samples to maintain the same density as in 1D

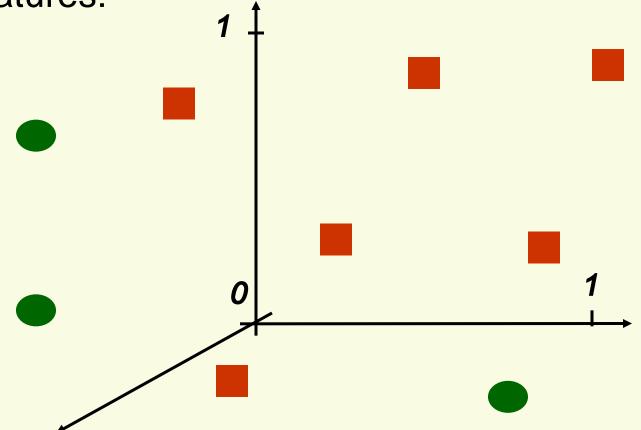


 Of course, when we go from 1 feature to 2, no one gives us more samples, we still have 9



This is way too sparse for 1NN to work well

Things go from bad to worse if we decide to use 3 features:



If 9 was dense enough in 1D, in 3D we need 9³=729 samples!

- In general, if n samples is dense enough in 1D
- Then in d dimensions we need nd samples!
- And n^d grows really really fast as a function of d
- Common pitfall:
 - If we can't solve a problem with a few features, adding more features seems like a good idea
 - However the number of samples usually stays the same
 - The method with more features is likely to perform worse instead of expected better

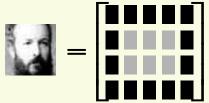
The Curse of Dimensionality

- We should try to avoid creating lot of features
- Often no choice, problem starts with many features
- Example: Face Detection
 - One sample point is k by m array of pixels

- Feature extraction is not trivial
- Say pixel intensities are taken as a feature
- Typical dimension is 20 by 20 = 400
- Suppose 10 samples are dense enough for 1 dimension. Need only 10⁴⁰⁰ samples

The Curse of Dimensionality

Face Detection, dimension of one sample point is km



- The fact that we set up the problem with km dimensions (features) does not mean it is really a km-dimensional problem
- Space of all k by m images has km dimensions
- Space of all k by m faces must be much smaller, since faces form a tiny fraction of all possible images
- Most likely we are not setting the problem up with the right features
- If we used better features, we are likely need much less than *km*-dimensions

Dimensionality Reduction

- High dimensionality is challenging and redundant
- It is natural to try to reduce dimensionality
- Reduce dimensionality by feature combination:
 combine old features x to create new features y

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_d \end{bmatrix} \rightarrow \mathbf{f} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_d \end{bmatrix} = \begin{bmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_k \end{bmatrix} = \mathbf{y} \quad \text{with } \mathbf{k} < \mathbf{d}$$

- For example, $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 + x_2 \\ x_3 + x_4 \end{bmatrix} = y$
- Ideally, the new vector y should retain from x all information important for classification

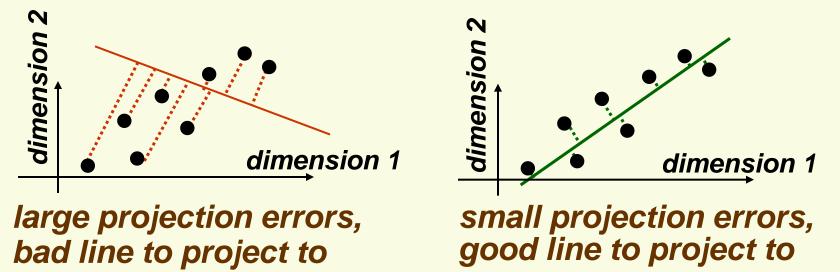
Dimensionality Reduction

- The best f(x) is most likely a non-linear function
- Linear functions are easier to find though
- For now, assume that f(x) is a linear mapping
- Thus it can be represented by a matrix W:

$$\begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \vdots \\ \mathbf{X}_d \end{bmatrix} \Rightarrow \mathbf{W} \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \vdots \\ \mathbf{X}_d \end{bmatrix} = \begin{bmatrix} \mathbf{W}_{11} & \cdots & \mathbf{W}_{1d} \\ \vdots & & \vdots \\ \mathbf{W}_{k1} & \cdots & \mathbf{W}_{kd} \end{bmatrix} \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \vdots \\ \mathbf{X}_d \end{bmatrix} = \begin{bmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_k \end{bmatrix} \quad \text{with } \mathbf{k} < \mathbf{d}$$

Principle Component Analysis (PCA)

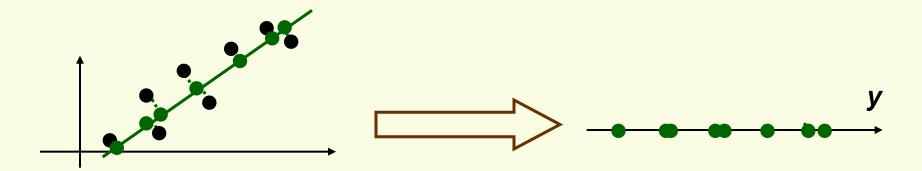
- Main idea: seek most accurate data representation in a lower dimensional space
- Example in 2-D
 - Project data to 1-D subspace (a line) which minimize the projection error



 Notice that the the good line to use for projection lies in the direction of largest variance

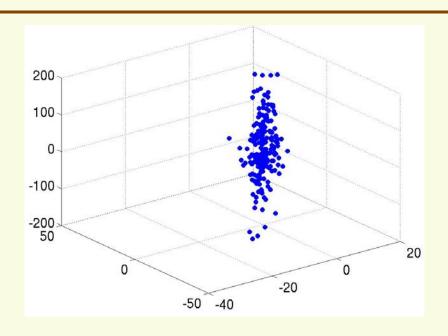
PCA

 After the data is projected on the best line, need to transform the coordinate system to get 1D representation for vector y

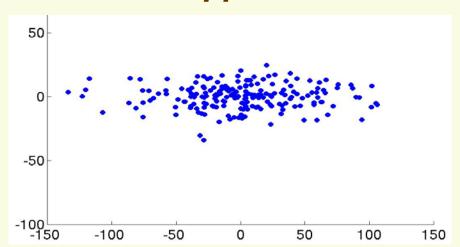


- Note that new data y has the same variance as old data x in the direction of the green line
- PCA preserves largest variances in the data

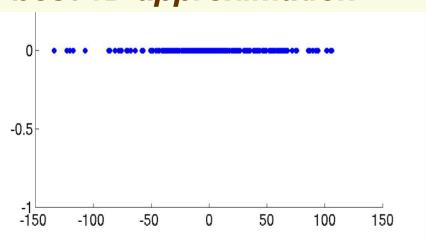
PCA: Approximation of Elliptical Cloud in 3D



best 2D approximation

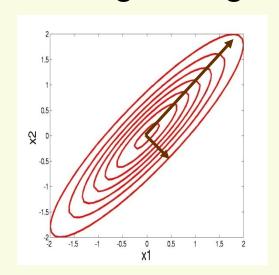


best 1D approximation



PCA

- What is the direction of largest variance in data?
- Recall that if x has multivariate distribution $N(\mu, \Sigma)$, direction of largest variance is given by eigenvector corresponding to the largest eigenvalue of Σ

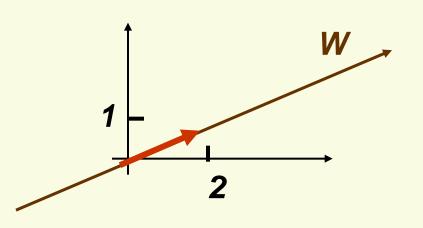


 This is a hint that we should be looking at the covariance matrix of the data (note that PCA can be applied to distributions other than Gaussian)

PCA: Linear Algebra Review

- Let V be a d dimensional linear space, and W be a k
 dimensional linear subspace of V
- We can always find a set of d dimensional vectors $\{e_1, e_2, ..., e_k\}$ which forms an orthonormal basis for W
 - $\langle \mathbf{e}_i, \mathbf{e}_j \rangle = 0$ if i is not equal to j and $\langle \mathbf{e}_i, \mathbf{e}_j \rangle = 1$
- Thus any vector in W can be written as

$$\alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 + \dots + \alpha_k \mathbf{e}_k = \sum_{i=1}^k \alpha_i \mathbf{e}_i$$
 for scalars $\alpha_1, \dots, \alpha_k$



Let $V = \mathbb{R}^2$ and W be the line x-2y=0. Then the orthonormal basis for W is

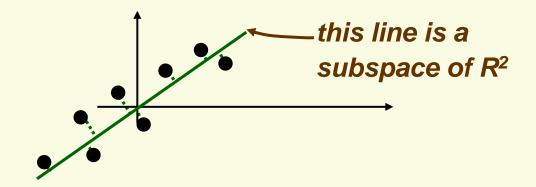
$$\left[\begin{bmatrix} 2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix}\right]$$

PCA: Linear Algebra

Recall that subspace W contains the zero vector, i.e. it goes through the origin

this line is not a subspace of R²

It is convenient to project to subspace W: thus we need to shift everything

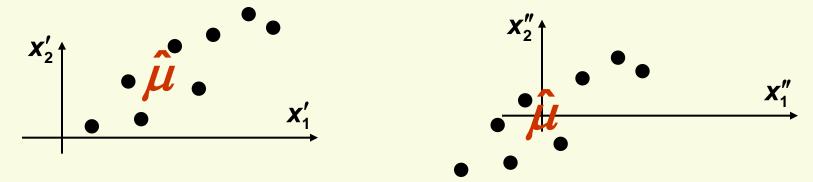


PCA Derivation: Shift by the Mean Vector

Before PCA, subtract sample mean from the data

$$x - \frac{1}{n} \sum_{i=1}^{n} x_i = x - \hat{\mu}$$

- The new data has zero mean: E(X-E(X)) = E(X)-E(X) = 0
- All we did is change the coordinate system



- Another way to look at it:
 - first step of getting y is to subtract the mean of x

$$x \rightarrow y = f(x) = g(x - \hat{\mu})$$

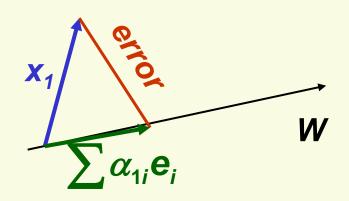
PCA: Derivation

- We want to find the most accurate representation of data $D=\{x_1,x_2,...,x_n\}$ in some subspace W which has dimension k < d
- Let $\{e_1, e_2, ..., e_k\}$ be the orthonormal basis for W. Any vector in W can be written as $\sum_{i=1}^k \alpha_i e_i$
- Thus x_1 will be represented by some vector in W

$$\sum_{i=1}^{\kappa} \alpha_{1i} \mathbf{e}_{i}$$

Error this representation:

$$error = \left\| \mathbf{x}_1 - \sum_{i=1}^k \alpha_{1i} \mathbf{e}_i \right\|^2$$



PCA: Derivation

- To find the total error, we need to sum over all x_i 's
- Any \mathbf{x}_{j} can be written as $\sum_{i=1}^{n} \alpha_{ji} \mathbf{e}_{i}$
- Thus the total error for representation of all data D is:
 sum over all data points

$$J(\mathbf{e}_{1},...,\mathbf{e}_{k},\alpha_{11},...\alpha_{nk}) = \sum_{j=1}^{n} \left\| \mathbf{x}_{j} - \sum_{i=1}^{k} \alpha_{ji} \mathbf{e}_{i} \right\|^{2}$$
unknowns
error at one point

PCA: Derivation

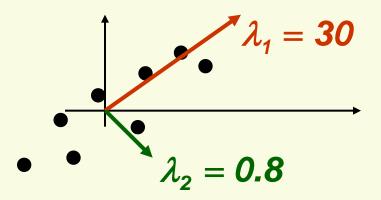
- A lot of math.....to finally get:
- Let S be the scatter matrix, it is just n-1 times the sample covariance matrix

$$\hat{\Sigma} = \frac{1}{n-1} \sum_{j=1}^{n} (\mathbf{x}_{j} - \hat{\mu}) (\mathbf{x}_{j} - \hat{\mu})^{t}$$

To minimize J take for the basis of W the k eigenvectors of S corresponding to the k largest eigenvalues

PCA

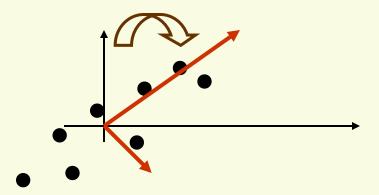
 The larger the eigenvalue of S, the larger is the variance in the direction of corresponding eigenvector



- This result is exactly what we expected: project x into subspace of dimension k which has the largest variance
- This is very intuitive: restrict attention to directions where the scatter is the greatest

PCA

 Thus PCA can be thought of as finding new orthogonal basis by rotating the old axis until the directions of maximum variance are found



PCA as Data Approximation

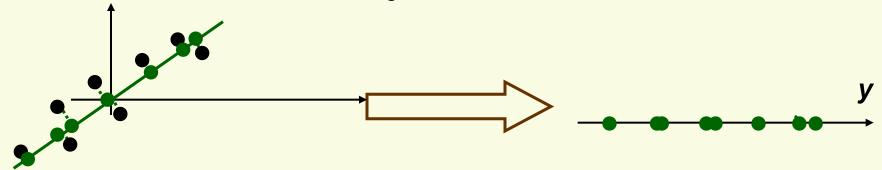
- Let {e₁,e₂,...,e_d} be all d eigenvectors of the scatter matrix S, sorted in order of decreasing corresponding eigenvalue
- Without any approximation, for any sample x_i:
 error of approximation

$$x_{i} = \sum_{j=1}^{d} \alpha_{j} \mathbf{e}_{j} = \underbrace{\alpha_{1} \mathbf{e}_{1} + \ldots + \alpha_{k} \mathbf{e}_{k}}_{approximation of x_{i}} + \underbrace{\alpha_{k+1} \mathbf{e}_{k+1} \ldots + \alpha_{d} \mathbf{e}_{d}}_{approximation of x_{i}}$$

- coefficients $\alpha_m = \mathbf{x}^t_i \mathbf{e}_m$ are called *principle components*
 - The larger k, the better is the approximation
 - Components are arranged in order of importance, more important components come first
- Thus PCA takes the first k most important components of x_i as an approximation to x_i

PCA: Last Step

- Now we know how to project the data
- Last step is to change the coordinates to get final
 k-dimensional vector y



- Let matrix $\boldsymbol{E} = [\boldsymbol{e}_1 \cdots \boldsymbol{e}_k]$
- Then the coordinate transformation is $y = E^t x$
- Under *E^t*, the eigenvectors become the standard basis:

$$\boldsymbol{E}^{t}\mathbf{e}_{i} = \begin{vmatrix} \mathbf{e}_{1} \\ \vdots \\ \mathbf{e}_{i} \\ \vdots \\ \mathbf{e}_{k} \end{vmatrix} \mathbf{e}_{i} = \begin{bmatrix} \mathbf{0} \\ \vdots \\ \mathbf{1} \\ \vdots \\ \mathbf{0} \end{bmatrix}$$

Recipe for Dimension Reduction with PCA

Data $D=\{x_1,x_2,...,x_n\}$. Each x_i is a d-dimensional vector. Wish to use PCA to reduce dimension to k

- 1. Find the sample mean $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- 2. Subtract sample mean from the data $z_i = x_i \hat{\mu}$
- 3. Compute the scatter matrix $S = \sum_{i=1}^{n} z_i z_i^t$
- 4. Compute eigenvectors $e_1, e_2, ..., e_k$ corresponding to the k largest eigenvalues of S
- 5. Let $\mathbf{e_1}, \mathbf{e_2}, \dots, \mathbf{e_k}$ be the columns of matrix $\mathbf{E} = [\mathbf{e_1} \cdots \mathbf{e_k}]$
- 6. The desired y which is the closest approximation to x is $y = E^t z$

Drawbacks of PCA

- PCA was designed for accurate data representation, not for data classification
 - Preserves as much variance in data as possible
 - If directions of maximum variance is important for classification, will work
- However the directions of maximum variance may be useless for classification

