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Abstract

We present an unsupervised method for learning a hier-
archy of sparse feature detectors that are invariant to small
shifts and distortions. The resulting feature extractor con-
sists of multiple convolution filters, followed by a point-
wise sigmoid non-linearity, and a feature-pooling layer
that computes the max of each filter output within adja-
cent windows. A second level of larger and more invari-
ant features is obtained by training the same algorithm
on patches of features from the first level. Training a su-
pervised classifier on these features yields 0.64% error on
MNIST, and 54% average recognition rate on Caltech 101
with 30 training samples per category. While the result-
ing architecture is similar to convolutional networks, the
layer-wise unsupervised training procedure alleviates the
over-parameterization problems that plague purely super-
vised learning procedures, and yields good performance
with very few labeled training samples.

1. Introduction

The use of unsupervised learning methods for building
feature extractors has a long and successful history in pat-
tern recognition and computer vision. Classical methods
for dimensionality reduction or clustering, such as Princi-
pal Component Analysis and K-Means, have been used rou-
tinely in numerous vision applications [15, 16].

In the context of object recognition, a particularly in-
teresting and challenging question is whether unsupervised
learning can be used to learninvariant features. The abil-
ity to learn robust invariant representations from a limited
amount of labeled data is a crucial step towards building a
solution to the object recognition problem. In this paper,
we propose an unsupervised learning method for learning
hierarchies of feature extractors that are invariant to small
distortions. Each level in the hierarchy is composed of two
layers: (1) a bank of local filters that are convolved with the
input, and (2) a pooling/subsampling layer in which each
unit computes the maximum value within a small neigh-
borhood of each filter’s output map, followed by a point-

wise non-linearity (a sigmoid function). When multiple
such levels are stacked, the resulting architecture is essen-
tially identical to the Neocognitron [7], the Convolutional
Network [13, 10], and the HMAX, or so-called “Standard
Model” architecture [20, 17]. All of those models use al-
ternating layers of convolutional feature detectors (reminis-
cent of Hubel and Wiesel’ssimple cells), and local pooling
and subsampling of feature maps using a max or an averag-
ing operation (reminiscent of Hubel and Wiesel’scomplex
cells). A final layer trained in supervised mode performs
the classification. We will call this general architecture the
multi-stage Hubel-Wiesel architecture. In the Neocogni-
tron, the feature extractors are learned with a rather ad-hoc
unsupervised competitive learning method. In [20, 17], the
first layer is hard-wired with Gabor filters, and the second
layer is trained by feeding natural images to the first layer,
and simply storing its outputs as templates. In Convolu-
tional Networks [13, 10], all the filters are learned with a
supervised gradient-based algorithm. This global optimiza-
tion process can achieve high accuracy on large datasets
such as MNIST with a relatively small number of features
and filters. However, because of the large number of train-
able parameters, Convolutional Networks seem to require
a large number of examples per class for training. Train-
ing the lower layers with an unsupervised method may help
reduce the necessary number of training samples. Several
recent works have shown the advantages (in terms of speed
and accuracy) of pre-training each layer of a deep network
in unsupervised mode, before tuning the whole system with
a gradient-based algorithm [9, 3, 19]. The present work is
inspired by these methods, but incorporates invariance at its
core. Our main motivation is to arrive at a well-principled
method for unsupervised training of invariant feature hierar-
chies. Once high-level invariant features have been trained
with unlabeled data, a classifier can use these features to
classify images through supervised training on a small num-
ber of samples.

Currently, the main way to build invariant representa-
tions is to compute local or global histograms (or bags) of
sparse, hand-crafted features. These features generally have
invariant properties themselves. This includes SIFT [14]
features and their many derivatives, such as affine-invariant
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Figure 1. Left: generic architecture of encoder-decoder paradigm
for unsupervised feature learning. Right: architecture for shift-
invariant unsupervised feature learning. The feature vector Z indi-
cateswhatfeature is present in the input, while thetransformation
parametersU indicatewhereeach feature is present in the input.

patches [11]. However,learning the features may open the
door to more robust methods with a wider spectrum of ap-
plications. In most existing unsupervised feature learning
methods, invariance appears as an afterthought. For exam-
ple, in [20, 17, 19], the features are learned without regard
to invariance. The invariance comes from the feature pool-
ing (complex cell) layer, which is added after the training
phase is complete. Here, we propose to integrate the feature
pooling within the unsupervised learning architecture.

Many unsupervised feature learning methods are based
on the encoder-decoder architecture depicted in fig.1. The
input (an image patch) is fed to the encoder which produces
a feature vector (a.k.a a code). The decoder module then
reconstructs the input from the feature vector, and the re-
construction error is measured. The encoder and decoder
are parameterized functions that are trained to minimize the
average reconstruction error. In most algorithms, the code
vector must satisfy certain constraints. With PCA, the di-
mension of the code must be smaller than that of the input.
With K-means, the code is the index of the closest proto-
type. With Restricted Boltzmann Machines [9], the code
elements are stochastic binary variables. In the method pro-
posed here, the code will be forced to besparse, with only
a few components being non-zero at any one time.

The key idea to invariant feature learning is to represent
an input patch with two components: Theinvariant fea-
ture vector, which representswhat is in the image, andthe
transformation parameterswhich encodeswhereeach fea-
ture appears in the image. They may contain the precise
locations (or other instantiation parameters) of the features
that compose the input. The invariant feature vector and
the transformation parameters are both produced by the en-
coder. Together, they contain all the information necessary
for the decoder to reconstruct the input.

2. Architecture for Invariant Feature Learning

We now describe a specific architecture for learning
shift-invariant features. Sections3 and4 will discuss how

the model can be trained to produce features that are not
only invariant, but also sparse. An image patch can be mod-
eled as a collection of features placed at particular locations
within the patch. A patch can be reconstructed from the list
of features that are present in the patch together with their
respective locations. In the simplest case, the features are
templates (or basis functions) that are combined additively
to reconstruct a patch. If we assume that each feature can
appear at most once within a patch, then computing a shift-
invariant representation can come down to applying each
feature detector at all locations in the patch, and recording
the location where the response is the largest. Hence the
invariant feature vector records the presence or absence of
each feature in the patch, while the transformation parame-
ters record the location at which each feature output is the
largest. In general, the feature outputs need not be binary.

The overall architecture is shown in fig.2(d). Before de-
scribing the learning algorithm, we show how a trained sys-
tem operates using a toy example as an illustration. Each
input sample is a binary image containing two intersecting
bars of equal length, as shown in fig.2(a). Each bar is 7
pixels long, has 1 of 4 possible orientations, and is placed at
one of 25 random locations (5×5) at the center of a 17×17
image frame. The input image is passed through 4 convolu-
tional filters of size 7×7 pixels. The convolution of each
detector with the input produces an 11×11 feature map.
Themax-poolinglayer finds the largest value in each feature
map, recording the position of this value as thetransforma-
tion parameterfor that feature map. The invariant feature
vector collects these max values, recording the presence or
absence of each feature independently of its position. No
matter where the two bars appear in the input image, the re-
sult of themax-poolingoperation will be identical for two
images containing bars of identical orientations at different
locations. The reconstructed patch is computed by placing
each code value at the proper location in the decoder fea-
ture map, using the transformation parameters obtained in
the encoder, and setting all other values in the feature maps
to zero. The reconstruction is simply the sum of the decoder
basis functions (which are essentially identical to the corre-
sponding filters in the encoder) weighted by the feature map
values at all locations.

A solution to this toy experiment is one in which the in-
variant representation encodes the information about which
orientations are present, while the transformation parame-
ters encode where the two bars appear in the image. The
oriented bar detector filters shown in the figure are in fact
the ones discovered by the learning algorithm described in
the next section. In general, this architecture is not limited
to binary images, and can be used to compute shift invariant
features with any number of components.

3. Learning Algorithm

The encoder is given by two functionsZ =
EncZ(Y ; WC) and U = EncU (Y ; WC) whereY is the



Figure 2. Left Panel: (a) sample images from the “two bars” dataset. Each sample contains two intersecting segments at random
orientations and random positions. (b) Non-invariant features learned by an auto-encoder with 4 hidden units. (c) Shift-invariant decoder
filters learned by the proposed algorithm. The algorithm finds the most natural solution to the problem. Right Panel (d): architecture of the
shift-invariant unsupervised feature extractor applied to the two bars dataset. The encoder convolves the input imagewith a filter bank and
computes the max across each feature map to produce the invariant representation. The decoder produces a reconstruction by taking the
invariant feature vector (the “what”), and the transformation parameters (the “where”). Reconstructions is achievedby adding each decoder
basis function (identical to encoder filters) at the position indicated by the transformation parameters, and weightedby the corresponding
feature component.

input image,WC is the trainable parameter vector of the
encoder (the filters),Z is the invariant feature vector, and
U is the transformation parameter vector. Similarly, the de-
coder is a functionDec(Z, U ; WD) whereWD is the train-
able parameter vector of the decoder (the basis functions).
The reconstruction errorED, also called thedecoder en-
ergymeasures the Euclidean distance between the inputY
and its reconstructionED = ||Y −Dec(Z, U ; WD)||2. The
learning architectureis slightly different from the ones in
figs. 1 and2(d): the output of the encoder is not directly
fed to the decoder, but rather is fed to a cost module that
measures the code prediction error, also called theencoder
energy: EC = ||Z −Enc(Y, U ; WC)||2. Learning proceeds
in an EM-like fashion in whichZ plays the role of auxiliary
variable. For each input, we seek the valueZ∗ that mini-
mizesED + αEC whereα is a positive constant. In all the
experiments we present in this paperα is set to 1. In other
words, we search for a code that minimizes the reconstruc-
tion error, while being not too different from the encoder
output. We describe anon-line learning algorithm to learn
WC andWD consisting of four main steps:
1. propagate the inputY through the encoder to produce
the predicted codeZ0 = Enc(Y, U ; WC) and the transfor-
mation parametersU that are then copied into the decoder.
2. keepingU fixed, and usingZ0 as initial value for the
codeZ, minimize the energyED +αEc with respect to the
codeZ by gradient descent to produce the optimal codeZ∗.
3. update the weights in the decoder by one step of gradi-

ent descent so as to minimize the decoder energy:∆WD ∝
−∂||Y − Dec(Z∗, U ; WD)||2/∂WD.
4. update the weights in the encoder by one step of gra-
dient descent so as to minimize the encoder energy (using
the optimal codeZ∗ as target value):∆WC ∝ −∂||Z∗ −
Enc(Y, U ; WC)||2/∂WC .

The decoder is trained to produce good reconstructions
of input images from optimal codesZ∗ and, at the same
time, the encoder is trained to give good predictions of these
optimal codes. As training proceeds, fewer and fewer iter-
ations are required to get toZ∗. After training, a single
pass through the encoder gives a good approximation of the
optimal codeZ∗ and minimization in code space is not nec-
essary. Other basis function models [18] that do not have
an encoder module are forced to perform an expensive opti-
mization in order to do inference (to find the code) even af-
ter learning the parameters. Note that thisgeneral learning
algorithm is suitable for any encoder-decoder architecture,
and not specific to a particular kind of feature or architecture
choice. Any differentiable module can be used as encoder
or decoder. In particular, we can plug in the encoder and
decoder described in the previous section and learn filters
that produce shift invariant representations.

We tested the proposed architecture and learning algo-
rithm on the “two bars” toy example described in the pre-
vious section. In the experiments, both the encoder and the
decoder are linear functions of the parameters (linear filters
and linear basis functions), However, the algorithm is not



restricted to linear encoders and decoders. The input images
are 17×17 binary images containing two bars in different
orientations: horizontal, vertical and the two diagonals as
shown in fig.2(a). The encoder contains four 7×7 linear
filters, plus four 11×11 max-pooling units. The decoder
contains four 7×7 linear basis functions. The parameters
are randomly initialized. The learned basis functions are
shown in fig.2(c), and the encoder filters in fig.2(d). Af-
ter training on a few thousand images, the filters converge
as expected to the oriented bar detectors shown in the fig-
ure. The resulting 4-dimensional representation extracted
from the input image is translation invariant. These filters
and the corresponding representation differ strikingly from
what can be achieved by PCA or an auto-encoder neural
network. For comparison, an auto-encoder neural network
with 4 hidden units was trained on the same data. The filters
(weights of the hidden units) are shown in fig.2(b). There
is no appearance of oriented bar detectors, and the resulting
codes are not shift invariant.

4. Sparse, Invariant Features

There are well-known advantages to using sparse, over-
complete features in vision: robustness to noise, good tiling
of the joint space of frequency and location, and good class
separation for subsequent classification [5, 18, 19]. More
importantly, when the dimension of the code in an encoder-
decoder architecture is larger than the input, it is necessary
to limit the amount of information carried by the code, lest
the encoder-decoder may simply learn the identity function
in a trivial way and produce uninteresting features. One way
to limit the information content of an overcomplete code is
to make it sparse. Following [19], the code is made sparse
by inserting asparsifying logisticnon-linearity between the
encoder and the decoder. The learning algorithm is left un-
changed. The sparsifying logistic module transforms the
input code vector into a sparse code vector with positive
components between[0, 1]. It is a sigmoid function with
a large adaptive threshold which is automatically adjusted
so that each code unit is only turned on for a small propor-
tion of the training samples. Let us consider thek-th train-
ing sample and thei-th component of the code,zi(k) with
i ∈ [1..m] wherem is the number of components in the
code vector. Let̄zi(k) be its corresponding output after the
sparsifying logistic. Given two parametersη ∈ [0, 1] and
β > 0, the transformation performed by this non-linearity
is given by:

z̄i(k) =
eβzi(k)

ζi(k)
, with ζi(k) = eβzi(k) +

(1 − η)

η
ζi(k − 1) (1)

This can be seem as a kind of weighted “softmax” function
over past values of the code unit. By unrolling the recursive
expression of the denominator in eq. (1), we can express it
as a sum of past values ofeβzi(n) with exponentially de-
caying weights. This adaptive logistic can output a large

Figure 3. Fifty 20×20 filters learned in the decoder by the sparse
and shift invariant learning algorithm after training on the MNIST
dataset of 28×28 digits. A digit is reconstructed as linear com-
bination of a small subset of these features positioned at one of
81 possible locations (9× 9), as determined by the transformation
parameters produced by the encoder.

value, i.e. a value close to 1, only if the unit has under-
gone a long enough quiescent period. The parameterη con-
trols the sparseness of the code by determining the length
of the time window over which samples are summed up.β
controls the gain of the logistic function, with large values
yielding quasi-binary outputs. After training is complete,
the running averagesζi(k) are kept constant, and set to the
average of its last 1,000 values during training. With a fixed
ζi(k), the non-linearity turns into a logistic function with a
large threshold equal tolog(ζi(k − 1)(1 − η)/η).

A sparse and shift-invariant feature extractor using the
sparsifying logistic above is composed of:(1.) an encoder
which convolves the input image with a filter bank and se-
lects the largest value in each feature map,(2.) a decoder
which first transforms the code vector into a sparse and pos-
itive code vector by means of the sparsifying logistic, and
then computes a reconstruction from the sparse code using
an additive linear combination of its basis functions and the
information given by the transformation parameters.

Learning the filters in both encoder and decoder is
achieved by the iterative algorithm described in sec.3. In
fig. 3 we show an example of sparse and shift invariant fea-
tures. The model and the learning algorithm were applied to
the handwritten digits from the MNIST dataset [1], which
of consist of quasi-binary of size 28×28. We considered a
set of fifty 20 × 20 filters in both encoder and decoder that
are applied to the input at 81 locations (9 × 9 grid), over
which the max-pooling is performed. Hence image features
can move over those 81 positions while leaving the invari-
ant feature vector unchanged. The sparsifying logistic pa-
rameters settingsη = 0.015 andβ = 1.5 yielded sparse
feature vectors. Because they must be sparse, the learned
features (shown in fig.3) look like part detectors. Each digit
can be expressed as a linear combination of a small number
of these 50 parts, placed at one of 81 locations in the im-
age frame. Unlike with the non-invariant method described
in [19], no two filters are shifted versions of each other.



5. Learning Feature Hierarchies

Once trained, the filters produced by the above algorithm
can be applied to large images (of sizep × q). The max
pooling operation is then performed overM ×M neighbor-
hoods. Assuming that these pooling windows do not over-
lap, the output is a set of feature maps of sizep/M × q/M .
This output is invariant to shifts within theM × M max
pooling windows. We can extract local patches from these
locally-invariant multidimensional feature maps and feed
them to another instance of the same unsupervised learn-
ing algorithm. This second level in the feature hierarchy
will generate representations that are even more shift and
distortion invariant because a max-pooling overN×N win-
dows at the second level corresponds to an invariance over
an NM × NM window in the input space. The second-
level features will combine several first-level feature maps
into each output feature map according to a predefined con-
nectivity table. The invariant representations produced by
the second level will contain more complex features than
the first level.

Each level is trained in sequence, starting from the bot-
tom. This layer-by-layer training is similar to the one pro-
posed by Hinton et al. [9] for training deep belief nets. Their
motivation was to improve the performance of deep multi-
layer network trained in supervised mode by pre-training
each layer unsupervised.

Our experiments also suggest that training the bottom
layers unsupervised significantly improves the performance
of the multi-layer classifier when few labeled examples are
available. Unsupervised training can make use of large
amount of unlabeled data and help the system extract in-
formative features that can be more easily classified. Train-
ing the parameters of a deep network with supervised gradi-
ent descent starting from random initial values by does not
work well with small training datasets because the system
tends to overfit.

6. Experiments

We used the proposed algorithm to learn two-level hier-
archies of local features from two different datasets of im-
ages: the MNIST set of handwritten digits and the Caltech-
101 set of object categories [6]. In order to test the represen-
tational power of the second-level features, we used them as
input to two classifiers: a two-layer fully connected neural
network, and a Gaussian-kernel SVM. In both cases, the
feature extractor after training is composed of two stacked
modules, each with a convolutional layer followed by a
max-pooling layer. It would be possible to stack as many
such modules as needed in order to get higher-level rep-
resentations. Fig.4 shows the steps involved in the com-
putation of two output feature maps from an image taken
from the Caltech101 dataset. The filters shown were among
those learned, and the feature maps were computed by feed-
forward propagation of the image through the feature ex-
tractor.

Figure 4. Example of the computational steps involved in the
generation of two 5×5 shift-invariant feature maps from a pre-
processed image in the Caltech101 dataset. Filters and feature
maps are those actually produced by our algorithm.

The layer-by-layer unsupervised training is conducted as
follows. First, we learn the filters in the convolutional layer
with the sparsifying encoder-decoder model described in
sec.3 trained on patches randomly extracted from training
images. Once training is complete, the encoder and decoder
filters are frozen, and the sparsifying logistic is replacedby
a tanh sigmoid function with a trainable bias and a gain
coefficient. The bias and the gain are trained with a few
iterations of back-propagation through the encoder-decoder
system. The rationale for relaxing the sparsity constraint
is to produce representation with a richer information con-
tent. While the the sparsifying logistic drives the system
to produce good filters, the quasi-binary codes it produces
does not carry enough information for classification pur-
pose. This substitution is similar to the one advocated in [9]
in which the stochastic binary units used during the unsu-
pervised training phase are replaced by continuous sigmoid
units after the filters are learned. After this second unsu-
pervised training, the encoder filters are placed in the corre-
sponding feed-forward convolution/pooling layer pair, and
are followed by thetanh sigmoid with the trained bias and
gain (see fig.4). Training images are run through this level
to generate patches for the next level in the hierarchy. We
emphasize that in the second level feature extractor each
feature combines multiple feature maps from the previous
level.

6.1. MNIST

We constructed a deep network and trained it on subsets
of various sizes from the MNIST dataset, with three differ-
ent learning procedures. In all cases the feature extraction



Figure 5. Fifty 7×7 sparse shift-invariant features learned by the
unsupervised learning algorithm on the MNIST dataset. These fil-
ters are used in the first convolutional layer of the feature extractor.
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Figure 6. Classification error on the MNIST test set (%) when
training on various size subsets of the labeled training set. With
large labeled sets, the error rate is the same whether the bottom
layers are learned unsupervised or supervised. The networkwith
random filters at bottom levels performs surprisingly well (under
1% classification error with 40K and 60K training samples). With
smaller labeled sets, the error rate is lower when the bottomlayers
have been trained unsupervised, while pure supervised learning of
the whole network is plagued by over-parameterization; however,
despite the large size of the network the effect of over-fitting is
surprisingly limited.

is performed by the four bottom layers (two levels of con-
volution/pooling). The input is a 34×34 image obtained
by evenly padding the 28×28 original image with zeros.
The first layer is a convolutional layer with fifty 7×7 filters,
which produces 50 feature maps of size 28×28. The second
layer performs a max-pooling over 2×2 neighborhoods and
outputs 50 feature maps of size 14×14 (hence the unsuper-
vised training is performed on8×8 input patches with2×2
pooling). The third layer is a convolutional layer with 1,280
filters of size 5×5, that connect the subsets of the 50 layer-
two feature maps to the 128 layer-three maps of size 10×10.
Each layer-three feature map is connected to 10 layer-two
feature maps according to a fixed, randomized connectivity
table. The fourth layer performs a max-pooling over 2×2
neighborhoods and outputs 128 feature maps of size 5×5.
The layer-four representation has128 × 5 × 5 = 3, 200
components that are fed to a two-layer neural net with 200
hidden units, and 10 input units (one per class). There is a
total of about105 trainable parameters in this network.

Thefirst training procedure trains the four bottom lay-
ers of the network unsupervised over the whole MNIST
dataset, following the method presented in the previous sec-
tions. In particular the first level module was learned us-
ing 100,000 8×8 patches extracted from the whole train-
ing dataset (see fig.5), while the second level module was
trained on 100,000 50×6×6 patches produced by the first
level extractor. The second-level features are receptive
fields of size 18×18 when backprojected on the input. In
both cases, these are the smallest patches that can be re-
constructed from the convolutional and max-pooling lay-
ers. Nothing prevents us from using larger patches if so
desired. The top two layers are then trained supervised with
features extracted from the labeled training subset. Thesec-
ond training procedure initializes the whole network ran-
domly, and trains supervised the parameters in all layers us-
ing the labeled samples in the subset. Thethird training
procedure randomly initializes the parameters in both lev-
els of the feature extractor, and only trains (in supervised
mode) the top two layers on the samples in the current la-
beled subset, using the features generated by the feature ex-
tractorwith random filters.

For the supervised portion of the training, we used la-
beled subsets of various sizes, from 300 up to 60,000.
Learning was stopped after 50 iterations for datasets of size
bigger than 40,000, 100 iterations for datasets of size 10,000
to 40,000, and 150 iterations for datasets of size less than
5,000.

The results are presented in fig.6. For larger datasets
(> 10,000 samples) there is no difference between training
the bottom layer unsupervised or supervised. However for
smaller datasets, networks with bottom layers trained unsu-
pervised perform consistently better than networks trained
entirely supervised. Keeping the bottom layers random
yields surprisingly good results (less than 1% classification
error on large datasets), and outperforms supervised train-
ing of the whole network on very small datasets (< 1,000
samples). This counterintuitive result shows that it might
be better to freeze parameters at random initial values when
the paucity of labeled data makes the system widely over-
parameterized. Conversely, the good performance with ran-
dom features hints that the lower-layer weights in fully su-
pervised back-propagation do not need to change much to
provide good enough features for the top layers. This might
explain why overparameterization does not lead to a more
dramatic collapse of performance when the whole network
is trained supervised on just 30 samples per category. For
comparison, the best published testing error rate when train-
ing on 300 samples is 3% [2], and the best error rate when
training on the whole set is 0.60% [19].

6.2. Caltech 101

The Caltech 101 dataset has images of 101 different ob-
ject categories, plus a background category. It has various
numbers of samples per category (from 31 up to 800), with
a total of 9,144 samples of size roughly300 × 300 pixels.



Figure 7. Caltech 101 feature extraction. Top Panel: the 64 convo-
lutional filters of size9×9 learned by the first level of the invariant
feature extraction. Bottom Panel: a selection of 32 (out of 2048)
randomly chosen filters learned in the second level of invariant
feature extraction.

The common experiment protocol adopted in the literature
is to take 30 images from each category for training, use the
rest for testing, and measure the recognition rate for each
class, and report the average.

This dataset is particularly challenging for learning-
based systems, because the number of training sample per
category is exceedingly small. An end-to-end supervised
classifier such as a convolutional network would need a
much larger number of training samples per category, lest
over-fitting would occur. In the following experiment, we
demonstrate that extracting features with the proposed un-
supervised method leads to considerably higher accuracy
than pure supervised training.

Before extracting features, the input images are prepro-
cessed. They are converted to gray-scale, resized so that the
longer edge is 140 pixels while maintaining the aspect ratio,
high-pass filtered to remove the global lighting variations,
and evenly zero-padded to a 140×140 image frame.

The feature extractor has the following architecture. In
the first level feature extractor (layer 1 and 2) there are
64 filters of size 9×9 that output 64 feature maps of size
132×132. The next max-pooling layer takes non overlap-
ping 4×4 windows and outputs 64 feature maps of size
33×33. Unsupervised training was performed on 100,000
patches randomly sampled from the subset of the Caltech-
256 dataset [8] that does not overlap with the Caltech 101
dataset (the C-101 categories were removed). The first level
was trained on such patches of size 12×12. The second
level of feature extraction (layer 3 and 4) has a convolu-
tional layer which outputs 512 feature maps and has 2048
filters. Each feature map in layer 3 combines 4 of the 64
layer-2 feature maps. These 4 feature maps are picked at
random. Layer 4 is a max-pooling layer with 5×5 win-
dows. The output of layer 4 has 512 feature maps of size
5×5. This second level was trained unsupervised on 20,000
samples of size64 × 13 × 13 produced by the first level
feature extractor. Example of learned filters are shown in
fig. 7.

After the feature extractor is trained, it is used to extract
features on a randomly picked Caltech-101 training set with

30 samples per category (see fig.4). To test how a baseline
classifier fares on these 512×5×5 features, we applied ak-
nearest neighborclassifier which yielded about 20% overall
average recognition rate fork = 5.

Next, we trained an SVM with Gaussian kernels in the
one-versus-others fashion for multi-class classification. The
two parameters of the SVM’s, the Gaussian kernel width
γ−1 and the softnessC, are tuned with cross validation,
with 10 out of 30 samples per category used as the vali-
dation set. The parameters with the best validation perfor-
mance,γ = 5.6 ·10−7, C = 2.1 ·103, were used to train the
SVM’s. More than 90% of the training samples are retained
as support vectors of the trained SVM’s. This is an indica-
tion of the complexity of the classification task due to the
small number of training samples and the large number of
categories. We report the average result over 8 independent
runs, in each of which 30 images of each category were ran-
domly selected for training and the rest were used for test-
ing. The average recognition rate over all 102 categories is
54%(± 1%).

For comparison, we trained an essentially identical ar-
chitecture in supervised mode using back-propagation (ex-
cept the penultimate layer was a traditional dot-product and
sigmoid layer with 200 units instead of a layer of Gaus-
sian kernels). Supervised training from a random initial
condition over the whole net achieves 100% accuracy on
the training dataset (30 samples per category), but only
20% average recognition rate on the test set. This is only
marginally better than the simplest baseline systems [6, 4],
and considerably worse than the above result.

In our experiment, the categories that have the lowest
recognition rates are the background class and some of the
animal categories (wild cat, cougar, beaver, crocodile), con-
sistent with the results reported in [12] (their experiment did
not include the background class).

Our performance is similar to that of similar multi-stage
Hubel-Wiesel type architectures composed of alternated
layers of filters and max pooling layers. Serre et al. [20]
achieved an average accuracy of 42%, while Mutch and
Lowe [17] improved it to 56%. Our system is smaller than
those models, and does not include feature pooling over
scale. It would be reasonable to expect an improvement in
accuracy if pooling over scale were used. More importantly,
our model has several advantages. First, our model uses no
prior knowledge about the specific dataset. Because the fea-
tures are learned, it applies equally well to natural images
and to digit images (and possibly other types). This is quite
unlike the systems in [20, 17] which use fixed Gabor filters
at the first layer. Second, using trainable filters at the sec-
ond layer allows us to get away with only 512 feature maps.
This is to be compared to Serre et al’s 15,000 and Mutch et
al’s 1,500.

For reference, the best reported performance of 66.2%
on this dataset was reported by Zhang et al. [21], who
used a geometric blur local descriptor on interest points,
and matching distance for a combined nearest neighbor



and SVM. Lazebnik et al. [12] report 64.6% by matching
multi-resolution histogram pyramids on SIFT. While such
carefully engineered methods have an advantage with very
small training set sizes, we can expect this advantage to be
reduced or disappear as larger training sets become avail-
able. As evidence for this, the error rate reported by Zhang
et al. on MNIST with 10,000 training samples is over 1.6%,
twice our 0.84% on the same, and considerably more than
our 0.64% with the full training set.

Our method is very time efficient in recognition. The
feature extraction is a feed-forward computation with about
2 · 108 multiply-add operations for a140 × 140 image and
109 for 320 × 240. Classifying a feature vector with the
Caltech-101 SVM takes another4 · 107 operations. An op-
timized implementation of our system could be run on a
modern PC at several frames per second.

7. Discussion and Future Work

We have presented an unsupervised method for learning
sparse hierarchical features that are locally shift invariant. A
simple learning algorithm was proposed to learn the param-
eters, level by level. We applied this method to extract fea-
tures for a multi-stage Hubel-Wiesel type architecture. The
model was trained on two different recognition tasks. State-
of-art accuracy was achieved on handwritten digits from the
MNIST dataset, and near state-of-the-art accuracy was ob-
tained on Caltech 101. Our system is in its first genera-
tion, and we expect its accuracy on Caltech-101 to improve
significantly as we gain experience with the method. Im-
provements could be obtained through pooling over scale,
and through using position-dependent filters instead of con-
volutional filters. More importantly, as new datasets with
more training samples will become available, we expect our
learning-based methodology to improve in comparison to
other methods that rely less on learning.

The contribution of this work lies in the definition of a
principled method for learning the parameters of an invari-
ant feature extractor. It is widely applicable to situations
where purely supervised learning would over-fit for lack of
labeled training data. The ability toLearn the featuresal-
lows the system to adapt to the task, the lack of which limits
the applicability of hand-crafted systems.

The quest for invariance under a richer set of transfor-
mations than just translations provides ample avenues for
future work. Another promising avenue is to devise an ex-
tension of the unsupervised learning procedure that could
train multiple levels of feature extractors in an integrated
fashion rather than one at a time. A further extension would
seamlessly integrate unsupervised and supervised learning.
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