

Syllabus
 Assignments
4 assignments (10% each)
theoretical and/or programming in Matlab or C
 no extensive programming
 Will include extra questions for the graduate students
 Extra questions may be done by undergraduates for extra credit, not to exceed the maximum homework score
may discuss but work must be done individually
 due by the midnight on the due date in the course locker #87, in the basement of MC building, next to the grad club, which is room 19
 10% is subtracted from assignment for each day it is late, up to a the maximum of 5 days
4

Application: Loan applications							
objects (people)					classes		
	income	debt	married	age	approve	deny	
John Smith	200,000	0	yes	80			
Peter White	60,000	1,000	no	30	\checkmark		
Ann Clark	100,000	10,000	yes	40	\checkmark		
Susan Ho	0	20,000	no	25			
						15	

Content

Probability

- Axioms and properties
- Conditional probability and independence
- Law of Total probability and Bayes theorem

37

- Random Variables
 - Discrete
 - Continuous
- Pairs of Random Variables
- Random Vectors
- Gaussian Random Variable

$$P(\emptyset) = 0$$

$$P(A) \le 1$$

$$P(A^{c}) = 1 - P(A)$$

$$A \subset B \Rightarrow P(A) < P(B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$\{A \cap A_{j} = \emptyset, \forall i, j\} \Rightarrow P\left(\bigcup_{k=1}^{N} A_{k}\right) = \sum_{k=1}^{N} P(A_{k})$$
40

Covariance Correlation

- If X and Y are independent, cov(X,Y) = 0
- Can normalize covariance to get correlation $-1 \le cor(X,Y) = \frac{cov(X,Y)}{\sqrt{var(X)var(Y)}} \le 1$

61

<text><text><text><equation-block><text>

Summary

- Intro to Pattern Recognition
- Review of Probability and Statistics
- Next time will review linear algebra

67