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A Regression Problem

x

y

y = f(x) + noise

Can we learn f from this data?

Let’s consider three methods…
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Linear Regression

x

y

��������	
�
�
����
��
����� �����
+

Linear Regression
Univariate Linear regression with a constant term:

::

31

73

YX

:

1

3

:

3

7X= y=

x1=(3).. y1=7..
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Linear Regression
Univariate Linear regression with a constant term:

::

31

73

YX

:

1

3

:

3

7X= y=

x1=(3).. y1=7..

1

3

:

1

1

:

3

7
Z= y=

z1=(1,3)..

zk=(1,xk)

y1=7..
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Linear Regression
Univariate Linear regression with a constant term:

::

31

73

YX

:

1

3

:

3

7X= y=

x1=(3).. y1=7..

1

3

:

1

1

:

3

7
Z= y=

z1=(1,3)..

zk=(1,xk)

y1=7..

ββββ=(ZTZ)-1(ZTy)

yest = β0+ β1 x
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Quadratic Regression

x

y
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Quadratic Regression

::

31

73

YX

:

1

3

:

3

7X= y=

x1=(3,2).. y1=7..

1

9

1

3

:

1

1

:

3

7Z=
y=

z=(1 ,  x, x2
,)

ββββ=(ZTZ)-1(ZTy)

yest = β0+ β1 x+ β2 x2
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Join-the-dots

x

y

Also known as piecewise 
linear nonparametric 

regression if that makes 
you feel better
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Which is best?

x

y

x

y

Why not choose the method with the 
best fit to the data?
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What do we really want?

x

y

x

y

Why not choose the method with the 
best fit to the data?

“How well are you going to predict 
future data drawn from the same 

distribution?”
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The test set method

x

y

1. Randomly choose 
30% of the data to be in a 
test set

2. The remainder is a 
training set
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The test set method

x

y

1. Randomly choose 
30% of the data to be in a 
test set

2. The remainder is a 
training set

3. Perform your 
regression on the training 
set

(Linear regression example)

��������	
�
�
����
��
����� �����
�+

The test set method

x

y

1. Randomly choose 
30% of the data to be in a 
test set

2. The remainder is a 
training set

3. Perform your 
regression on the training 
set

4. Estimate your future 
performance with the test 
set

(Linear regression example)

Mean Squared Error = 2.4
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The test set method

x

y

1. Randomly choose 
30% of the data to be in a 
test set

2. The remainder is a 
training set

3. Perform your 
regression on the training 
set

4. Estimate your future 
performance with the test 
set

(Quadratic regression example)

Mean Squared Error = 0.9
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The test set method

x

y

1. Randomly choose 
30% of the data to be in a 
test set

2. The remainder is a 
training set

3. Perform your 
regression on the training 
set

4. Estimate your future 
performance with the test 
set

(Join the dots example)

Mean Squared Error = 2.2
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The test set method
Good news:

•Very very simple

•Can then simply choose the method with 
the best test-set score

Bad news:

•What’s the downside?
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The test set method
Good news:

•Very very simple

•Can then simply choose the method with 
the best test-set score

Bad news:

•Wastes data: we get an estimate of the 
best method to apply to 30% less data

•If we don’t have much data, our test-set 
might just be lucky or unlucky

We say the 
“test-set 
estimator of 
performance 
has high 
variance”
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LOOCV (Leave-one-out Cross Validation)

x

y

For k=1 to R

1. Let (xk,yk) be the kth record
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LOOCV (Leave-one-out Cross Validation)

x

y

For k=1 to R

1. Let (xk,yk) be the kth record

2. Temporarily remove (xk,yk)
from the dataset
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LOOCV (Leave-one-out Cross Validation)

x

y

For k=1 to R

1. Let (xk,yk) be the kth record

2. Temporarily remove (xk,yk)
from the dataset

3. Train on the remaining R-1 
datapoints
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LOOCV (Leave-one-out Cross Validation)
For k=1 to R

1. Let (xk,yk) be the kth record

2. Temporarily remove (xk,yk)
from the dataset

3. Train on the remaining R-1 
datapoints

4. Note your error (xk,yk)

x

y
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LOOCV (Leave-one-out Cross Validation)
For k=1 to R

1. Let (xk,yk) be the kth record

2. Temporarily remove (xk,yk)
from the dataset

3. Train on the remaining R-1 
datapoints

4. Note your error (xk,yk)

When you’ve done all points, 
report the mean error.

x

y
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LOOCV (Leave-one-out Cross Validation)
For k=1 to R

1. Let (xk,yk) be 
the kth

record

2. Temporarily 
remove 
(xk,yk) from 
the dataset

3. Train on the 
remaining 
R-1 
datapoints

4. Note your 
error (xk,yk)

When you’ve 
done all points, 
report the mean 
error.

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

MSELOOCV 
= 2.12
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LOOCV for Quadratic Regression
For k=1 to R

1. Let (xk,yk) be 
the kth

record

2. Temporarily 
remove 
(xk,yk) from 
the dataset

3. Train on the 
remaining 
R-1 
datapoints

4. Note your 
error (xk,yk)

When you’ve 
done all points, 
report the mean 
error.

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

MSELOOCV
=0.962
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LOOCV for Join The Dots
For k=1 to R

1. Let (xk,yk) be 
the kth

record

2. Temporarily 
remove 
(xk,yk) from 
the dataset

3. Train on the 
remaining 
R-1 
datapoints

4. Note your 
error (xk,yk)

When you’ve 
done all points, 
report the mean 
error.

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

MSELOOCV
=3.33
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Which kind of Cross Validation?

Doesn’t 
waste data

Expensive. 
Has some weird 
behavior

Leave-
one-out

CheapVariance: unreliable 
estimate of future 
performance

Test-set

UpsideDownside

..can we get the best of both worlds?
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k-fold Cross 
Validation

x

y

Randomly break the dataset into k 
partitions (in our example we’ll have k=3 
partitions colored Red Green and Blue)
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k-fold Cross 
Validation

x

y

Randomly break the dataset into k 
partitions (in our example we’ll have k=3 
partitions colored Red Green and Blue)

For the red partition: Train on all the 
points not in the red partition. Find 
the test-set sum of errors on the red 
points.
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k-fold Cross 
Validation

x

y

Randomly break the dataset into k 
partitions (in our example we’ll have k=3 
partitions colored Red Green and Blue)

For the red partition: Train on all the 
points not in the red partition. Find 
the test-set sum of errors on the red 
points.

For the green partition: Train on all the 
points not in the green partition. 
Find the test-set sum of errors on 
the green points.



16

��������	
�
�
����
��
����� �����
*�

k-fold Cross 
Validation

x

y

Randomly break the dataset into k 
partitions (in our example we’ll have k=3 
partitions colored Red Green and Blue)

For the red partition: Train on all the 
points not in the red partition. Find 
the test-set sum of errors on the red 
points.

For the green partition: Train on all the 
points not in the green partition. 
Find the test-set sum of errors on 
the green points.

For the blue partition: Train on all the 
points not in the blue partition. Find 
the test-set sum of errors on the 
blue points.
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k-fold Cross 
Validation

x

y

Randomly break the dataset into k 
partitions (in our example we’ll have k=3 
partitions colored Red Green and Blue)

For the red partition: Train on all the 
points not in the red partition. Find 
the test-set sum of errors on the red 
points.

For the green partition: Train on all the 
points not in the green partition. 
Find the test-set sum of errors on 
the green points.

For the blue partition: Train on all the 
points not in the blue partition. Find 
the test-set sum of errors on the 
blue points.

Then report the mean error

Linear Regression 
MSE3FOLD=2.05
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k-fold Cross 
Validation

x

y

Randomly break the dataset into k 
partitions (in our example we’ll have k=3 
partitions colored Red Green and Blue)

For the red partition: Train on all the 
points not in the red partition. Find 
the test-set sum of errors on the red 
points.

For the green partition: Train on all the 
points not in the green partition. 
Find the test-set sum of errors on 
the green points.

For the blue partition: Train on all the 
points not in the blue partition. Find 
the test-set sum of errors on the 
blue points.

Then report the mean error

Quadratic Regression 
MSE3FOLD=1.11
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k-fold Cross 
Validation

x

y

Randomly break the dataset into k 
partitions (in our example we’ll have k=3 
partitions colored Red Green and Blue)

For the red partition: Train on all the 
points not in the red partition. Find 
the test-set sum of errors on the red 
points.

For the green partition: Train on all the 
points not in the green partition. 
Find the test-set sum of errors on 
the green points.

For the blue partition: Train on all the 
points not in the blue partition. Find 
the test-set sum of errors on the 
blue points.

Then report the mean error

Joint-the-dots 
MSE3FOLD=2.93
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Which kind of Cross Validation?

Doesn’t waste dataExpensive. 
Has some weird behavior

Leave-
one-out

Only wastes 10%. Only 
10 times more expensive 
instead of R times.

Wastes 10% of the data. 
10 times more expensive 
than test set

10-fold

Slightly better than test-
set

Wastier than 10-fold. 
Expensivier than test set

3-fold

Identical to Leave-one-outN-fold

CheapVariance: unreliable 
estimate of future 
performance

Test-set

UpsideDownside
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CV-based Model Selection
• We’re trying to decide which algorithm to use.
• We train each machine and make a table…

f44

f55

f66

�f33

f22

f11

Choice10-FOLD-CV-ERRTRAINERRfii
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CV-based Model Selection
• Example: Choosing number of hidden units in a one-

hidden-layer neural net.
• Step 1: Compute 10-fold CV error for six different model 

classes:

3 hidden units

4 hidden units

5 hidden units

�2 hidden units

1 hidden units

0 hidden units

Choice10-FOLD-CV-ERRTRAINERRAlgorithm

• Step 2: Whichever model class gave best CV score: train it 
with all the data, and that’s the predictive model you’ll use.
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CV-based Model Selection
• Example: Choosing “k” for a k-nearest-neighbor regression.
• Step 1: Compute LOOCV error for six different model 

classes:

• Step 2: Whichever model class gave best CV score: train it 
with all the data, and that’s the predictive model you’ll use.

�K=4

K=5

K=6

K=3

K=2

K=1

Choice10-fold-CV-ERRTRAINERRAlgorithm
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�K=4

K=5

K=6

K=3

K=2

K=1

ChoiceLOOCV-ERRTRAINERRAlgorithm

CV-based Model Selection
• Example: Choosing “k” for a k-nearest-neighbor regression.
• Step 1: Compute LOOCV error for six different model 

classes:

• Step 2: Whichever model class gave best CV score: train it 
with all the data, and that’s the predictive model you’ll use.

Why did we use 10-fold-CV for 
neural nets and LOOCV for k-
nearest neighbor?

And why stop at K=6

Are we guaranteed that a local 
optimum of K vs LOOCV will be 
the global optimum?

What should we do if we are 
depressed at the expense of 
doing LOOCV for K= 1 through 
1000?

The reason is Computational. For k-
NN (and all other nonparametric 
methods) LOOCV happens to be as 
cheap as regular predictions.

No good reason, except it looked 
like things were getting worse as K 
was increasing

Sadly, no. And in fact, the 
relationship can be very bumpy.

Idea One: K=1, K=2, K=4, K=8, 
K=16, K=32, K=64 … K=1024

Idea Two: Hillclimbing from an initial 
guess at K
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CV-based Model Selection
• Can you think of other decisions we can ask Cross 

Validation to make for us, based on other machine learning 
algorithms in the class so far?
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CV-based Model Selection
• Can you think of other decisions we can ask Cross 

Validation to make for us, based on other machine learning 
algorithms in the class so far?
• Degree of polynomial in polynomial regression
• Whether to use full, diagonal or spherical Gaussians in a Gaussian 

Bayes Classifier.
• The Kernel Width in Kernel Regression
• The Kernel Width in Locally Weighted Regression
• The Bayesian Prior in Bayesian Regression

These involve 
choosing the value of a 
real-valued parameter. 
What should we do?
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CV-based Model Selection
• Can you think of other decisions we can ask Cross 

Validation to make for us, based on other machine learning 
algorithms in the class so far?
• Degree of polynomial in polynomial regression
• Whether to use full, diagonal or spherical Gaussians in a Gaussian 

Bayes Classifier.
• The Kernel Width in Kernel Regression
• The Kernel Width in Locally Weighted Regression
• The Bayesian Prior in Bayesian Regression

These involve 
choosing the value of a 
real-valued parameter. 
What should we do?

Idea One: Consider a discrete set of values 
(often best to consider a set of values with 
exponentially increasing gaps, as in the K-NN 
example).

Idea Two: Compute                       and then

do gradianet descent.
Parameter 
LOOCV 

∂
∂
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CV-based Model Selection
• Can you think of other decisions we can ask Cross 

Validation to make for us, based on other machine learning 
algorithms in the class so far?
• Degree of polynomial in polynomial regression
• Whether to use full, diagonal or spherical Gaussians in a Gaussian 

Bayes Classifier.
• The Kernel Width in Kernel Regression
• The Kernel Width in Locally Weighted Regression
• The Bayesian Prior in Bayesian Regression

These involve 
choosing the value of a 
real-valued parameter. 
What should we do?

Idea One: Consider a discrete set of values 
(often best to consider a set of values with 
exponentially increasing gaps, as in the K-NN 
example).

Idea Two: Compute                       and then

do gradianet descent.
Parameter 
LOOCV 

∂
∂
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�Quad reg’n

LWR, KW=0.1

LWR, KW=0.5

Linear Reg’n

10-NN

1-NN

Choice10-fold-CV-ERRTRAINERRAlgorithm

CV-based Algorithm Choice
• Example: Choosing which regression algorithm to use
• Step 1: Compute 10-fold-CV error for six different model 

classes:

• Step 2: Whichever algorithm gave best CV score: train it 
with all the data, and that’s the predictive model you’ll use.
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Cross-validation for classification
• Instead of computing the sum squared 

errors on a test set, you should compute…
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Cross-validation for classification
• Instead of computing the sum squared 

errors on a test set, you should compute…
The total number of misclassifications on 

a testset.
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Cross-validation for classification
• Instead of computing the sum squared 

errors on a test set, you should compute…
The total number of misclassifications on 

a testset.
• What’s LOOCV of 1-NN?

• What’s LOOCV of 3-NN?

• What’s LOOCV of 22-NN?
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Cross-Validation for classification

• Choosing k for k-nearest neighbors
• Choosing h for the Parzen windows
• Any other “free” parameter of a classifier
• Choosing which classifier to use
• Choosing Features to use
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Feature Selection
• Suppose you have a learning algorithm LA 

and a set of input attributes { X1 , X2 .. Xm }
• You expect that LA will only find some 

subset of the attributes useful.
• Question: How can we use cross-validation 

to find a useful subset?
• Four ideas:

• Forward selection
• Backward elimination
• Hill Climbing
• Stochastic search (Simulated Annealing or GAs)

Another fun area in which 
Andrew has spent a lot of his 

wild youth


