CS434a/541a: Pattern Recognition
Prof. Olga Veksler

Lecture 11
Support Vector Machines

Today

=  Support Vector Machines (SVM)
= |ntroduction
= Linear Discriminant

= Linearly Separable Case
= Linearly Non Separable Case

= Kernel Trick
= Non Linear Discriminant




SVM

= Said to start in 1979 with Vladimir
Vapnik’s paper

= Major developments throughout
1990’s

= Elegant theory
= Has good generalization properties

= Have been applied to diverse
problems very successfully in the last
10-15 years

= One of the most important
developments in pattern recognition
in the last 10 years

Linear Discriminant Functions

= A discriminant function is linear if it can be written as
g(x) = wix + w,

g(x)>0 = xeclass1
g(x)<0 = xeclass 2

»
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= which separating hyperplane should we choose?




Linear Discriminant Functions

= Training data is just a subset of of all possible data
= Suppose hyperplane is close to sample x;

= |f we see new sample close to sample i, it is likely
to be on the wrong side of the hyperplane
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= Poor generalization (performance on unseen data)

Linear Discriminant Functions

= Hyperplane as far as possible from any sample
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= New samples close to the old samples will be
classified correctly

= Good generalization




SVM

= |dea: maximize distance to the closest example
x(2) | x(2)
A A

x(1)

smaller distance larger distance
= For the optimal hyperplane

= distance to the closest negative example = distance to
the closest positive example

SVM: Linearly Separable Case

= SVM: maximize the margin
x2 A& -

= margqin is twice the absolute value of distance b of
the closest example to the separating hyperplane
= Better generalization (performance on test data)
= in practice
= and in theory




SVM: Linearly Separable Case
x2 4

Support vectors are the samples closest to the
separating hyperplane
= they are the most difficalt patterns to classify

= Optimal hyperplane is completely defined by support vectors
= of course, we do not know which samples are support vectors without

finding the optimal hyperplane

SVM: Formula for the Margin

x(2)
g(x) = wix + w, \T
absolute distance between x
and the boundary g(x) = 0 a
W' X+ w,| 0
[l O o ’
—

distance is unchanged for hyperplane
9+(x)=0g (x)

aw'x + aw,|

lawl — — [w]

Let x; be an example closest to the boundary. Set
|w'x,. +w0|=1

Now the largest margin hyperplane is unique




SVM: Formula for the Margin

= For uniqueness, set |w'x, +w,|=1 for any example
X; closest to the boundary
= now distance from closest sample x;to g(x) = 0 is

= Thus the margin is
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SVM: Optimal Hyperplane

- : 2
= Maximize margin m=-—
[wi

= subject to constraints
w'x;+w, 21 if x; is positive example
w'x; +w, <-1 if x; is negative example

= Let J&= 1 if x; is positive example
z,=—1 if x; is negative example

= Can convert our problem to

minimize J(w)=%||w||2

constrained to  z,(w'x,+w,)>1 vi

= J(w) is a quadratic function, thus there is a single
global minimum




SVM: Optimal Hyperplane

= Use Kuhn-Tucker theorem to convert our problem to:

maximize Ly zn:a,——ZZaa 2,2, X! X,

i
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constrainedto & 20 Vi and zaz =

" a={a,,..., &} are new variables, one for each sample

= Can rewrite Lp(@) using n by n matrix H:

t
n o, [«
- 2la,| |a,

= where the value in the ith row and jth column of His

H; _z,zjx,x,

SVM: Optimal Hyperplane

Use Kuhn-Tucker theorem to convert our problem to:

maximize Ly(a)= ia,. —%iia.a.z.z.x?x.
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constrained to 20 Vi an

a={a,,..., a,} are new variables, one for each sample

L,(a) can be optimized by quadratic programming

Ly(a) formulated in terms of &
= it depends on w and wjindirectly




SVM: Optimal Hyperplane

= After finding the optimal @ = {«q;,..., @}
= For every sample i, one of the following must hold
= a;=0 (sample i is not a support vector)
= ;=0 and z(wix+w,- 1) = 0 (sample i is support vector)
= can find wusing w=zn:a,.z,.x,.
= can solve for w, using'any @ > 0 and a|z,(w'x, +w,)-1]=0

t
Wy =—-w'x,

= Final discriminant function:

a(x)= ( Zaizixthx-'- W

X;eS

= where Sis the set of support vectors
S={x, | a, #0}

SVM: Optimal Hyperplane

maximize LD(a)=Za,.—% > o0;2,2,xx,
i=1 i=1 j=1
constrained to @20 Vi and Y o,z,=0
i=1

* Ly(a) depends on the number of samples, not on
dimension of samples

= samples appear only through the dot products x;x;

= This will become important when looking for a
nonlinear discriminant function, as we will see soon




SVM: Example using Matlab

= Class 1: [1,6],[1,10],[4,11] «~ ® "

= Class 2: [5,2],[7,6], [10,4] il

= Let's pile all data into array X j u ° .
1 6
170 2 % 2 4 & & 10

= Pile z/'s into vector z-=

e e e e

Matrix Hwith H, = z,z,x!x,, in matlab use H=(x*x").*(z*2)

37 61 70 -17 -43 -34

61 101 114 -25 -67 -50

70 114 137 -42 -94 -84
29 4

-34 -50 -84 58 94 116

SVM: Example using Matlab

= Matlab expects quadratic programming to be stated
in the canonical (standard) form which is

minimize Ly(@)=0.5a'Ha+f'a
constrainedto Aa<aand Ba=b

= where A,B,H are matrices and f, a, b are vectors

= Need to convert our optimization problem to
canonical form

n 1 a, ! a,
maximize Lp(@)=>a——| i |H| :
i=1 2 a, a,

n
constrainedto ;20 Vi and ) @z,=0
i=1




SVM: Example using Matlab

= Multiply by —1 to convert to minimization:
minimize LD(a)=—Za,-+%a'Ha

i=1

-1
= Let f=[ 21]=—ones(6,1), then can write

minimize LD(a)=f’a+%a'Ha
= First constraint is ;20 Vi

-1 Q] _[0]_
= Let A=|:0: _1;]_ eye(6), a_[o]_zeros(eﬂ)

= Rewrite the first constraint in canonical form:
Aa<a

SVM: Example using Matlab

= Qur second constraintis >.a;z,=0
i=1

- Let B=[Z, zZ, z; z, Z; 26]=Z'
and b=0

=  Second constraint in canonical form is:
Ba=b
= Thus our problem is in canonical form and can be
solved by matlab:

minimize Ly(@)=0.5a'Ha+ f'a
constrainedto Aa<aand Ba=b




SVM: Example using Matlab

= @ =quadprog(H+eye(6)*0.00¥, f A, a, B, b)

for stability
10 M
0.038 i
= Solution a=|%033 suppot ——8 /-
0.078 ) °

n find Wusing w=i§a,.z,.x,. =(a.*z)fx=[_8:gg]

= since a; >0, can find w, using

w, =z1—w’x1 =0.13
1

SVM: Non Separable Case

= Data is most likely to be not linearly separable, but
linear classifier may still be appropriate

AX?

.4/| outliers

> x(1)

= Can apply SVM in non linearly separable case

= data should be “almost” linearly separable for good
performance
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SVM: Non Separable Case

= Use nonnegative “slack” variables &,...., &, (one for
each sample)

= Change constraints from z(w'x,+w,)>1 Vi to
z(wix, +w,)21-& Vi

= £ is a measure of NCE

deviation from the ideal ’

for sample i .

= &>1 sample i is on the wrong
side of the separating
hyperplane

= 0< & <1 sample i is on the
right side of separating

hyperplane but within the
region of maximum margin

*

SVM: Non Separable Case
= Would like to minimize

1 # of samples
JWw,&,,....E,)= EHWH 2 B not in ideal location

= where l(.f,->0)={(1) :; ?Zg

= constrainedto z(w'x, +w,)=1-¢& and &3>0 Vi

= Bis a constant which measures relative weight of the
first and second terms
= if Bis small, we allow a lot of samples not in ideal position

= if B is large, we want to have very few samples not in ideal
positon

12



SVM: Non Separable Case

1 # of examples
JWw,é,,...E)= E”W" %+ B not in ideal location

RGN
|
m
|
>x(1)
large B, few samples not in small B, a lot of samples
ideal position not in ideal position

SVM: Non Separable Case

= Unfortunately this minimization problem is NP-hard
due to discontinuity of functions (&)

1 # of examples
Jw,é,,....E )= E||w|| 2 B not in ideal location

1 if&>0
0 if £<0

= constrainedto z(w'x, +w,)21-¢ and & >0 Vi

= where (¢ > 0)={
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SVM: Non Separable Case
= Instead we minimize

a measure of
JW,&p5enns ) = 1HWH %+ B # of misclassified
2 examples

z,.(w’x,. + w,,)z 1-¢& Vi
&20 Vi

= constrained to {

= Can use Kuhn-Tucker theorem to converted to

maximize Ly(a)= ia,. —%iia}a.z.z.x?x.
i=1 i

i“icjtitj

constrained to 0<g,<B Vi and Y a,z,=0

n
= find wusing w=>Y azXx,
i=1

= solve for w,using any 0 <g;< 8 and |z, (w'x, +w,)-1]=0

Non Linear Mapping

= Cover’s theorem:

= “pattern-classification problem cast in a high dimensional
space non-linearly is more likely to be linearly separable
than in a low-dimensional space’

= One dimensional space, not linearly separable
—faa—oo00 00—
-3 -2 012 3 5
= Lift to two dimensional space with ¢(x)=(x,x?)
A n
= o

O (o)

_—]o
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Non Linear Mapping

= To solve a non linear classification problem with a
linear classifier
1. Project data x to high dimension using function ¢(x)
2. Find a linear discriminant function for transformed data ¢(x)
3. Final nonlinear discriminant function is g(x) = w! ¢(x) +w,

¢(X)=(X5X2 ) o

=|n 2D, discriminant function is linear

() ()
of [ 3]) =l wa] K]+

=In 1D, discriminant function is not linear  g(x)=w,x+w,x* +w,

Non Linear Mapping: Another Example

15



Non Linear SVM

= Can use any linear classifier after lifting data into a
higher dimensional space. However we will have to
deal with the “curse of dimensionality”

1. poor generalization to test data
2. computationally expensive

= SVM avoids the “curse of dimensionality” problems by

1. enforcing largest margin permits good generalization
= |t can be shown that generalization in SVM is a function of the
margin, independent of the dimensionality
2. computation in the higher dimensional case is performed
only implicitly through the use of kernel functions

Non Linear SVM: Kernels

Recall SVM optimization
maximize LD(a)=Zn“ai_%

n
i=1 i=1 j=1

n
> @ez,z XX,

= Note this optimization depends on samples x; only
through the dot product x/x;

= [f we lift x; to high dimension using ¢(x), need to

compute high dimensional product ¢(x;)'¢(x))

maximize L,(a)= z":a,- —%z"“zn:a,.a,.z,.zl 9
i=1

i=1 j=1

= Idea: find kernel function K{(x;X;) s.t.

K(x; X)) = ¢(x)'o(x))

16



Non Linear SVM: Kernels

maximize LD(a)=Zn:a,—%Zn:Z":a,a,.z,.zI

i=1 i=1 j=1

Then we only need to compute K(x; x;) instead of

(X)) 'o(x;)
= “kernel trick”: do not need to perform operations in high
dimensional space explicitly

Non Linear SVM: Kernels

Suppose we have 2 features and K(x,y) = (xty)?

Which mapping ¢(x) does it correspond to?

2
KO- ey =[x 2 ]J= ey oy

— (M 1)y, Y y(2),,(2) (2),,(2)
(X y )2+2(X y )(X y )+(X y )2 .
— (1 (1) y(2) (2) (1) (1),,(2) (2)
(X)Z\/2XX(X)2(y)2\/2yy(y)2

Thus ¢)(X)=[(x(1))2 J2xWx@ (x(z))Z]

17



Non Linear SVM: Kernels

How to choose kernel function K(x;,x;)?

= Kix;x;) should correspond to product ¢(x,)'@(x;) ina
higher dimensional space

= Mercer’s condition tells us which kernel function can be
expressed as dot product of two vectors

Some common choices:
= Polynomial kernel
K(x,.,xj)=(x,?x,.+1)"

= Gaussian radial Basis kernel (data is lifted in infinite
dimension)
2
X, — X,

K(x,,x,.)=exp(—;_

Non Linear SVM

search for separating hyperplane in high dimension
wo(x)+w, =0

Choose ¢(x) so that the first (“0”th) dimension is the
augmented dimension with feature value fixed to 1

o(x)=[1 x x@ xx@f

Threshold parameter w, gets folded into the weight

vector w
w, w]|*|i=0

18



Non Linear SVM

Will not use notation a =[w, w], we'll use old
notation w and seek hyperplane through the origin

wo(x)=0

If the first component of ¢(x) is not 7, the above is
equivalent to saying that the hyperplane has to go
through the origin in high dimension
= removes only one degree of freedom

= But we have introduced many new degrees when we lifted
the data in high dimension

Non Linear SVM Recepie

Start with data x;,...,x,, which lives in feature space
of dimension d

Choose kernel K{(x;X;) or function ¢(x;) which takes
sample x; to a higher dimensional space

Find the largest margin linear discriminant function in
the higher dimensional space by using quadratic
programming package to solve:

maximize Ly(@)=Ye, %iiaa.z.z.K(x,.,xj)
i=1 j

constrainedto 0<e,<p Vi and ) az,=0

19



Non Linear SVM Recipe

Weight vector win the high dimensional space:

w= Zz,¢

Xx;eS

= where S'is the set of support vectors S={x, |, %0}

Linear discriminant function of largest margin in the
high dimensional space:

b [z sl J )

x;eS

Non linear discriminant function in the original space

[ZS Z,¢(XJ x)-zs z,0'(x,)p(x) = ZazK X;,X)

decide class 1 if g (x) > 0, otherwise decide class 2

Non Linear SVM

Nonlinear discriminant function

g(x)= Z a)|z,|K(x;, x)

X,-es

. —4] |“inverse distance”
x) = weight of support | |F1 from xto
g( ) Z vector X; support vector x;

most important
training samples,

i.e. support vectors K(x,,x):exp(—zl_zx,. — x|

20



SVM Example: XOR Problem

Class 1: X, =[1,-1], Xy = [-1,1]
Class 2: x3=[1,1], X, = [-1,-1]
Use polynomial kernel of degree 2:

Need to maximize

K(x;,x;) = (x;' x;+ 1)2
This kernel corresponds to mapping

ox)=f1 vZx J2x® J2x0x® (x} (x@f]

4

4 1 4
L(x)= Za',- _Ezzaiaizizj(x;xi & 1)2
i=1 j

i=1 j=1

constrainedto 0<e, Vi and o, +a, -0, -, =0

SVM Example: XOR Problem

4
= Canrewrite Ly(@)=> o —%a’Ha
i=1

9 1 -1 -1
where a=[o, @ & @« and H=[_] _% ‘; ‘]]
-1 -1 1 9

Take derivative with respect to eand set itto 0

d 1 9 1 -1 -1
@ L@-{1|- 3§ “eeo

da 1 |-1 -1 1 9

Solution to the above is a,= @, = a3 = a, = 0.25

satisfies the constraints Vi, 0<a, and o,+a,-a,—a, =0
all samples are support vectors

21



SVM Example: XOR Problem

ox)=f1 vZx J2x® J2x0x® (x0} (x@f]

= Class 1: %, =[1,-1], X, = [-1,1]
= Class 2: X3 =[1,1], X4 =[-1,-1]

=  Weight vector wis:
w= Zaizi¢(xi) = 0.25(¢)(X1)+ ¢(X2)— ¢(X3)— ?’(X4))
} =lo 0 0 -v2 0 0
= Thus the nonlinear discriminant function is:

g(x) = wgl(x) = 3w, (x) =—/Z2({2xx?) = ~2xx®

SVM Example: XOR Problem

g(x)=-2x"x®
J2xMx@
x@ A
12
o o
o ¢’ o0 )
J2xO
t ¥ > Sjpsssgasssssssgessap—)p
-1 1 X 2 -1 | 1 1 2
o :, 0 )
i-1 o O
1.2
decision boundaries nonlinear decision boundary is linear
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SVM Summary

Advantages:
= Based on nice theory
= excellent generalization properties
= objective function has no local minima
= can be used to find non linear discriminant functions

= Complexity of the classifier is characterized by the number
of support vectors rather than the dimensionality of the
transformed space

Disadvantages:
= tends to be slower than other methods
= quadratic programming is computationally expensive
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