CS434a/541a: Pattern Recognition
Prof. Olga Veksler

Lecture 11
Support Vector Machines

SvYm

= Said to start in 1979 with Vladimir
Vapnik’s paper

= Major developments throughout
1990’s

= Elegant theory
= Has good generalization properties

= Have been applied to diverse
problems very successfully in the last
10-15 years

= One of the most important
developments in pattern recognition
in the last 10 years

Today

= Support Vector Machines (SVM)
= |ntroduction
= Linear Discriminant
= Linearly Separable Case
= Linearly Non Separable Case
= Kernel Trick
= Non Linear Discriminant

Linear Discriminant Functions

= A discriminant function is linear if it can be written as
g(x) =wix +w,

g(x)>0 = xeclass 1
g(x)<0 =xeclass2

= which separating hyperplane should we choose?




to be on the wrong side of the hyperplane
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= Poor generalization (performance on unseen data)

Linear Discriminant Functions SV
= Training data is just a subset of of all possible data = |dea: maximize distance to the closest example
= Suppose hyperplane is close to sample x; X2 [ |
= |f we see new sample close to sample i, it is likely I

larger distance

smaller distance

= For the optimal hyperplane

= distance to the closest negative example = distance to
the closest positive example

Linear Discriminant Functions

= Hyperplane as far as possible from any sample
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= New samples close to the old samples will be
classified correctly

= Good generalization

SVM: Linearly Separable Case

= SVM: maximize the margin
x(2 4

= margin is twice the absolute value of distance b of
the closest example to the separating hyperplane
= Better generalization (performance on test data)
= in practice
= and in theory




SVM: Linearly Separable Case

x2 A -

= Support vectors are the samples closest to the
separating hyperplane

= they are the most difficalt patterns to classify

= Optimal hyperplane is completely defined by support vectors

= of course, we do not know which samples are support vectors without
finding the optimal hyperplane

SVM: Formula for the Margin

= For uniqueness, set |w'x; +w,|=1 for any example
X; closest to the boundary
= now distance from closest sample x;to g(x) = 0 is
‘w'x,.+w0‘ 1
wl vl x(2

; - O

= Thus the margin is
2

|wi

SVM: Formula for the Margin

g(x) =wix + w,

absolute distance between x
and the boundary g(x) = 0

distance is unchanged for hyperplaﬁe
g+(x)=0g(x)

Let x; be an example closest to the boundary. Set
‘W'Xi +Wo‘ =1

Now the largest margin hyperplane is unique

SVM: Optimal Hyperplane

= Maximize margin m=

2
_ _ |wi
= subject to constraints
w'x, +w, 21 if x, is positive example
w'x;, +w, <1 if x; is negative example

= Let [% =1 if x; is positive example
2z, =-1 if x; is negative example

= Can convert our problem to

minimize J(w)=%HwH2

constrained to  zw'x, +w,)>1 vi

= J(w) is a quadratic function, thus there is a single
global minimum




SVM: Optimal Hyperplane

= Use Kuhn-Tucker theorem to convert our problem to:

n n n
maximize LD(a)=Za,-—%ZZa,-a,z,z,x,’x,
i=1

i=1 j=1

@20 Vi and Y @z,=0

i=1

constrained to

* a={ay,..., &,;} are new variables, one for each sample
= Can rewrite Lp(a@) using n by n matrix H:

7 o [a
wa-ge-tf2 0]

= where the value in the ith row and jth column of His

t
H; =2z, x;x;

SVM: Optimal Hyperplane

= After finding the optimal & = {a;,..., a,}
= For every sample i, one of the following must hold
= a;=0 (sample i is not a support vector)
= @;#0 and z{(wix;+w,- 1) = 0 (sample i is support vector)
= can find wusing w =Zn:a,.z,.x,.
= can solve for w, usinglgny >0and alzw'x, +w,)-1]=0
w,=—-w'x,

= Final discriminant function:

g(x)=(2a,.z,.x,.]tx+wo

x;eS

= where S'is the set of support vectors
S= {Xi | a; # 0}

SVM: Optimal Hyperplane

Use Kuhn-Tucker theorem to convert our problem to:

n n n
maximize L,(a)=> a —%ZZa,.a,z,z,x,’x,

i=t i=1 j=t

@20 Vi and Y @z,=0

i=1

constrained to

* a={ay,..., &,;} are new variables, one for each sample

L(a@) can be optimized by quadratic programming

Ly(a) formulated in terms of @
= it depends on wand wjindirectly

SVM: Optimal Hyperplane

maximize Lu(a)=2a,-—%_ S aazzxix,

n
;20 Vi and ) a,z,=0

i=1

constrained to

= Lp(a) depends on the number of samples, not on
dimension of samples
= samples appear only through the dot products x; x;

= This will become important when looking for a
nonlinear discriminant function, as we will see soon




SVM: Example using Matlab

Class 1: [1,6], [1,10], [4,11] om &

Class 2: [5,2], [7,6], [10,4] 8

Let’s pile all data into array X u ¢ .
1 6
170 2 % 2 4 6 8 10

1

. . 1
Pile z/s into vector z=|_1
-1

-1

Matrix Hwith H, = zz,x!x,, in matlab use H=(x*x).*(z*2)

37 61 70 -17 -43 -34
61 101 114 -25 -67 =50
70 114 137 -42 -94 -84
- 29 47

=43 -67 -94 47 85 94
-34 -50 -84 58 94 116

SVM: Example using Matlab

Multiply by —1 to convert to minimization:
minimize LD(a)=—iZ:;a,+%a'Ha
= Let f=[_5:]=-ones(6,1),then can write
minimize LD(a)=f‘a+%a‘Ha
= First constraint is a; 20 Vi
= Let A=[_;§ - _(:E]= -eye(6), a=[g]=zeros(6,1)

= Rewrite the first constraint in canonical form:
Aac<a

SVM: Example using Matlab

Matlab expects quadratic programming to be stated
in the canonical (standard) form which is

minimize Ly(@)=0.5¢'Ha+f'a
constrainedto Aa<aand Ba=b

= where A,B,H are matrices and f, a, b are vectors

Need to convert our optimization problem to
canonical form

o o, q[a] fe
maximize Lu(d)=za,--5 S| H|
a"

i=1 a,

constrainedto @20 Vi and Y @z =0

i=1

SVM: Example using Matlab

= Our second constraintis Y @z =0

=
= Let B=[Z, Z; Z3 2, Z; 26]=Z'
and b=0

= Second constraint in canonical form is:
Ba=b
= Thus our problem is in canonical form and can be
solved by matlab:

minimize Ly(@)=0.5¢'Ha+f'a
constrainedto Aa<aand Ba=b




SVM: Example using Matlab
- a-= quadprog(H f A a B b)

for stability 12
o W
0'038 :
= Solution a=|%033 ﬁgﬁf;ﬁ;'d’/' ¢ °
0'078 , °

= find wusing w=Za,.z,.x,.=(a.*Z)'X=[—g:gg]

i=1
= since a; >0, can find w, using

Wy = —w'x, =013
1

SVM: Non Separable Case
= Use nonnegative “slack” variables &,,..., &, (one for
each sample)

= Change constraints from z/w'x,+w,)21 vi to
z,.(w'x,.+w,,)21—§,. Vi

= & is a measure of
deviation from the ideal
for sample i &%
= &>1 sample i is on the wrong
side of the separating
hyperplane
= 0< & <1sample i is on the
right side of separating
hyperplane but within the
region of maximum margin

SVM: Non Separable Case

= Data is most likely to be not linearly separable, but
linear classifier may still be appropriate

2)
Xt |

"
outliers

= Can apply SVM in non linearly separable case

= data should be “almost” linearly separable for good
performance

> x(V

SVM: Non Separable Case
= Would like to minimize

- # of samples
JWw, &, E,) = EHWH 4+ B not in ideal location

= where I(§,>0)={; ;; g:;g

= constrained to z(w'x, +w,)21-¢& and &3>0 vi

= Pis a constant which measures relative weight of the
first and second terms
= if Bis small, we allow a lot of samples not in ideal position
= jf ,B'.is large, we want to have very few samples not in ideal
positon




SVM: Non Separable Case

- # of examples
JW,&,....E,) = EHWH 4 B not in ideal location

small B, a lot of samples

large B, few samples not in ), d I
not in ideal position

ideal position

SVM: Non Separable Case
= |nstead we minimize

1 a measure of
JWw,&,,....£,)= EHWH 2, ;@1 of misclassified
examples

. . z,.(w’x,.+w,,)2 1-& Vi
constrained to { > vi

= Can use Kuhn-Tucker theorem to converted to

n n
maximize  Ly(a)= a,-—%zz:a,.a,.z,.z,x,.'x,

n
i=1

constrained to

w= zn:a,.z,.x,.

i=1

= find wusing

= solve for w, using any 0 <a;< B and a[z,(w'x, +w,)-1]=0

SVM: Non Separable Case

= Unfortunately this minimization problem is NP-hard
due to discontinuity of functions I(&)

1 # of examples
JW,&,....E,)= EHWH 4 B not in ideal location

= where I(¢,>0)={(1) :; ?23

= constrainedto z(w'x, +w,)21-¢& and &3>0 Vi

Non Linear Mapping

= Cover’s theorem:

= “pattern-classification problem cast in a high dimensional
space non-linearly is more likely to be linearly separable
than in a low-dimensional space”

= One dimensional space, not linearly separable
5B ———Ba-a—
-3 -2 012 3 5
= Lift to two dimensional space with ¢(x)=(x,x?)

O
o O

o °

D
A 4




Non Linear Mapping
= To solve a non linear classification problem with a
linear classifier
1. Project data x to high dimension using function ¢(x)
2. Find a linear discriminant function for transformed data ¢(x)
3. Final nonlinear discriminant function is g(x) = w! ¢(x) +w,

¢(x):(x,x2) o

=In 2D, discriminant function is linear
x - ] X0
9| x@ [|=W: Wl ) [+Wo

=In 1D, discriminant function is not linear  g(x)=w,x+w,x* +w,

Non Linear SVM

= Can use any linear classifier after lifting data into a
higher dimensional space. However we will have to
deal with the “curse of dimensionality”

1. poor generalization to test data
2. computationally expensive

= SVM avoids the “curse of dimensionality” problems by

1. enforcing largest margin permits good generalization
= It can be shown that generalization in SVM is a function of the
margin, independent of the dimensionality
2. computation in the higher dimensional case is performed
only implicitly through the use of kernel functions

Non Linear Mapping: Another Example

Non Linear SVM: Kernels

Recall SVM optimization
maximize L,,(a):Za,—%ZZa,a,z,z,x,'x,

i=1 j=1
= Note this optimization depends on samples x; only
through the dot product x'x;

= If we lift x; to high dimension using ¢(x), need to

compute high dimensional product ¢(x;)'e(x;)

maximize L,(a)= Z"‘,a,. —lzn:zn:a,.a,.z,.z, o
i=1

24744

= Idea: find kernel function K{(x; X)) s.t.
K(x,x) = ¢(x)'@(x))




Non Linear SVM: Kernels

. . n 1 n n
maximize LD(a)=§a,.—EZZaiaizizl

=1 j=t

= Then we only need to compute K(x;x;) instead of

Px)'p(x;)
= “kernel trick”: do not need to perform operations in high
dimensional space explicitly

Non Linear SVM: Kernels

= How to choose kernel function K{(x;x)?

= Kix;X) should correspond to product ¢(x;)!'@(x) in a
higher dimensional space

= Mercer’s condition tells us which kernel function can be
expressed as dot product of two vectors

= Some common choices:
= Polynomial kernel
K(x,.,x,.)=(x,?x,.+1)"

= Gaussian radial Basis kernel (data is lifted in infinite
dimension)
2
x|

K(x,.,x,.)=exp(—2ia_2

Non Linear SVM: Kernels

Suppose we have 2 features and K(x,y) = (x'y)?
Which mapping ¢(x) does it correspond to?
o7y
K(x,y)=(x'y} = ([X“’ X‘”][,’}n]} (xOy )4 x@y@F
= (,((1)},(1))2 +2(X(1)y(1)xx(2)y(2))+ (X(z)y(z))2 .
= I(X(n)2 J2x0x@ (X(z))ZI [(y(1))2 J2y 0y @ (y(z)ﬂ

Thus ¢(x)=[(x(‘))2 J2xWx@ (X(z))Z]

Non Linear SVM

= search for separating hyperplane in high dimension
wo(x)+w, =0

= Choose ¢(x) so that the first (“0"th) dimension is the

augmented dimension with feature value fixed to 1
p(x)=[1 x0 x® xOx@F

= Threshold parameter w, gets folded into the weight

vector w
[wo w =0




Non Linear SVM

Will not use notation a =[w, w], we'll use old
notation w and seek hyperplane through the origin

wo(x)=0

If the first component of ¢(x) is not 1, the above is
equivalent to saying that the hyperplane has to go
through the origin in high dimension
= removes only one degree of freedom

= But we have introduced many new degrees when we lifted
the data in high dimension

Non Linear SVM Recipe

Weight vector win the high dimensional space:
w= Zaizidxi)
x;eS
= where S'is the set of support vectors S={x, | &, =0}

Linear discriminant function of largest margin in the
high dimensional space:
olp(x)=w'o(x) [ Zazplx)| (0

Non linear discriminant function in the original space

g(x)= (xzsc'izi¢(xi)] o(x) = J(Zesaizﬂ"(xi Jo(x) = éaiziK(xi!x)

decide class 1 if g (x) > 0, otherwise decide class 2

Non Linear SVM Recepie

Start with data x;,...,x, which lives in feature space
of dimension d

Choose kernel K(x;x;) or function ¢(x;) which takes
sample x; to a higher dimensional space

Find the largest margin linear discriminant function in
the higher dimensional space by using quadratic
programming package to solve:

maximize Ly(a)= ia,. —%iia,.a,.z,.ziK(x,.,x,)
i=1

i=t j=t

0<ag<p Vi and Y &z,=0

i=1

constrained to

Non Linear SVM

Nonlinear discriminant function

a(x)= ZS@ K(x;,x)
alx)=>"

weight of support e elgEes”
vector X; support vector X;
most important
_training samples,

i.e. support vectors

1
K(x;,x)= exp(—z—a_2 |x, - x|*

10



SVM Example: XOR Problem

= Class 1: x;=[1,-1], xo=[-1,1]
= Class 2: x3=[1,1], X, =[-1,-1] o o
= Use polynomial kernel of degree 2:
= KX x) = (x;! x;+ 1)2
= This kernel corresponds to mapping

¢(X)=B J2x0 J2x® [2x0xE) (xOF (x(z))zl

o

= Need to maximize

4 1&E
Ly(e)= Za,- _EZZa,-a,-z,-z,-(X,?X,- + 1)2

i=t j=t

constrainedto 0<a, Vi and a,+a, -, -a, =0

SVM Example: XOR Problem

o)l (B0 3z (O] (]
= Class 1: x;=[1,-1], X, = [-1,1]
= Class 2: x3=[1,1], X, = [-1,-1]

= Weight vector wis:

w=3 azo(x) =0.25(p(x,)+ p(x,)- plx,)- p(x,))

- =lo 0 0 vz 0 o

= Thus the nonlinear discriminant function is:

6
g(x)=we(x) = Y w,p,(x) =—/2(V2x"x?) = ~2x"x®
i=1

SVM Example: XOR Problem

g 1

=  Canrewrite Ly(@)=)a- Ea’Ha

i=1

9 1 -1 -1
= where a=le, @ & a&] and H=[_} 33 _1}
1-1 1 9

= Take derivative with respect to @¢and setitto 0

d 3 9117
dao@=|1|-|-1 -1 "9 "1[@=0
24 1-1 1 9

Solution to the above is ay= &, = a5 = 2, = 0.25
=  satisfies the constraints Vi, 0<a, and a,+a, -, -a, =0
= all samples are support vectors

[ QU QU gy

SVM Example: XOR Problem

g(x)=-2x"x@

V2xx@
x@ A
12
(o] (o]
o 10 17
J2x®
" T 2 -1 | 1'1 2
o i, 0O ’
i 1 (m ] (m]
T1-2

decision boundaries nonlinear decision boundary is linear

11



SVM Summary

Advantages:
= Based on nice theory
= excellent generalization properties
= objective function has no local minima
= can be used to find non linear discriminant functions

= Complexity of the classifier is characterized by the number
of support vectors rather than the dimensionality of the
transformed space

Disadvantages:
= tends to be slower than other methods
= quadratic programming is computationally expensive

12



