CS434b/654b: Pattern Recognition Prof. Olga Veksler

Lecture 12

Multilayer Neural Networks

Today

- Multilayer Neural Networks
 - Inspiration from Biology
 - History
 - Perceptron
 - Multilayer perceptron

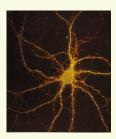
Brain vs. Computer

- Designed to solve logic and arithmetic problems
- Can solve a gazillion arithmetic and logic problems in an hour
- absolute precision
- Usually one very fast procesor
- high reliability

- Evolved (in a large part) for pattern recognition
- Can solve a gazillion of PR problems in an hour
- Huge number of parallel but relatively slow and unreliable processors
- not perfectly precise
- not perfectly reliable

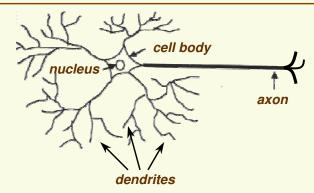
Seek an inspiration from human brain for PR?

Neuron: Basic Brain Processor



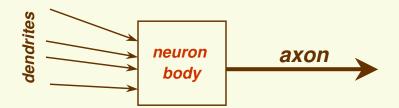
- Neurons are nerve cells that transmit signals to and from brains at the speed of around 200mph
- Each neuron cell communicates to anywhere from 1000 to 10,000 other neurons, muscle cells, glands, so on
- Have around 10¹⁰ neurons in our brain (network of neurons)
- Most neurons a person is ever going to have are already present at birth

Neuron: Basic Brain Processor

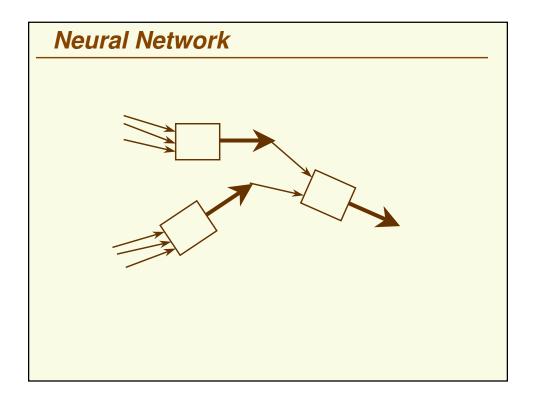


- Main components of a neuron
 - Cell body which holds DNA information in nucleus
 - Dendrites may have thousands of dendrites, usually short
 - axon long structure, which splits in possibly thousands branches at the end. May be up to 1 meter long

Neuron in Action (simplified)



- Input: neuron collects signals from other neurons through dendrites, may have thousands of dendrites
- Processor: Signals are accumulated and processed by the cell body
- Output: If the strength of incoming signals is large enough, the cell body sends a signal (a spike of electrical activity) to the axon



ANN History: Birth

- 1943, famous paper by W. McCulloch (neurophysiologist) and W. Pitts (mathematician)
 - Using only math and algorithms, constructed a model of how neural network may work
 - Showed it is possible to construct any computable function with their network
 - Was it possible to make a model of thoughts of a human being?
 - Considered to be the birth of Al
- 1949, D. Hebb, introduced the first (purely pshychological) theory of learning
 - Brain learns at tasks through life, thereby it goes through tremendous changes
 - If two neurons fire together, they strengthen each other's responses and are likely to fire together in the future

ANN History: First Successes

- 1958, F. Rosenblatt,
 - perceptron, oldest neural network still in use today
 - Algorithm to train the perceptron network (training is still the most actively researched area today)
 - Built in hardware
 - Proved convergence in linearly separable case
- 1959, B. Widrow and M. Hoff
 - Madaline
 - First ANN applied to real problem (eliminate echoes in phone lines)
 - Still in commercial use

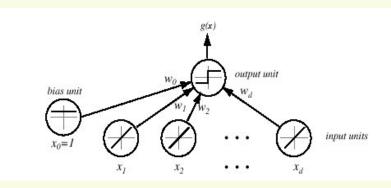
ANN History: Stagnation

- Early success lead to a lot of claims which were not fulfilled
- 1969, M. Minsky and S. Pappert
 - Book "Perceptrons"
 - Proved that perceptrons can learn only linearly separable classes
 - In particular cannot learn very simple XOR function
 - Conjectured that multilayer neural networks also limited by linearly separable functions
- No funding and almost no research (at least in North America) in 1970's as the result of 2 things above

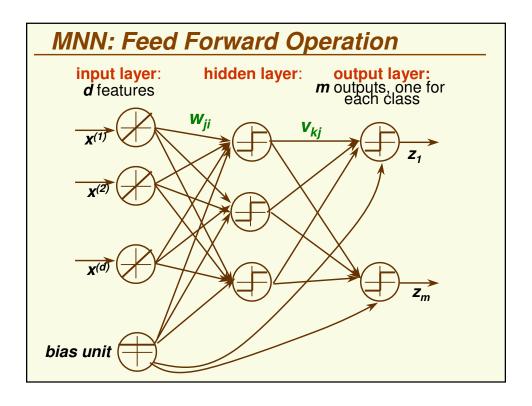
ANN History: Revival

- Revival of ANN in 1980's
- 1982, J. Hopfield
 - New kind of networks (Hopfield's networks)
 - Bidirectional connections between neurons
 - Implements associative memory
- 1982 joint US-Japanese conference on ANN
 - US worries that it will stay behind
- Many examples of mulitlayer NN appear
- 1982, discovery of backpropagation algorithm
 - Allows a network to learn not linearly separable classes
 - Discovered independently by
 - 1. Y. Lecunn
 - 2. D. Parker
 - 3. Rumelhart, Hinton, Williams

ANN: Perceptron

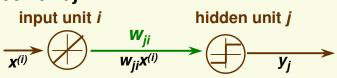


- Input and output layers
- $g(x) = w^t x + w_0$
- Limitation: can learn only linearly separable classes

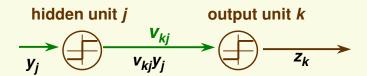


MNN: Notation for Weights

Use w_{jj} to denote the weight between input unit i and hidden unit j

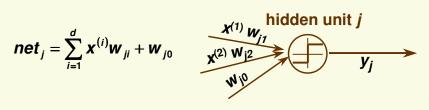


• Use v_{kj} to denote the weight between hidden unit j and output unit k

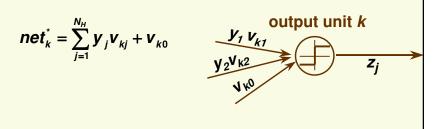


MNN: Notation for Activation

Use net_i to denote the activation and hidden unit j



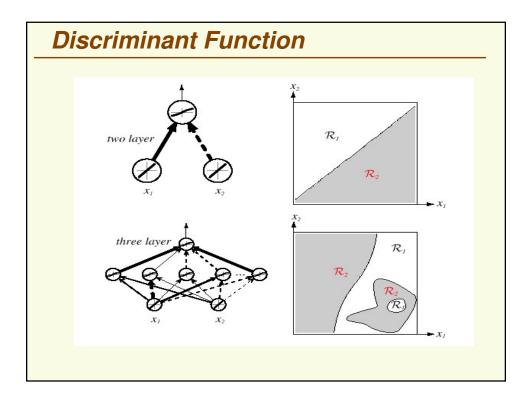
• Use net_k^* to denote the activation at output unit k



Discriminant Function

Discriminant function for class k (the output of the kth output unit)

$$g_{k}(x) = z_{k} =$$
activation at ith hidden unit
$$= f\left(\sum_{j=1}^{N_{H}} v_{kj} f\left(\sum_{i=1}^{d} w_{ji} x^{(i)} + w_{j0}\right) + v_{k0}\right)$$
activation at kth output unit



Expressive Power of MNN

- It can be shown that every continuous function from input to output can be implemented with enough hidden units, 1 hidden layer, and proper nonlinear activation functions
- This is more of theoretical than practical interest
 - The proof is not constructive (does not tell us exactly how to construct the MNN)
 - Even if it were constructive, would be of no use since we do not know the desired function anyway, our goal is to learn it through the samples
 - But this result does give us confidence that we are on the right track
 - MNN is general enough to construct the correct decision boundaries, unlike the Perceptron

MNN Activation function

- Must be nonlinear for expressive power larger than that of perceptron
 - If use linear activation function at hidden layer, can only deal with linearly separable classes
 - Suppose at hidden unit j, $h(u)=a_iu$

$$g_{k}(x) = f\left(\sum_{j=1}^{N_{H}} v_{kj} h\left(\sum_{i=1}^{d} w_{ji} x^{(i)} + w_{j0}\right) + v_{k0}\right)$$

$$= f\left(\sum_{j=1}^{N_{H}} v_{kj} a_{j} \left(\sum_{i=1}^{d} w_{ji} x^{(i)} + w_{j0}\right) + v_{k0}\right)$$

$$= f\left(\sum_{i=1}^{d} \sum_{j=1}^{N_{H}} \left(v_{kj} a_{j} w_{ji} x^{(i)} + w_{j0}\right) + v_{k0}\right)$$

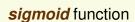
$$= f\left(\sum_{i=1}^{d} x^{(i)} \sum_{j=1}^{N_{H}} v_{kj} a_{j} w_{ji} + \left(\sum_{j=1}^{N_{H}} w_{j0} + v_{k0}\right)\right)$$

MNN Activation function

In previous example, used discontinuous activation function

$$f(net_k) = \begin{cases} 1 & if \ net_k \ge 0 \\ -1 & if \ net_k < 0 \end{cases}$$

 We will use gradient descent for learning, so we need to use continuous activation function



• From now on, assume **f** is a differentiable function

MNN: Modes of Operation

Network have two modes of operation:

Feedforward

The feedforward operations consists of presenting a pattern to the input units and passing (or feeding) the signals through the network in order to get outputs units (no cycles!)

Learning

The supervised learning consists of presenting an input pattern and modifying the network parameters (weights) to reduce distances between the computed output and the desired output

MNN

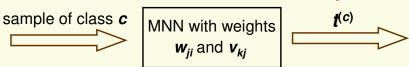
- Can vary
 - number of hidden layers
 - Nonlinear activation function
 - Can use different function for hidden and output layers
 - Can use different function at each hidden and output node

MNN: Class Representation

- Training samples $x_1, ..., x_n$ each of class 1, ..., m
- Let network output z represent class c as target t(c)

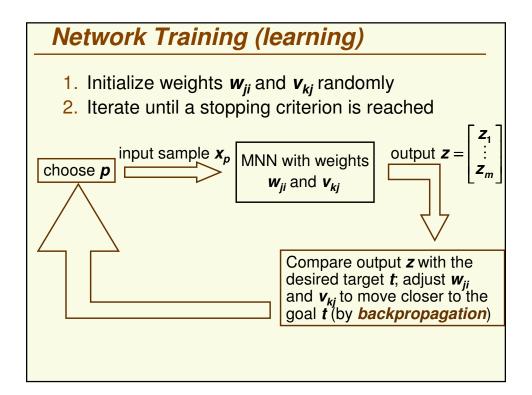
$$z = \begin{bmatrix} z_1 \\ \vdots \\ z_c \\ \vdots \\ z_m \end{bmatrix} = t^{(c)} = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}$$
 cth row

Our Ultimate Goal For FeedForward Operation



MNN training to achieve the Ultimate Goal

Modify (learn) MNN parameters w_{ji} and v_{kj} so that for each *training* sample of class c MNN output $z = t^{(c)}$



- Learn w_{ii} and v_{ki} by minimizing the training error
- What is the training error?
- Suppose the output of MNN for sample x is z and the target (desired output for x) is t
- Error on one sample: $J(w,v) = \frac{1}{2} \sum_{c=1}^{m} (t_c z_c)^2$
- Training error: $J(w,v) = \frac{1}{2} \sum_{i=1}^{n} \sum_{c=1}^{m} (t_c^{(i)} z_c^{(i)})^2$
- Use gradient descent:

$$v^{(0)}, w^{(0)} = \text{random}$$
repeat until convergence;

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \nabla_{w} \mathbf{J}(\mathbf{w}^{(t)})$$
$$\mathbf{v}^{(t+1)} = \mathbf{v}^{(t)} - \eta \nabla_{v} \mathbf{J}(\mathbf{v}^{(t)})$$

BackPropagation

For simplicity, first take training error for one sample x_i $J(w,v) = \frac{1}{2} \sum_{c=1}^{m} (t_c - z_c)^2$ function of w,v

fixed constant

$$Z_{k} = f\left(\sum_{j=1}^{N_{H}} V_{kj} f\left(\sum_{i=1}^{d} W_{ji} X^{(i)} + W_{j0}\right) + V_{k0}\right)$$

- Need to compute
 - 1. partial derivative w.r.t. hidden-to-output weights $\frac{\partial}{\partial t}$
 - 2. partial derivative w.r.t. input-to-hidden weights $\frac{\partial J}{\partial w_{ji}}$

activation at hidden unit
$$j$$

output at hidden unit j
 $v_j = f(net_j)$

activation at output unit k
 $v_j = f(net_j)$
 $v_j = f(net_j)$

$$net_{k}^{*} = \sum_{j=1}^{N_{H}} y_{j} v_{kj} + v_{k0} \implies z_{k} = \frac{f(net_{k}^{*})}{\int_{c=1}^{m} (v_{k} v_{k})^{2}}$$

• First compute hidden-to-output derivatives $\frac{\partial J}{\partial v_{\mu}}$

$$\frac{\partial J}{\partial v_{kj}} = \frac{1}{2} \sum_{c=1}^{m} \frac{\partial}{\partial v_{kj}} (t_c - z_c)^2 = \sum_{c=1}^{m} (t_c - z_c) \frac{\partial}{\partial v_{kj}} (t_c - z_c)$$

$$= (t_k - z_k) \frac{\partial}{\partial v_{kj}} (t_k - z_k) = -(t_k - z_k) \frac{\partial}{\partial v_{kj}} (z_k)$$

$$= -(t_k - z_k) \frac{\partial z_k}{\partial net_k^*} \frac{\partial net_k^*}{\partial v_{kj}}$$

$$= \begin{cases} -(t_k - z_k) f'(net_k^*) y_j & \text{if } j \neq 0 \\ -(t_k - z_k) f'(net_k^*) & \text{if } j = 0 \end{cases}$$

Gradient Descent Single Sample Update Rule for hidden-to-output weights v_{ki}

$$j > 0: \quad \boldsymbol{v}_{kj}^{(t+1)} = \boldsymbol{v}_{kj}^{(t)} + \eta(t_k - z_k) f'(net_k^*) \boldsymbol{y}_j$$
$$j = 0 \text{ (bias weight): } \quad \boldsymbol{v}_{k0}^{(t+1)} = \boldsymbol{v}_{k0}^{(t)} + \eta(t_k - z_k) f'(net_k^*)$$

BackPropagation

• Now compute input-to-hidden $\frac{\partial v}{\partial w_{ij}}$ $\frac{\partial J}{\partial w_{ii}} = \sum_{k=1}^{m} (t_k - z_k) \frac{\partial}{\partial w_{ii}} (t_k - z_k)$ $=-\sum_{k=1}^{m}(t_{k}-z_{k})\frac{\partial z_{k}}{\partial w_{ji}}=-\sum_{k=1}^{m}(t_{k}-z_{k})\frac{\partial z_{k}}{\partial net_{k}^{*}}\frac{\partial net_{k}^{*}}{\partial w_{jj}}$ $= -\sum_{k=1}^{m} (t_k - z_k) f'(net_k^*) \frac{\partial net_k^*}{\partial y_j} \frac{\partial y_j}{\partial w_{ji}}$ $= -\sum_{k=1}^{m} (t_k - z_k) f'(net_k^*) \frac{\partial net_k^*}{\partial y_j} \frac{\partial y_j}{\partial w_{ji}}$ $= -\sum_{k=1}^{m} (t_k - z_k) f'(net_k^*) v_{kj} \frac{\partial y_j}{\partial net_j} \frac{\partial net_j}{\partial w_{ji}}$ $= -\sum_{k=1}^{m} (t_k - z_k) f'(net_k^*) v_{kj} \frac{\partial y_j}{\partial net_j} \frac{\partial net_j}{\partial w_{ji}}$ $= \begin{cases} -\sum_{k=1}^{m} (t_k - z_k) f'(net_k^*) v_{kj} f'(net_j) x^{(i)} & \text{if } i \neq 0 \\ -\sum_{k=1}^{m} (t_k - z_k) f'(net_k^*) v_{kj} f'(net_j) & \text{if } i = 0 \end{cases}$ $J(w, v) = \frac{1}{2} \sum_{c=1}^{m} (t_c - z_c)^2$

$$net_{h} = \sum_{h=1}^{d} x^{(i)} w_{hi} + w_{h0}$$

$$y_{j} = f(net_{j})$$

$$net_{k}^{*} = \sum_{s=1}^{N_{H}} y_{s} v_{ks} + v_{k0}$$

$$Z_{k} = f(net_{k}^{*})$$

$$J(w, v) = \frac{1}{2} \sum_{c=1}^{m} (t_{c} - z_{c})^{2}$$

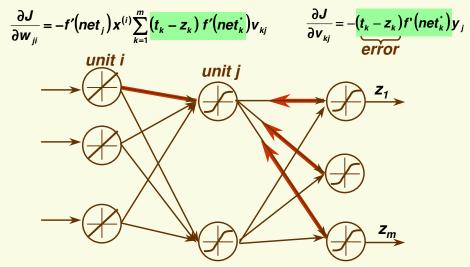
$$\frac{\partial J}{\partial w_{ji}} = \begin{cases} -f'(net_j) x^{(i)} \sum_{k=1}^{m} (t_k - z_k) f'(net_k^{\cdot}) v_{kj} & \text{if } i \neq 0 \\ -f'(net_j) \sum_{k=1}^{m} (t_k - z_k) f'(net_k^{\cdot}) v_{kj} & \text{if } i = 0 \end{cases}$$

Gradient Descent Single Sample Update Rule for input-to-hidden weights w_{ii}

$$i > 0: \ w_{ji}^{(t+1)} = w_{ji}^{(t)} + \eta f'(net_j) x^{(i)} \sum_{k=1}^{m} (t_k - z_k) f'(net_k^*) v_{kj}$$

$$i = 0 \ (bias \ weight): \ w_{j0}^{(t+1)} = w_{j0}^{(t)} + \eta f'(net_j) \sum_{k=1}^{m} (t_k - z_k) f'(net_k^*) v_{kj}$$

BackPropagation of Errors

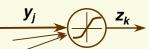


 Name "backpropagation" because during training, errors propagated back from output to hidden layer

Consider update rule for hidden-to-output weights:

$$V_{kj}^{(t+1)} = V_{kj}^{(t)} + \eta(t_k - z_k)f'(net_k^*)y_j$$

- Suppose $t_k z_k > 0$
- Then output of the kth hidden unit is too small: $t_k > z_k$
- Typically activation function f is s.t. f' > 0
- Thus $(t_k z_k)f'(net_k^*) > 0$



- There are 2 cases:
 - 1. $y_j > 0$, then to increase z_k , should increase weight v_{kj} which is exactly what we do since $\eta(t_k z_k)f'(net_k^*)y_j > 0$
 - 2. $y_j < 0$, then to increase z_k , should decrease weight v_{kj} which is exactly what we do since $\eta(t_k z_k)f'(net_k^*)y_j < 0$

BackPropagation

- The case $t_k z_k < 0$ is analogous
- Similarly, can show that input-to-hidden weights make sense
- Important: weights should be initialized to random nonzero numbers

$$\frac{\partial J}{\partial w_{ii}} = -f'(net_i)x^{(i)}\sum_{k=1}^{m}(t_k - z_k)f'(net_k^*)v_{kj}$$

• if $\mathbf{v}_{ki} = 0$, input-to-hidden weights \mathbf{w}_{ii} never updated

Training Protocols

- How to present samples in training set and update the weights?
- Three major training protocols:
 - 1. Stochastic
 - Patterns are chosen randomly from the training set, and network weights are updated after every sample presentation
 - 2. Batch
 - weights are update based on all samples; iterate weight update
 - 3. Online
 - each sample is presented only once, weight update after each sample presentation

Stochastic Back Propagation

- Initialize
 - number of hidden layers n_H
 - weights w, v
 - convergence criterion θ and learning rate η
 - time t = 0
- **2.** do

 $x \leftarrow \text{ randomly chosen training pattern}$ $\underbrace{for\ all}_{0 \le i \le d}, \ 0 \le j \le n_H, \ 0 \le k \le m$ $v_{kj} = v_{kj} + \eta(t_k - z_k) f'(net_k^{\cdot}) y_j$ $v_{k0} = v_{k0} + \eta(t_k - z_k) f'(net_k^{\cdot})$ $w_{ji} = w_{ji} + \eta f'(net_j) x^{(i)} \sum_{k=1}^{m} (t_k - z_k) f'(net_k^{\cdot}) v_{kj}$ $w_{j0} = w_{j0} + \eta f'(net_j) \sum_{k=1}^{m} (t_k - z_k) f'(net_k^{\cdot}) v_{kj}$

$$t = t + 1$$
until $||J|| < \theta$

3. return v, w

Batch Back Propagation

- This is the *true* gradient descent, (unlike stochastic propagation)
- For simplicity, derived backpropagation for a single sample objective function:

$$J(w,v) = \frac{1}{2} \sum_{c=1}^{m} (t_c - z_c)^2$$

The full objective function:

$$J(w,v) = \frac{1}{2} \sum_{i=1}^{n} \sum_{c=1}^{m} (t_c^{(i)} - z_c^{(i)})^2$$

Derivative of full objective function is just a sum of derivatives for each sample:

$$\frac{\partial}{\partial w}J(w,v) = \frac{1}{2}\sum_{i=1}^{n}\frac{\partial}{\partial w}\left(\sum_{c=1}^{m}\left(t_{c}^{(i)}-z_{c}^{(i)}\right)^{2}\right)$$

already derived this

Batch Back Propagation

For example,

$$\frac{\partial J}{\partial w_{ii}} = \sum_{p=1}^{n} -f'(net_j) x_p^{(i)} \sum_{k=1}^{m} (t_k - z_k) f'(net_k^*) v_{kj}$$

Batch Back Propagation

1. Initialize n_{H} , w, v, θ , η , t = 02. \underline{do} $\Delta v_{kj} = \Delta v_{k0} = \Delta w_{ji} = \Delta w_{j0} = 0$ $for all \quad 1 \le p \le n$ $for all \quad 0 \le i \le d, \quad 0 \le j \le n_{H}, \quad 0 \le k \le m$ $\Delta v_{kj} = \Delta v_{kj} + \eta(t_{k} - z_{k})f'(net_{k}^{*})y_{j}$ $\Delta v_{k0} = \Delta v_{k0} + \eta(t_{k} - z_{k})f'(net_{k}^{*})$ $\Delta w_{ji} = \Delta w_{ji} + \eta f'(net_{j})x_{p}^{(i)}\sum_{k=1}^{m}(t_{k} - z_{k})f'(net_{k}^{*})v_{kj}$ $\Delta w_{j0} = \Delta w_{j0} + \eta f'(net_{j})\sum_{k=1}^{m}(t_{k} - z_{k})f'(net_{k}^{*})v_{kj}$ $v_{kj} = v_{kj} + \Delta v_{kj}; \quad v_{k0} = v_{k0} + \Delta v_{k0}; \quad w_{ji} = w_{ji} + \Delta w_{ji}; \quad w_{j0} = w_{j0} + \Delta w_{j0}$ t = t + 1 $until \quad ||J|| < \theta$

3. <u>return</u> v, w

Training Protocols

- 1. Batch
 - True gradient descent
- 2. Stochastic
 - Faster than batch method
 - Usually the recommended way
- 3. Online
 - Used when number of samples is so large it does not fit in the memory
 - Dependent on the order of sample presentation
 - Should be avoided when possible