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CS434b/654b: Pattern Recognition
Prof. Olga Veksler

Lecture 13
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Today

� Continue Multilayer Neural Networks  (MNN)
� Training/testing/validation  curves
� Practical Tips for Implementation
� Concluding Remarks on MNN

MNN Training

training time

Large training 
error: in the 
beginning random 
decision regions

Small training 
error: decision 
regions improve 
with time

Zero training 
error: decision 
regions separate 
training data 
perfectly, but we 
overfited the 
network

MNN Learning Curves
� Training data: data on which learning (gradient descent for 

MNN) is performed
� Validation data: used to assess network generalization 

capabilities
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� Training error typically 
goes down, since with 
enough hidden units, can 
find discriminant function 
which classifies training 
patterns exactly

� Validation error first goes down, but then goes up since at 
some point we start to overfit the network to the validation 
data
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Learning Curves
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� this is a good time to stop training, since after this time we 
start to overfit

� Stopping criterion is part of training phase, thus validation 
data is part of the training data

� To assess how the network will work on the unseen 
examples, we still need test data

Learning Curves

� validation data is used to 
determine “parameters”, in 
this case when learning 
should stop

� Stop training after the first local minimum on validation data
� We are assuming performance on test data will be similar to 

performance on validation data  

stop training

Data Sets
� Training data

� data on which learning is performed
� Validation data

� validation data is used to determine any free 
parameters of the classifier 
� k in the knn neighbor classifier
� h for parzen windows
� number of hidden layers in the MNN
� etc

� Test data
� used to assess network generalization capabilities

Practical Tips for BP: Momentum

� Gradient descent finds only a local minima
� not a problem if J(w) is small at a local minima. Indeed, 

we do not wish to find w s.t. J(w) = 0 due to overfitting
J(w)

global minimum

reasonable local 
minimum

� problem if J(w) is 
large at a local 
minimum w

J(w)

global minimum

bad local 
minimum
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Practical Tips for BP: Momentum

� Momentum: popular method to avoid local minima 
and also speeds up descent in plateau regions
� weight update at time  t is

� at αααα = 0, equivalent to gradient descent
� at αααα = 1, gradient descent is ignored, weight update 

continues in the direction in which it was moving 
previously (momentum)

� usually, αααα is around 0.9
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� add temporal average direction in which weights have 
been moving recently
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Practical Tips for BP: Activation Function

� Gradient descent will work with any continuous 
and differentiable f , however some choices are 
better than others

� Desirable properties of f :
� nonlinearity to express nonlinear decision boundaries
� Saturation, that is f has minimum and maximum values 

(-a and b).  Keeps and weights w, v bounded, thus 
training time down 

� Monotonicity so that activation function itself does not 
introduce additional local minima

� Linearity for a small values of net, so that network can 
produce linear model, if data supports it

� antisymmetric, that is f(-1) = -f(1), leads to faster 
learning

Practical Tips for BP: Activation Function

� Sigmoid activation function f  satisfies all of the 
above properties
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� Convenient to set αααα = 1.716, β β β β = 2/3

� Linear range is roughly for  –1 < net < 1
� Asymptotic values ����1.716

Practical Tips for BP: Target Values
� For sigmoid function, to represent class c, use
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� Always use values less than asymptotic values       
for target
� For small error, need t to be close to z = f(net) 
� For any finite value of net, f(net) never reaches the 

asymptotic value
� The error will always be too large, training will never 

stop, and weights w,v will go to infinity
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Practical Tips for BP: Normalization

� Each feature of input data should be normalized

� Suppose we measure fish length in meters and 
weight in grams
� Typical sample [length = 0.5, weight = 3000]
� Feature length will be basically ignored by the network
� If length is in fact important, learning will be VERY slow

Practical Tips for BP: Normalization

� If there are a lot of highly correlated or redundant 
features, can reduce dimensionality with PCA

� Test samples should be subjected to the same 
transformations as the training samples

� Normalize each feature i to be of mean 0 and 
variance 1
� First for each feature i, compute var [x(i)] and mean [x(i)] 
� Then (((( ))))
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� Cannot do this for online version of the algorithm since 
data is not available all at once

Practical Tips for BP:  # of Hidden Units 
� # of input units = number of features, # output units = # 

classes.  How to choose NH, the # of hidden units?
� NH determines the expressive power of the network

� Too small NH may not be sufficient to learn complex 
decision boundaries

� Too large NH may overfit the training data resulting 
in poor generalization

Practical Tips for BP:  # of Hidden Units 

� Choosing NH is not a solved problem
� Rule of thumb

� if total number of training samples is n, choose NH so 
that the total number of weights is n/10

� total number of weights = (# of w) + (# of v)

� Can choose NH which gives the best performance 
on the validation data
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Practical Tips for BP:  Initializing Weights

� Do not set either w or v to 0
� Rule of thumb for our sigmoid function

� Choose random weights from the range

d
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Practical Tips for BP:  Learning Rate

� As any gradient descent algorithm, 
backpropagation depends on the learning rate ηηηη

� Rule of thumb ηηηη = 0.1
� However we can adjust ηηηη at the training time
� The objective function J should decrease during 

gradient descent
� If it oscillates, ηηηη is too large, decrease it
� If it goes down but very slowly, ηηηη is too 

small,increase it

Practical Tips for BP:  Weight Decay

� To simplify the network and avoid overfitting, it is 
recommended to keep the weights small

� Implement  weight decay after each weight update:
(((( )))) 10,1 <<<<<<<<−−−−==== εεεεεεεεoldnew ww

� Additional benefit is that “unused” weights  grow 
small and may be eliminated altogether
� A weight is “unused” if it is left almost unchanged by the 

backpropagation algorithm

Practical Tips for BP:  # Hidden Layers

� Network with 1 hidden layer has the same 
expressive power as with several hidden layers

� For some applications, having more than 1 hidden 
layer may result in faster learning and less hidden 
units overall

� However networks with more than 1 hidden layer 
are more prone to the local minima problem
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MNN as Nonlinear  Mapping

x(1)

x(2)

x(d)

z1

zm

this module implements
linear classifier (Perceptron)

this module implements
nonlinear input mapping ϕϕϕϕ

MNN as Nonlinear  Mapping

� Thus MNN can be thought as learning 2 things at 
the same time
� the nonlinear mapping of the inputs
� linear classifier of the nonlinearly mapped inputs

MNN as Nonlinear  Mapping

original 
feature space x; 
patterns are not 
linearly separable

MNN finds 
nonlinear mapping y=ϕϕϕϕ(x) 
to 2 dimensions (2 hidden 
units); patterns are almost 
linearly separable

MNN finds
nonlinear mapping 
y=ϕϕϕϕ(x) to 3 dimensions 
(3 hidden units) that; 
patterns are linearly 
separable

Concluding Remarks

� Advantages
� MNN can learn complex mappings from inputs to 

outputs, based only on the training samples
� Easy to use
� Easy to incorporate a lot of heuristics

� Disadvantages
� It is a “black box”, that is difficult to analyze and predict 

its behavior
� May take a long time to train
� May get trapped in a bad local minima
� A lot of “tricks” to implement for the best performance


