
1

CS434b/654b: Pattern Recognition
Prof. Olga Veksler

Lecture 13
����������	
����
�������

Today

� Continue Multilayer Neural Networks (MNN)
� Training/testing/validation curves
� Practical Tips for Implementation
� Concluding Remarks on MNN

MNN Training

training time

Large training
error: in the
beginning random
decision regions

Small training
error: decision
regions improve
with time

Zero training
error: decision
regions separate
training data
perfectly, but we
overfited the
network

MNN Learning Curves
� Training data: data on which learning (gradient descent for

MNN) is performed
� Validation data: used to assess network generalization

capabilities

training time

cl
as

si
fic

at
io

n
er

ro
r

training error

valid
atio

n

erro
r

� Training error typically
goes down, since with
enough hidden units, can
find discriminant function
which classifies training
patterns exactly

� Validation error first goes down, but then goes up since at
some point we start to overfit the network to the validation
data

2

Learning Curves

training time

cl
as

si
fic

at
io

n
er

ro
r

training error

valid
atio

n er
ro

r

� this is a good time to stop training, since after this time we
start to overfit

� Stopping criterion is part of training phase, thus validation
data is part of the training data

� To assess how the network will work on the unseen
examples, we still need test data

Learning Curves

� validation data is used to
determine “parameters”, in
this case when learning
should stop

� Stop training after the first local minimum on validation data
� We are assuming performance on test data will be similar to

performance on validation data

stop training

Data Sets
� Training data

� data on which learning is performed
� Validation data

� validation data is used to determine any free
parameters of the classifier
� k in the knn neighbor classifier
� h for parzen windows
� number of hidden layers in the MNN
� etc

� Test data
� used to assess network generalization capabilities

Practical Tips for BP: Momentum

� Gradient descent finds only a local minima
� not a problem if J(w) is small at a local minima. Indeed,

we do not wish to find w s.t. J(w) = 0 due to overfitting
J(w)

global minimum

reasonable local
minimum

� problem if J(w) is
large at a local
minimum w

J(w)

global minimum

bad local
minimum

3

Practical Tips for BP: Momentum

� Momentum: popular method to avoid local minima
and also speeds up descent in plateau regions
� weight update at time t is

� at αααα = 0, equivalent to gradient descent
� at αααα = 1, gradient descent is ignored, weight update

continues in the direction in which it was moving
previously (momentum)

� usually, αααα is around 0.9

(((()))) (((()))) (((()))) (((())))11 1 −−−−++++ ∆∆∆∆++++��������
����

��������

����

∂∂∂∂
∂∂∂∂−−−−++++==== ttt w
w
J

ww ααααηηηηαααα

� add temporal average direction in which weights have
been moving recently

(((()))) (((()))) (((())))1−−−−−−−−====∆∆∆∆ ttt www

previous
directionsteepest descent

direction

Practical Tips for BP: Activation Function

� Gradient descent will work with any continuous
and differentiable f , however some choices are
better than others

� Desirable properties of f :
� nonlinearity to express nonlinear decision boundaries
� Saturation, that is f has minimum and maximum values

(-a and b). Keeps and weights w, v bounded, thus
training time down

� Monotonicity so that activation function itself does not
introduce additional local minima

� Linearity for a small values of net, so that network can
produce linear model, if data supports it

� antisymmetric, that is f(-1) = -f(1), leads to faster
learning

Practical Tips for BP: Activation Function

� Sigmoid activation function f satisfies all of the
above properties

(((()))) netnet

netnet

ee
ee

netf ⋅⋅⋅⋅−−−−⋅⋅⋅⋅

⋅⋅⋅⋅−−−−⋅⋅⋅⋅

++++
−−−−==== ββββββββ

ββββββββ

αααα

� Convenient to set αααα = 1.716, β β β β = 2/3

� Linear range is roughly for –1 < net < 1
� Asymptotic values ����1.716

Practical Tips for BP: Target Values
� For sigmoid function, to represent class c, use

(((())))

����
����
����
����

����

����

����
����
����
����

����

����

−−−−

−−−−

====

1

1

1

�

�
ct c th row

� Always use values less than asymptotic values
for target
� For small error, need t to be close to z = f(net)
� For any finite value of net, f(net) never reaches the

asymptotic value
� The error will always be too large, training will never

stop, and weights w,v will go to infinity

4

Practical Tips for BP: Normalization

� Each feature of input data should be normalized

� Suppose we measure fish length in meters and
weight in grams
� Typical sample [length = 0.5, weight = 3000]
� Feature length will be basically ignored by the network
� If length is in fact important, learning will be VERY slow

Practical Tips for BP: Normalization

� If there are a lot of highly correlated or redundant
features, can reduce dimensionality with PCA

� Test samples should be subjected to the same
transformations as the training samples

� Normalize each feature i to be of mean 0 and
variance 1
� First for each feature i, compute var [x(i)] and mean [x(i)]
� Then (((())))

(((()))) (((())))(((())))
(((())))(((())))i

ii
i

x

xmeanx
x k

k var

−−−−
←←←←

� Cannot do this for online version of the algorithm since
data is not available all at once

Practical Tips for BP: # of Hidden Units
� # of input units = number of features, # output units = #

classes. How to choose NH, the # of hidden units?
� NH determines the expressive power of the network

� Too small NH may not be sufficient to learn complex
decision boundaries

� Too large NH may overfit the training data resulting
in poor generalization

Practical Tips for BP: # of Hidden Units

� Choosing NH is not a solved problem
� Rule of thumb

� if total number of training samples is n, choose NH so
that the total number of weights is n/10

� total number of weights = (# of w) + (# of v)

� Can choose NH which gives the best performance
on the validation data

5

Practical Tips for BP: Initializing Weights

� Do not set either w or v to 0
� Rule of thumb for our sigmoid function

� Choose random weights from the range

d
w

d ji
11 <<<<<<<<−−−−

H
kj

H N
1v

N
1 <<<<<<<<−−−−

Practical Tips for BP: Learning Rate

� As any gradient descent algorithm,
backpropagation depends on the learning rate ηηηη

� Rule of thumb ηηηη = 0.1
� However we can adjust ηηηη at the training time
� The objective function J should decrease during

gradient descent
� If it oscillates, ηηηη is too large, decrease it
� If it goes down but very slowly, ηηηη is too

small,increase it

Practical Tips for BP: Weight Decay

� To simplify the network and avoid overfitting, it is
recommended to keep the weights small

� Implement weight decay after each weight update:
(((()))) 10,1 <<<<<<<<−−−−==== εεεεεεεεoldnew ww

� Additional benefit is that “unused” weights grow
small and may be eliminated altogether
� A weight is “unused” if it is left almost unchanged by the

backpropagation algorithm

Practical Tips for BP: # Hidden Layers

� Network with 1 hidden layer has the same
expressive power as with several hidden layers

� For some applications, having more than 1 hidden
layer may result in faster learning and less hidden
units overall

� However networks with more than 1 hidden layer
are more prone to the local minima problem

6

MNN as Nonlinear Mapping

x(1)

x(2)

x(d)

z1

zm

this module implements
linear classifier (Perceptron)

this module implements
nonlinear input mapping ϕϕϕϕ

MNN as Nonlinear Mapping

� Thus MNN can be thought as learning 2 things at
the same time
� the nonlinear mapping of the inputs
� linear classifier of the nonlinearly mapped inputs

MNN as Nonlinear Mapping

original
feature space x;
patterns are not
linearly separable

MNN finds
nonlinear mapping y=ϕϕϕϕ(x)
to 2 dimensions (2 hidden
units); patterns are almost
linearly separable

MNN finds
nonlinear mapping
y=ϕϕϕϕ(x) to 3 dimensions
(3 hidden units) that;
patterns are linearly
separable

Concluding Remarks

� Advantages
� MNN can learn complex mappings from inputs to

outputs, based only on the training samples
� Easy to use
� Easy to incorporate a lot of heuristics

� Disadvantages
� It is a “black box”, that is difficult to analyze and predict

its behavior
� May take a long time to train
� May get trapped in a bad local minima
� A lot of “tricks” to implement for the best performance

