CS434b/641a: Pattern Recognition
Prof. Olga Veksler

Lecture 14
Bagging and Boosting

Some slides are due to Robin Dhamankar
Vandi Verma & Sebastian Thrun

Ensemble Learning: Bagging and Boosting

So far we have talked about design of a single classifier
that generalizes well (want to “learn” f(x))

From statistics, we know that it is good to average your
predictions (reduces variance)

Bagging

= reshuffle your training data to create k different trainig sets and

learn f,(x),f,(X),...,fi(X)
= Combine the k different classifiers by majority voting
frnaL(X) =sign[Z 1/k fi(x) |
Boosting

= Assign different weights to training samples in a “smart” way so
that different classifiers pay more attention to different samples

= Weighted majority voting, the weight of individual classifier is
proportional to its accuracy

= Ada-boost (1996) was influenced by bagging, and it is superior
to bagging

Bagging

= Generate a random sample from training set by selecting /
elements (out of n elements available) with replacement

= Repeat the sampling procedure, getting a sequence of k
independent training sets

= A corresponding sequence of classifiers f,(x),f,(x),...,fi(X) is
constructed for each of these training sets, using the same
classification algorithm

= To classify an unknown sample X, let each classifier predict.

= The bagged classifier fra(X) then combines the predictions
of the individual classifiers to generate the final outcome,
frequently this combination is simple voting

Boosting: motivation

= |t is usually hard to design an accurate classifier which
generalizes well
= However it is usually easy to find many “rule of thumb”
weak classifiers
= A classifier is weak if it is only slightly better than random
guessing
= Can we combine several weak classifiers to produce an
accurate classifier?
= Question people have been working on since 1980’s

Ada Boost

Let’'s assume we have 2-class classification
problem, with y,e {-1,1}

Ada boost will produce a discriminant function:
g(x)= Y. aif,(x)

where f,(x) is the “weak” classifier

As usual, the final classifier is the sign of the
discriminant function, that is f;,,(X) = sign[g(x)]

Idea Behind Ada Boost

= Algorithm is iterative

= Maintains distribution of weights over the training
examples
= |nitially distribution of weights is uniform

= At successive iterations, the weight of misclassified
examples is increased, forcing the weak learner to
focus on the hard examples in the training set

More Comments on Ada Boost

= Ada boost is very simple to implement, provided you
have an implementation of a “weak learner”

= Will work as long as the “pbasic” classifier f,(x) is at
least slightly better than random

= will work if the error rate of f,(x) is less than 0.5 (0.5 is the
error rate of a random guessing classifier for a 2-class
problem)
= Can be applied to boost any classifier, not
necessarily weak

Ada B 00S t (slightly modified from the original version)

d(x) is the distribution of weights over the N training
points > d(x;)=1
Initially assign uniform weights d,(x;) = 1/N for all x;

At each iteration t :

Find best weak classifier f,(x) using weights d(x)

Compute the error rate ¢, as

€= it nOX) Iy; 7 (X))

= assign weight o, the classifier ffs in the final hypothesis
a,=log ((1 —¢€)/¢;)

For each X;, d;,;(x;) = d{(x;) - exploy- I(y; # fi(x;))]

Normalize d,,{(x;) so that },_; d,,{(x;) =1

" fenac(X) =sign [X a,f(X)]

Ada Boost

= At each iterationt :

= Find best weak classifier f,(x) using weights d,(x)
= Compute ¢, the error rate as
€= 2 di(x;) - Ily; # fi(x;)]
= assign weight o, the classifier f/s in the final hypothesis
o,=log ((1 —¢,)/¢;)
= Foreach x;, d,,;(x;) = d{(x;) - explo, I(y; # f(x;))]
= Normalize d,,,(x;) so that }, . d(x;) =1
Femau(X) =sign [3 o f,(X)]

= |f the classifier does not take weighted samples, this
step can be achieved by sampling from the training
samples according to the distribution d,(x)

Ada Boost

= At each iteration t :
= Find best weak classifier f(x) using weights d(x)
= Compute ¢, the error rate as
&= 2 ayx) " Ily; # fi(x)]
= assign weight o, the classifier f/s in the final hypothesis
a,=log ((1—¢,)/¢,)
= For each x;, d,4(x;) = d(x,) - explo,~ I(y; # f(x;)]
= Normalize d,,(x;) sothat } d, (x;) =1
" fena(X) =sign [3 o, f(x)]

= Since the weak classifier is better than random, we
expect €,< 1/2

Ada Boost

= At each iteration t :
= Find best weak classifier f,(x) using weights d(x)
= Compute ¢,the error rate as

=3 d(x;) I(y; # fi(x;)
= assign weight o, the classifier ffs in the final hypothesis
o= log ((1 —&;)/¢;)
* Foreach x;, d,,(x;) = dix;) - explo,- I(y; # (x;))]
= Normalize d,,(x;) sothat } d,(x;) =1
fenar(X) =sign [3 ouf,(x)]

= Recall that ¢, < 2

= Thus (1-¢)/&>1 = o;,>0

= The smaller is €, the larger is a,, and thus the more
importance (weight) classifier f,(x) gets in the final classifier

femnac(X) =sign [3 o, f,(x)]

Ada Boost

= At each iterationt :

= Find best weak classifier f(x) using weights d(x)
= Compute ¢, the error rate as

€= > d,(x;)- Wy # fi(x;)
= assign weight o, the classifier fs in the final hypothesis
o= log ((1 —¢,)/¢,)
= Foreach x;, d,;(x;) = d{(x;) - explo, - I(y; # fi(x;))]
= Normalize d,,¢(x;) so that >d,,(x;) =1
" fena(X) =sign [3 o, f(x)]

= Weight of misclassified examples is increased and the
new d,,(x;)’s are normalized to be a distribution again

AdaBoost Example

from “A Tutorial on Boosting” by Yoav Freund and Rob Schapire

Original Training set : equal weights to all training
samples

Note: in the following slides, h,(x) is used instead of f,(x),
and D instead of d

AdaBoost Example
ROUND 1
® +
& g + 4
- €1=0.30 D, -
& - 0 =0.42 = 2 ¥

/11

AdaBoost Example

ROUND 2
EfE \;/ i (%Z“;J) Dypo+ 7
AdaBoost Example
ROUND 3
it
/’I; + _|_
- e €1=().14
@ — (13:<)_k)2
@

AdaBoost Example

f]
fenaL (X)= sign ‘ 0.42 +0.65 +0.92 ’

AdaBoost Comments

= |t can be shown that the training error drops
exponentially fast, if each weak classifier is slightly
better than random

Err Tirain < exp(22 72)

= Here ¥ = &— 1/2, where is classification error at
round t(weak classifier f;)

AdaBoost Comments

= But we are really interested in the generalization
properties of feya (X), NoOt the training error

= AdaBoost was shown to have excellent generalization
properties in practice, in fact in the beginning
researchers thought it does not overfit data
= |t turns out it does overfit data eventually, if you run it really

long

= |t can be shown that boosting “aggressively”
increases the margins of training examples, as
iterations proceed

= margins continue to increase even when training error
reaches zero

= Helps to explain empirically observed phenomena: test error

continues to drop even after training error reaches zero

AdaBoost Example

fenaL (X)= sign | 0.42 +0.65 +092

10

The Margin Distribution

1.0-

0.5

cumulative distribution

o . ,\k[ram ______

10 100 1000 -1 -0.5 .

of rounds (7) margin
epoch 5 100 |1000
training error 0.0 |0.0 (0.0
test error 84 |33 |3.1
Y%margins<0.5 7.7 0.0 |0.0
Minimum margin 0.14 |0.52 |0.55

Boosting As Additive Model

= The final prediction in boosting g(x) can be
expressed as an additive expansion of individual
classifiers

g(x) = z_ atft(X;Yt)

= The process is iterative and can be expressed as

follows:
g,(x) = g,_1(x) + atft(X;7t)

= Typically we would try to minimize a loss function
on the N training examples

min ZL(y,,Zaf(j

{7 - i=1

Boosting As Additive Model

= Simple case: squared-error loss
Ly.f(x)= F(y~1(x)?

= Forward stage-wise modeling amounts to
just fitting the residuals from previous
iteration:
Ly, 9.(x;)+af(x;y))=
= (y,‘ _gt—1(xi)_atft(xi;7t))2
fixed
= Forward stage-wise optimization seems to
produce classifier with better generalization,
it is not as prone to overfitting

Boosting As Additive Model

= |t can be shown that AdaBoost uses forward
stage-wise modeling under the following loss
function:
= L(y, f(x)) =exp(-y - f(x)) -the exponential loss function

N
argminy_ L(y;,f(x;))
f i=1

=argmin)_exp(-y; - [gn_.(X,) + & f,(X))])

af; i=1

=argmin_exp(-y; - gn(X;))-exp(~y;-a-f,(x;))

af; i=1

12

Practical Advantages of AdaBoost

fast

simple

Has only one parameter to tune (7)

flexible: can be combined with any classifier

provably effective (assuming weak learner)

+ shift in mind set: goal now is merely to find hypotheses
that are better than random guessing

finds outliers
= The hardest examples are frequently the “outliers”

Caveats

= performance depends on data & weak learner

= AdaBoost can fail if
= weak hypothesis too complex (overfitting)
= weak hypothesis too weak (y,—0 too quickly),
= underfitting
= Low margins — overfitting
= empirically, AdaBoost seems especially
susceptible to noise

13

