CS434b/641a: Pattern Recognition
Prof. Olga Veksler

Lecture 14
Bagging and Boosting

Some slides are due to Robin Dhamankar
Vandi Verma & Sebastian Thrun

Bagging

Generate a random sample from training set by selecting /
elements (out of n elements available) with replacement
Repeat the sampling procedure, getting a sequence of k
independent training sets

A corresponding sequence of classifiers f,(x),f2(x),....f(x) is
constructed for each of these training sets, using the same
classification algorithm

To classify an unknown sample x, let each classifier predict.
The bagged classifier fzya(x) then combines the predictions
of the individual classifiers to generate the final outcome,
frequently this combination is simple voting

Ensemble Learning: Bagging and Boosting

= So far we have talked about design of a single classifier
that generalizes well (want to “learn” f(x))
= From statistics, we know that it is good to average your
predictions (reduces variance)
= Bagging
= reshuffle your training data to create k different trainig sets and
learn f;(x),f,(x),...,f(x)
= Combine the k different classifiers by majority voting
fenac(X) =sign[Z 1/k fi(x)]
= Boosting
= Assign different weights to training samples in a “smart” way so
that different classifiers pay more attention to different samples
= Weighted majority voting, the weight of individual classifier is
proportional to its accuracy
= Ada-boost (1996) was influenced by bagging, and it is superior
to bagging

Boosting: motivation

It is usually hard to design an accurate classifier which
generalizes well

However it is usually easy to find many “rule of thumb”
weak classifiers

= A classifier is weak if it is only slightly better than random

guessing

Can we combine several weak classifiers to produce an
accurate classifier?

= Question people have been working on since 1980’s

Ada Boost

= Let's assume we have 2-class classification
problem, with y,e {-1,1}
= Ada boost will produce a discriminant function:

dﬂ=gmﬂﬂ

= where f|(x) is the “weak” classifier

= As usual, the final classifier is the sign of the
discriminant function, that is f;,(x) = sign[g(x)]

More Comments on Ada Boost

= Ada boost is very simple to implement, provided you
have an implementation of a “weak learner”

= Will work as long as the “basic” classifier f,(x) is at
least slightly better than random
= will work if the error rate of f(x) is less than 0.5 (0.5 is the
error rate of a random guessing classifier for a 2-class
problem)
= Can be applied to boost any classifier, not
necessarily weak

Idea Behind Ada Boost

= Algorithm is iterative

= Maintains distribution of weights over the training
examples

= [nitially distribution of weights is uniform

= At successive iterations, the weight of misclassified
examples is increased, forcing the weak learner to
focus on the hard examples in the training set

Ada B 00Ss t (slightly modified from the original version)

d(x) is the distribution of weights over the N training
points Y d(x)=1
Initially assign uniform weights d,(x) = 1/N for all x;
= At each iteration t :
= Find best weak classifier f,(x) using weights d{(x)
= Compute the error rate €, as
&= Yir.nax) 1ly; # fi(x;)]
= assign weight o, the classifier f's in the final hypothesis
a,=log ((1 —¢;)/e;)
= For each x;, d,,4(x;) = d{(x;) - explo.- I(y; # fi(x;))]
= Normalize d,,(x;) so that Y, ; d,((x;) = 1

® femac(X) =sign [¥ o, f,(X)]

Ada Boost

= At each iterationt :

Find best weak classifier f(x) using weights d(x)
Compute €, the error rate as
€= 3 d(x;)- Iy, # f(x;)]
assign weight o, the classifier f's in the final hypothesis
o= log (1 —¢,)/¢,)
For each x;, dy,;(x;) = d(x;) - expla - I(y; # fi(x;))]
Normalize d,,,(x;) so that ¥, ,d(x;) =1
= Tena(X) =sign [¥ o, f,(x)]

= [f the classifier does not take weighted samples, this
step can be achieved by sampling from the training
samples according to the distribution d,(x)

Ada Boost

= At each iteration t :
= Find best weak classifier f(x) using weights d,(x)
= Compute g,the error rate as
€= 3 d(x;)- Iy, # f(x;)
assign weight o, the classifier f/s in the final hypothesis
o,=log ((1 —&:)/¢,)
= Foreach x;, d,;(x;) = d(x;) - exp[o,- I(y; # fi(x;))]
Normalize d,,,(x;) so that 3 d, ,(x;) =1
= fena(¥) =sign [3 oufi(X)]

= Recall that ;< %2

= Thus (1-¢)/g>1 = 0,>0

= The smaller is €, the larger is a,, and thus the more
importance (weight) classifier f,(x) gets in the final classifier

Trnac(X) =sign [¥ o £ (x)]

Ada Boost

= At each iteration t :
= Find best weak classifier f,(x) using weights d(x)
= Compute ¢, the error rate as
&= 2 di(x;) - Ily; # fi(x;)]
assign weight o, the classifier f's in the final hypothesis
o= log (1 —¢,)/¢,)
For each x;, dy,;(x;) = d{(x;) - expla, - I(y; # fi(x;))]
Normalize d,,,(x;) so that ¥ d,(x;) =1
= Tena(X) =sign [o, f,(x)]

= Since the weak classifier is better than random, we
expect g, < 1/2

Ada Boost

= At each iteration t :
= Find best weak classifier f(x) using weights d,(x)
= Compute ¢, the error rate as
&= X 0 (%) 1(y; # fi(x;)
= assign weight o, the classifier f's in the final hypothesis
a,=log ((1—¢,)/¢;)
= Foreach x;, dy,4(X;) = di(x;) - exple- I(y; # fi(x;))]
= Normalize d,(X;) so that >d,,¢(x;) =1
" TenaX) =sign [¥ o, fi(x)]

= Weight of misclassified examples is increased and the
new d.,;(x;)’s are normalized to be a distribution again

from “A Tutorial on Boosting” by Yoav Freund and Rob Schapire
£ ROUND 2
ol = = =
Sl — _'_ . -
+ — + /;/ 7 VJ; + N
= —
Original Training set : equal weights to all training = -
samples g
Note: in the following slides, h(x) is used instead of f,(x),
and D instead of d
AdaBoost Example AdaBoost Example
ROUND 3
ROUND 1
- =
. —I_ hy aF + ©

?1 =0.30
=042
o 42

€3=(.14

0,=0.92
J

AdaBoost Example
I/ \‘
fEnaL(X)= sign \041 +0.65 +0.92 /
. B
4+ _

AdaBoost Comments

= But we are really interested in the generalization
properties of frya(X), not the training error
= AdaBoost was shown to have excellent generalization
properties in practice, in fact in the beginning
researchers thought it does not overfit data
= |t turns out it does overfit data eventually, if you run it really
long
= |t can be shown that boosting “aggressively”
increases the margins of training examples, as
iterations proceed
= margins continue to increase even when training error
reaches zero
= Helps to explain empirically observed phenomena: test error
continues to drop even after training error reaches zero

AdaBoost Comments

= |t can be shown that the training error drops
exponentially fast, if each weak classifier is slightly
better than random

Err!rain < exp(_ 22; 7?)

= Here 4 = &— 1/2, where is classification error at
round t (weak classifier f;)

AdaBoost Example
/ \
frinaL(X)= sien{ 0.2 +0.69 + 0.92_)
+
+ 4|
- N -

The Margin Distribution

cumulative distribution
o
@

1000 A 05 BE

of rounds (7) margin
epoch 5 100 |1000
training error 0.0 |0.0 |0.0
test error 84 |33 |3.1
%margins<0.5 7.7 |0.0 |0.0
Minimum margin 0.14 |0.52 |0.55

Boosting As Additive Model

= Simple case: squared-error loss
Ly f(x) =Ty —1(x)?

= Forward stage-wise modeling amounts to
just fitting the residuals from previous
iteration:
L(y; g (X)) +af(x;y)) =
= (Yf 79171(XI)7a[fi(X1;71))2
fixed
= Forward stage-wise optimization seems to
produce classifier with better generalization,
it is not as prone to overfitting

Boosting As Additive Model

= The final prediction in boosting g(x) can be
expressed as an additive expansion of individual
classifiers

g(x)= Z_ a,f,(x;y,)

= The process is iterative and can be expressed as

follows:
g,(x) = gt-1(x) + a,f,(x;y,)

= Typically we would try to minimize a loss function

on the N training examples
N

M
min ZL(y,,Za,f,(Xn'%)j

{ a7t =1 i=1 t=1

Boosting As Additive Model

= |t can be shown that AdaBoost uses forward
stage-wise modeling under the following loss
function:
= L(y, f(x)) =exp(-y - f(x)) - the exponential loss function

argmin >’ L(y,.1(x,)
=arg I'ninZexp(—y,- [Gma(X;) +a-1,(x;)])

=argminY exp(=y; - gn..(X,))-exp(-y,; - a-f,(X;))

af i=1

Practical Advantages of AdaBoost

= fast

= simple

= Has only one parameter to tune (7)

= flexible: can be combined with any classifier

= provably effective (assuming weak learner)

« shift in mind set: goal now is merely to find hypotheses
that are better than random guessing

= finds outliers
= The hardest examples are frequently the “outliers”

Caveats

= performance depends on data & weak learner
= AdaBoost can fail if
= weak hypothesis too complex (overfitting)
= weak hypothesis too weak (y,—0 too quickly),
= underfitting
= Low margins — overfitting
= empirically, AdaBoost seems especially
susceptible to noise

