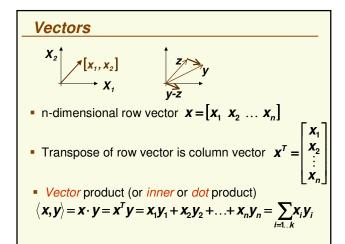
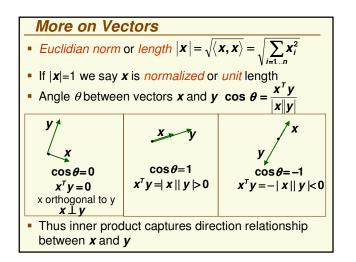
CS434a/541a: Pattern Recognition Prof. Olga Veksler

Lecture 2

Why Linear Algebra?


- For each example (e.g. a fish image), we will extract a set of features (e.g. length, width, color)
- This set of features we will represent as a *feature vector*


[length, width, color,...]

- All collected examples will be represented as collection of (feature) vectors
 - $[l_1, w_1, c_1, ...], [l_2, w_2, c_2, ...], [l_3, w_3, c_3, ...], ... example 1 example 2 example 3$
- Besides representation, we will often use linear models since they are simple and computationally feasible

Outline

- Review of Linear Algebra
 - vectors and matrices
 - products and norms
 - vector spaces and linear transformations
 - eigenvalues and eigenvectors
- Introduction to Matlab

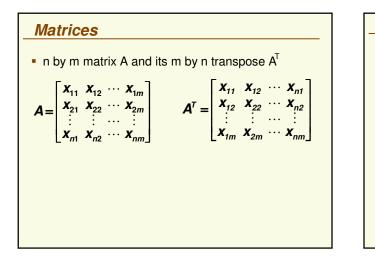
Linear Dependence and Independence

- Vectors $x_1, x_2, ..., x_n$ are linearly dependent if there exist constants $\alpha_1, \alpha_2, ..., \alpha_n$ s.t. 1. $\alpha_1 x_1 + \alpha_2 x_2 + ... + \alpha_n x_n = 0$
 - 2. at least one $\alpha_i \neq 0$
- Vectors $x_1, x_2, ..., x_n$ are linearly independent if $\alpha_1 x_1 + \alpha_2 x_2 + ... + \alpha_n x_n = 0 \Rightarrow \alpha_1 = ... = \alpha_n = 0$

More on Vectors

- Vectors x and y are orthonormal if they are orthogonal and |x|=|y|=1
- Euclidian distance between vectors x and y

$$|\mathbf{x}-\mathbf{y}| = \sqrt{\sum_{i=1..n} (\mathbf{x}_i - \mathbf{y}_i)^2}$$

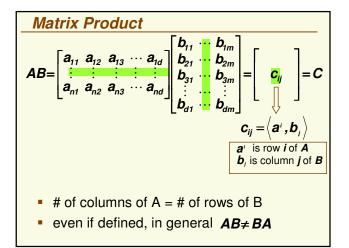

Vector Spaces and Basis

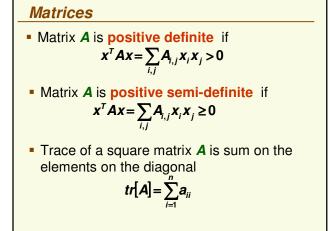
• A set of vectors $\{u_1, u_2, ..., u_n\}$ are called a basis for vector space if any v in V can be written as $v = \alpha_1 u_1 + \alpha_2 u_2 + ... + \alpha_n u_n$

The set of all n-dimensional vectors is

- *u*₁,*u*₂,...,*u*_n are independent implies they form a basis, and vice versa
- u_1, u_2, \dots, u_n give an orthonormal basis if $1, |u_i| = 1 \quad \forall i$

 $2. u_i \perp u_j \quad \forall i \neq j$


Matrices


- Rank of a matrix is the number of linearly independent rows (or equivalently columns)
- A square matrix is non-singular if its rank equal to the number of rows. If its rank is less than number of rows it is singular.

1295 2748 9436

5864

- Identity matrix $I = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$
- Matrix A is symmetric if A=A^T

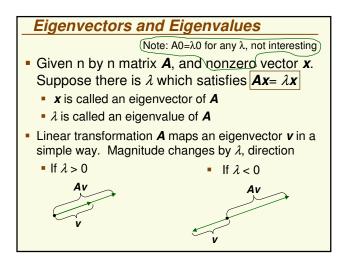
Matrices

- **Inverse** of a square matrix **A** is matrix \mathbf{A}^{-1} s.t. $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$
- If A is singular or not square, inverse does not exist. Pseudo-inverse A[†] is defined whenever A^TA is not singular (it is square)

$$\bullet \mathbf{A} = (\mathbf{A} \mathbf{A}) \mathbf{A}$$

•
$$\mathbf{A}^{\mathsf{T}}\mathbf{A} = (\mathbf{A}^{\mathsf{T}}\mathbf{A})^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{A} = \mathbf{I}$$

Linear Transformations A linear transformation from vector space V to vector space U is a mapping which can be represented by a matrix M: u = Mv If U and V have the same dimension, M is a square matrix In pattern recognition, often U has smaller dimensionality than V, i.e. transformation M is used to reduce the number of features.


Matrices

Determinant of n by n matrix **A** is

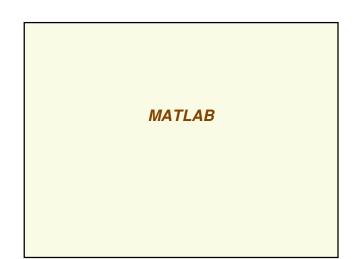
$$\det(A) = \sum_{k=1}^{n} (-1)^{k+i} a_{ik} \det(A_{ik})$$

- Where A_{ik} obtained from A by removing the ith row and kth column
- Absolute value of determinant gives the volume of parallelepiped spanned by the matrix rows

$$\begin{cases} \beta_1 a^1 + \beta_2 a^2 + \dots + \beta_n a^n \\ \beta_i \in [0,1] \quad \forall i \end{cases}$$

Eigenvectors and Eigenvalues

- If **A** is real and symmetric, then all eigenvalues are real (not complex)
- If **A** is non singular, all eigenvalues are non zero
- If **A** is positive definite, all eigenvalues are positive
- Starting matlab xterm -fn 12X24
 matlab
- Basic Navigation quit
 more
 help general
- Scalars, variables, basic arithmetic
- Clear
 + * / ^
 help arith
- Relational operators
- ==,&,|,~,xor
 help relop
- Lists, vectors, matrices
- A=[2 3;4 5]
 A'
- Matrix and vector operations
- find(A>3), colon operator
 * / ^ * / ^
- eye(n),norm(A),det(A),eig(A)
 max,min,std


- Elementary functions help elfun
 Data types
 double
 Char

- Char
 Programming in Matlab

 ... m files
 scripts
 function y=square(x)
 help lang

 Flow control

 if l== 1else end, if else if end
 for i=1:0.5:2 ... end
 while i == 1 ... end
 Return
 help lang
- help lang
 Graphics
 - help graphicshelp graph3d
- File I/O
 load,save
 fopen, fclose, fprintf, fscanf
- help matfun

