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alotis
known
“easier”

little is
known
“harder”

Today

Bayesian Decision theory

Finish Matlab Introduction

Course Roadmap

Probability Topic: Conditional distributions
Bayesian Decision Theory

= Two category classification

= Multiple category classification

= Discriminant Functions

= Know probability distribution of the
categories

= never happens in real world
= Do not even need training data
= Can design optimal classifier

alotis
known
“easier”

Example
respected fish expert says that salmon’s length
has distribution N(5,1) and sea bass’s length
has distribution N(10,4)
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little is
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ML and Bayesian parameter estimation

Non-Parametric Methods

= Shape of probability distribution is known |arotis
known

= Happens sometimes "easier’

bass salmon salmon

= Labeled training data === o o=

= Need to estimate parameters of probability ®

distribution from the training data

Example
respected fish expert says salmon’s i
length has distribution Mu,07) and sea - / \
bass’s length has distribution Mg,02) =/
* Need to estimate parameters p,,0%, 1,02

A 4

= Then can use the methods from the little is
bayesian decision theory known
‘harder”

= Neither probability distribution nor alotis

. .. . . k
discriminant function is known s
= Happens quite often
= All we have is labeled data

salmon bass salmon salmon

= Estimate the probability distribution
from the labeled data o

little is
known
“harder”

Linear discriminant functions and Neural Nets

= No probability distribution (no shape or alot is
parameters are known) known

= Labeled data g, gmer gmer

= The shape of discriminant functions is

known
@ A/._.\ linear
I . oo discriminant,
< e .. .
& function
g)

. leng;th
= Need to estimate parameters of the 3

little is

discriminant function (parameters of the Known

line in case of linear discriminant)

Unsupervised Learning and Clustering

i Iot i
= Datais not labeled iﬁgv;i
= Happens quite often “easier”

D
npm W

1. Estimate the probability distribution
from the unlabeled data

2. Cluster the data

—» b

little is
known
“harder”




Course Road Map

1. Bayesian Decision theory (rare case) alot is

Conditional Mass Function: Discrete RV

= Know probability distribution of the categories kBoWT)
= Do not even need training data
= Can design optimal classifier
2. ML and Bayesian parameter estimation
= Need to estimate Parameters of probability dist.
= Need training data
3. Non-Parametric Methods
= No probability distribution, labeled data
4. Linear discriminant functions and Neural Nets
= The shape of discriminant functions is known
= Need to estimate parameters of discriminant functions |
5. Unsupervised Learning and Clustering little is
= No probability distribution and unlabeled data known

= For discrete RV nothing new because mass
function is really a probability law

= Define conditional mass function of X given Y=y

P(x,y)
by P(x|y)= W
y is fixed
= This is a probability mass function because:
LPY) py)

L P IV)=2 =501

= This is really nothing new because:

P(x,y) _Pr[Xx=xnY =yl
Ply) = pPrly=y]

P(x|y)= =Pr[X=x|Y =y]

More on Probability
= For events A and B, we have defined
conditional law of total
probability probability
praig)=2HANB) | pr(a)_ > pr(A/B,)Pr(B,
Pr(B) =

Bayes’ rule Pr(B;]A)= _Pr(alB)Pr(e)

> Pr(A[B,)Pr(8,)

= Usually model with random variables not events.
Need equivalents of these laws for mass and density
functions (could go from random variables back to
events, but time consuming)

Conditional Mass Function: Bayes Rule

= The law of Total Probability:
P(x)=>P(x,y)=>P(x/y)P(y)
vy vy

= The Bayes Rule:

P(y,x) _ P(x/y)P(y)
Py /x)= P{x))( =ZP)Ex7y)P}Ey)




Conditional Density Function: Continuous RV

= Does it make sense to talk about conditional density
p(x]y) if Yis a continuous random variable? After
all, P Y=y]=0, so we will never see Y=y in practice

= Measurements have limited accuracy. Can interpret
observation y as observation in interval [y-g y+é€], and
observation x as observation in interval [x-g x+é€]

y-€ Y+€ X-€ X+€
—[—;—]— —[—;—]—

Conditional Density Function: Continuous RV

= Define conditional density function of X given Y=y
by

_plx.y)
p(x[y)= o)
y is fixed
= This is a probability density function because:
[ p(x,y)ax

. Ctply) _ply)_
_j_p(X/y)dX—_.f_ ) X0ty S )

= The law of Total Probability:

p(x)= [ p(x,y)dy = plx| y)ply)dy

Conditional Density Function: Continuous RV

P(x)

Let B(x) denote interval [x-£x+&]
Pr[x e B(x)]= [p(x)dx = 2¢ p(x)

X-g X-€ X X+€

= Similarly Pr[Y e B(y)]=2¢ p(y)
Pr[X e B(x)NY e B(y)]= 4¢2 p(x,y)

Pr[Xe B(x)|Y e B(y)]
2¢

= Thus we should have p(x/y)=

= Which can be simplified to:

Pr[X e B(x)NYe B(y)] _ p(x,y)
2¢ Prly e B(y)] ply)

p(x/y)=

Conditional Density Function: Bayes Rule

= The Bayes Rule:

ply | x)= ply,x) _ _ p(x|y)p(y)
e [ p(x1y)p(y)dy




Mixed Discrete and Continuous

= X discrete, Y continuous
= Bayes rule
_ ply1x)P(x)
Pixly)= p(y)
= X continuous, Y discrete
= Bayes rule

P(y | x)p(x)

p(x|y)= P(y)

Cats and Dogs

= Suppose we have these conditional probability
mass functions for cats and dogs
= P(small ears | dog) = 0.1, P(large ears | dog) = 0.9
= P(small ears | cat) = 0.8, P(large ears | cat) = 0.2
= Observe an animal with large ears
= Dog or a cat?
= Makes sense to say dog because probability of
observing large ears in a dog is much larger than
probability of observing large ears in a cat
= Prlarge ears | dog] = 0.9 > 0.2= Prlarge ears | cat] = 0.2
= We choose the event of larger probability, i.e.
maximum likelihood event

Bayesian Decision Theory

= Know probability distribution of the
categories
= Almost never the case in real life!

= Nevertheless useful since other cases can be
reduced to this one after some work

= Do not even need training data
= Can design optimal classifier

Example: Fish Sorting

= Respected fish expert says that
= Salmon’ length has distribution N(5,1)
= Sea bass’s length has distribution N(10,4)
= Recall ifr.v. is Muo?) then it's density is
1

P(’)=Ee 2

= Thus class conditional densities are
(1-108

1 1
I| salmon=——e ? I|basg=——e 2*
) saimon)= plbas9= -

20




Likelihood function
= Thus class conditional densities are
1 H 1 (I;10)2
S 2 = *4
Allsgimon=ze *  Allbess=orm®

= Fix length, let fish class vary. Then we get
likelihood function (it is not density and not
probability mass)
1 (1-5¥
——e 2 jf class=salmon

p({ |class)= Var
22z

(1-108%
e ¢ if class=bass

fixed

ML (maximum likelihood) Classifier

We would like to choose salmon if
Pr{length= 7 | salmor]> Pf{length=7 | bass]

= However, since length is a continuous r.v.,
Prlength=7 | salmon = Pf{length=7 | bass]=0

= |nstead, we choose class which maximizes likelihood

(1-10¢
1| salmon)=
pU| )= ﬁzﬂ

_(-5y
e 2 p(Ilbasé— e 24
= VL classifier: for an observed [

bass < ) )
p(I/saImori ?p(I/bass) in words: if p(l | salmon) > p(l | bass),
> e classify as salmon, else classify as bass

Likelihood vs. Class Conditional Density

0.4
—— salmon
0.3+ 1
p(/| class)
0.2r
0.1 (
% 5 g 10

7 length

Suppose a fish has length 7. How do we classify it?

22

Interval Justification

Thus we choose
the class (bass)
which is more
likely to have given
the observation

Prlic B(7) | bass]= 2¢ P(Z]bass)

= Vv

Prlle B(7) | salmon] = 2¢ _
24




Decision Boundary

0.4

How Prior Changes Decision Boundary?

= Without priors

— salmon
— bass salmon N sea bass
03 6.70 length
= How should this change with prior?
0.2 N\ = P(salmon) = 2/3
\ = P(bass) = 1/3
?
classify ps salmof /classify as seé»gziss e "7=‘ sea bass
J N\ 6.70 length
0 -
0 5 6.70 10 length .
Priors

= Prior comes from prior knowledge, no data
has been seen yet

= Suppose a fish expert says: in the fall, there
are twice as many salmon as sea bass

= Prior for our fish sorting problem
= P(salmon) = 2/3
= P(bass) = 1/3

= With the addition of prior to our model, how
should we classify a fish of length 77

Bayes Decision Rule

1. Have likelihood functions
p(length | salmon) and p(length | bass)

2. Have priors P(salmon) and P(bass)

= Question: Having observed fish of certain
length, do we classify it as salmon or bass?

= Natural Idea:
= salmon if P(salmon]/length)> P(bass|length)

= bassif P(bass/length)> P(salmonlength)

28




Posterior

= P(salmon | length) and P(bass | length)
are called posterior distributions, because
the data (length) was revealed (post data)

= How to compute posteriors? Not obvious
= From Bayes rule:
plsalmon, length) _ p(length| salmonP(salmor)

Back to Fish Sorting Example

P(salmon length = pllength) pllength)
= Similarly: pllength bas9P(bas3
_ pllength| bas: as.
P(bass|length= llength)

likelihood

1 1
I| salmon=——e 2 l|basg=——e ¢
) saimor)=— plilbas9=_ o

Priors:  P(salmon) = 2/3, P(bass) = 1/3

. , 1 =F 2 g
Solve inequality ?e 2 %
T

new decision
salmon _ boundary  seg bass

—> —_8
3° 2J2r

(1-10

(1-108

8

6.70 7.18 length

New decision boundary makes sense since

we expect to see more salmon

31

1
*—

3

MAP (maximum a posteriori) classifier

> salmon
P(salmon| length) ? P(bass| length)
bass <

salmon
pllength | salmon)P(salmon)>, p(length | bass)P(bass)

pllength) bass < pllength)

>salmon
pllength| salmonP(salmon ? p(I,Zength/ bass)P(bass)
bass<

Prior P(s)=2/3 and P(b)= 1/3 vs.
Prior P(s)=0.999 and P(b)= 0.001

salmon
bass

length




Likelihood vs Posteriors

1

likelihood

a p(Ifish class)

0.8

density with
respect to

length, area
p(ifoass) under the
; | curve is 1

0.6

0.4

0.2

a 5 10 length

posterior P(fish class| I)
mass function with respect to fish class, so for
each I, P(salmon| I)+P(bass| I) = 1

More on Posterior
posterior ’;’D‘f’l"’ioco)d Igilgs
cll)l= —————7
Plc|1) A

cause (class) ¢ == | effect (length)

= |If cause cis present, it easy to determine the
probability of effect Iwith likelihood P(/|c)

= Usually observe the effect I without knowing cause c.
Hard to determine cause ¢ because there may be
several causes which could produce same effect /

= Bayes rule makes I easy to determine posterior
P(c|l), if we know likelihood P(/|¢) and prior P(c)

More on Posterior

posterior density | | kelihood Prior
(our goal) (given) (given)
e Pl Pt

normalizing factor, often do not even nee
it for classification since P(l) does not
depend on class c¢. If we do need it, from
the law of total probability:

P(I)= p(I | salmon)p(salmon)+ p(I | bass)p(bass)
Notice this formula consists of likelihoods
and priors, which are given

More on Priors

= Prior comes from prior knowledge, no data
has been seen yet

= If there is a reliable source prior knowledge,
it should be used

= Some problems cannot even be solved
reliably without a good prior

= However prior alone is not enough, we still
need likelihood
= P(salmon)=2/3, P(sea bass)=1/3

= If I don’t let you see the data, but ask you to
guess, will you choose salmon or sea bass?}

6




More on Map Classifier
. likelihood Prior
e B[ Plo)
P(I)
= Do not care about P(l) when maximizing P(c|l)
Ple/l) ""<""P(1/c)P(c)

= If P(salmon)=P(bass) (uniform prior) MAP classifier
becomes ML classifier P(c [l)<P(1/c)

= |f for some observation I, P(llsalmon)=P(llbass), then
this observation is uninformative and decision is
based solely on the prior P(c [I)e< P(c)

Justification for MAP Classifier

= We are interested to minimize error not just for
one I, we really want to minimize the average
error over all /

Prlerror]= Ip(error, )dl= TPr[error [lp(Ddi

= If PHerror| Iis as small as possible, the integral is
small as possible

= But Bayes rule makes Prerror| I]as small as
possible

Thus MAP classifier minimizes the probability of error!

Justification for MAP Classifier

= Let’'s compute probability of error for the
MAP estimate:

> salmon
P(salmon|1)? P(bass|I)
bass<

= For any particular I, probability of error

Prierror| I]{ Albassl)

P(salmonl|/)

if we decide salmon

if we decide bass

More General Case

Thus MAP classifier is optimal for each
individual /'

38

= Let’s generalize a little bit
= Have more than one feature X = [X,,Xz,---,Xd]
= Have more than 2 classes {¢,,c,,...,C,,}

10



More General Case

= As before, for each jwe have

. p(x/c,) is likelihood of observation x given that
the true class is C;

. P(c,-) is prior probability of class ¢;
. P(C,- | x) is posterior probability of class c; given
that we observed data x
= Evidence, or probability density for data

p(x)=gp(x/c,)P(c,-)

General Bayesian Decision Theory

= In close cases we may want to refuse to
make a decision (let human expert handle
tough case)

= allow actions {a,,a,,...,a, }

= Suppose some mistakes are more costly
than others (classifying a benign tumor as
cancer is not as bad as classifying cancer
as benign tumor)

= Allow loss functions A /cj) describing loss
occurred when taking action @; when the true
class is c;

43

Minimum Error Rate Classification

= Want to minimize average probability of error

Prlerror]= I plerror, x)dx = j' Prlerror | x]p(x)dx
need to make this
as small as possible

= Prlerror| x]=1-P(c,; | x) if we decide class ¢;

* Prlerror | x] is minimized with MAP classifier
= Decide on class ¢; if 1
P(c, |x)>Plc; | x) Vj=#i 1-Plegx
o . 1-P(c,1X))\1-P(c,|x)
MAP classifier is optimal Pledv)

If we want to minimize the
probability of error

P(c4lX) [L p(c,lx)

Conditional Risk

= Suppose we observe x and wish to take
action ¢;

= If the true class is ¢;, by definition, we incur
loss g /c;)

= Probability that the true class is c¢; after
observing xis Plc, | x)

= The expected loss associated with taking

action ¢ is called conditional risk and it is:

(e, |x)= Y Alar I )Ple, 1)

11



Conditional Risk

sum over disjoint events  probability of

(different classes) class € J given
l observation x
In c1 A‘(‘ZI|C1)

Rle; 1x)= Mle; I¢;)Ple; | x)

— O 2| Majc)
penalty for ? L
taking action ¢, P2t of overall penalty c, Majcy)
ifobserve x | Which comes from event ¢ iajc)

i1Cq

that true class is CI-

Overall Risk

= Decision rule is a
function a(x) which for
every x specifies action
outof {a,a.a}

= The average risk for a(x)
R(a)= [ Rla(x) [ x)p(x)dx
need to make this as small as possible
= Bayes decision rule a(x) for every x is the action
which minimizes the conditional risk

Ala, /x)=gl(a,- ¢,)Ple, Ix)

= Bayes decision rule a(x) is optimal, i.e. gives the
minimum possible overall risk R*

Example: Zero-One loss function

= action g, is decision that true class is ¢;
_fo if i=j (no mistake)
A (a,. le; )— {1 otherwise  (mistake)

Rla, /%)= Ale; Ic,)P(c, Jx)=ZPe; %)=

=1

=1-P(c, | x) = Prlerror if decide c,]
= Thus MAP classifier optimizes R(a;|x)
Plc,/x)>Plc; [x) vj=i

= MAP classifier is Bayes decision rule under
zero-one loss function

Bayes Risk: Example

= Salmon is more tasty and expensive than sea bass
A, =AMsalmon|bass)=2 classify bass as salmon
Ay =Albass|salmon)=1 classify salmon as bass
Aee =2y, =0 no mistake, no loss
- Likelihoods pli|saimon=—1e3  plijbasg=—1 &
2z

e 24
227

= Priors P(salmon)= P(bass)
= Risk n(a/x)=i14(a/c,)p(c,/x)=ﬂasP(s/l)+ﬂ,,,,P(b/l)
R(salmon|1I) =I,1$sP(s [N+A,Pb/)=A,P(b/l)
R(bass|I)= A,.P(s [I)+ A,,P(b[1)= A,.P(s[])

12



Bayes Risk: Example
R(salmon|l)=AP(b/l) R(bass|I)=A,P(s/I)

= Bayes decision rule (optimal for our loss function)
on

< salm
ﬂ'sbp(bll)?'lbsp(s/l)
> bass

P(b/1) _ Ay

P(s/l) ~ A,
= Or, equivalently, since priors are equal:
P(1 | b)P(b)p(I) _ P(I/b) < s

p(DP(I[s)P(s) P(I]s) A,

= Need to solve

Likelihood Ratio Rule

= In 2 category case, use likelihood ratio rule
P(x/c,)> Az = A P(cz)
P(X/cz) '121_'111 P(c1)

likelihood fixed number
ratio Independent of x

= |f above inequality holds, decide ¢,
= Otherwise decide ¢,

Bayes Risk: Example
P(I[b) _ Ay

P(i/s)" 4,

= Need to solve

= Substituting likelihoods and losses

(1-10¢ (1-10¢ (1-10¢
. 8 8 8
AP P J2zexp <1 &P <1 o &P <in(1) &

(-5 (-5 (1-5§

1.2J/2zexp ? exp 2 exp 2

o =107 (-5

3 <0 © 3I°-201<0 & 1<6.6667

new decision
salmon  Pboundary sea bass

6.67 6.70 length

Discriminant Functions

= All decision rules have the same structure:
at observation x choose class ¢; s.t.

(x) vj=i

= ML decision rule: g,(x)=P(x/c,)
gi(x)=P(ci /X)

= Bayes decision rule: g;(x)=-R(c; [ x)

= MAP decision rule:

13



Discriminant Functions

Important Points

= Classifier can be viewed as network which
computes m discriminant functions and selects
category corresponding to the largest discriminant

select class
giving maximim
D S

——\__i )

discriminant ~ ~X >N
functions ‘9% (gl - tgl4)
PV

/
LT VU7
AN AN

features (%) (%)(%) (%)

= g,(x) can be replaced with any monotonically
increasing function, the results will be unchanged

= |f we know probability distributions for the
classes, we can design the optimal
classifier
= Definition of “optimal” depends on the
chosen loss function
= Under the minimum error rate (zero-one loss
function
= No prior: ML classifier is optimal
= Have prior: MAP classifier is optimal
= More general loss function
= General Bayes classifier is optimal

Decision Regions

= Discriminant functions split the feature
vector space X into decision regions

gz(x) = max{gi}

14



