CS434a/541a: Pattern Recognition Prof. Olga Veksler

Lecture 4

Normal Random Variable and its discriminant functions

1

Announcement

- Assignment 1 has been posted
 - Note changes to problem 3 and 6 made today
 - Problem 3(d) corrections to 0.99 and 0.01
 - Problem 6, c = number of classes

Outline

- Normal Random Variable
 - Properties
 - Discriminant functions

3

Why Normal Random Variables?

- Analytically tractable
- Works well when observation comes form a corrupted single prototype (μ)
- Is an optimal distribution of data for many classifiers used in practice

The Univariate Normal Density

x is a scalar (has dimension 1)

$$p(x) = \frac{1}{\sqrt{2\pi} \sigma} exp \left[-\frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^{2} \right],$$

Where:

 μ = mean (or expected value) of x

 σ^2 = variance

5

FIGURE 2.7. A univariate normal distribution has roughly 95% of its area in the range $|x - \mu| \le 2\sigma$, as shown. The peak of the distribution has value $p(\mu) = 1/\sqrt{2\pi}\sigma$. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

Several Features

- What if we have several features x₁, x₂, ..., x_d
 - each normally distributed
 - may have different means
 - may have different variances
 - may be dependent or independent of each other
- How do we model their joint distribution?

•

The Multivariate Normal Density

• Multivariate normal density in *d* dimensions is:

$$p(x) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} exp \left[-\frac{1}{2} (x - \mu)^t \frac{\Sigma^{-1}}{(x - \mu)} (x - \mu) \right]$$
determinant of Σ

$$\Sigma = \begin{bmatrix} \sigma_1^2 & \cdots & \sigma_{1d} \\ \vdots & \ddots & \vdots \\ \sigma_{d1} & \cdots & \sigma_d^2 \end{bmatrix} \qquad \begin{aligned} \mathbf{x} &= [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_d]^t \\ \boldsymbol{\mu} &= [\mu_1, \mu_2, \dots, \mu_d]^t \end{aligned}$$

covariance of x_1 and x_d

- Each x_i is $N(\mu_i, \sigma_i^2)$
 - to prove this, integrate out all other features from the joint density
 8

More on Σ

- $\mathbf{E} = \begin{bmatrix} \sigma_1^2 & \cdots & \sigma_{1d} \\ \vdots & \ddots & \vdots \\ \sigma_{d1} & \cdots & \sigma_d^2 \end{bmatrix}$ plays role similar to the role that σ^2 plays in one dimension
- From Σ we can find out
 - 1. The individual variances of features $x_1, x_2, ..., x_d$
 - 2. If features x_i and x_i are
 - independent σ_{ii} =0
 - have positive correlation $\sigma_{ii}>0$
 - have negative correlation σ_{ii} <0

9

The Multivariate Normal Density

• If Σ is diagonal $\begin{bmatrix} \sigma_1^2 & 0 & 0 \\ 0 & \sigma_2^2 & 0 \\ 0 & 0 & \sigma_3^2 \end{bmatrix}$ then the features $\mathbf{x}_i, \ldots, \mathbf{x}_j$ are independent, and

$$p(x) = \prod_{i=1}^{d} \frac{1}{\sigma_i \sqrt{2\pi}} \exp \left[-\frac{(x_i - \mu_i)^2}{2\sigma_i^2} \right]$$

The Multivariate Normal Density

$$p(x) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} exp \left[-\frac{1}{2} \frac{(x-\mu)^t \Sigma^{-1} (x-\mu)}{(x-\mu)^t \Sigma^{-1} (x-\mu)} \right]$$

$$p(x) = c \cdot exp \begin{bmatrix} -\frac{1}{2} [x_1 - \mu_1 & x_2 - \mu_2 & x_3 - \mu_3] \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \sigma_{13} \\ \sigma_{12} & \sigma_2^2 & \sigma_{23} \\ \sigma_{13} & \sigma_{23} & \sigma_3^2 \end{bmatrix}^{-1} \begin{bmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \\ x_3 - \mu_3 \end{bmatrix}$$
normalizing

constant scalar s (single number), the closer s to 0 the larger is p(x)

• Thus P(x) is larger for smaller $(x-\mu)^t \Sigma^{-1} (x-\mu)$

11

$(\mathbf{X}-\mu)^t \Sigma^{-1}(\mathbf{X}-\mu)$

- Σ is positive semi definite ($\mathbf{x}^t \Sigma \mathbf{x} > = 0$)
- If $x^t \Sigma x = 0$ for nonzero x then $\det(\Sigma) = 0$. This case is not interesting, p(x) is not defined
 - 1. one feature vector is a constant (has zero variance)
 - 2. or two components are multiples of each other
- so we will assume Σ is positive definite $(\mathbf{x}^t \Sigma \mathbf{x} > 0)$
- If Σ is positive definite then so is Σ⁻¹

$(\mathbf{X}-\boldsymbol{\mu})^t \boldsymbol{\Sigma}^{-1} (\mathbf{X}-\boldsymbol{\mu})$

- Positive definite matrix of size d by d has d distinct real eigenvalues and its d eigenvectors are orthogonal
- Thus if Φ is a matrix whose columns are normalized eigenvectors of Σ, then Φ⁻¹= Φ^t
- $\Sigma \Phi = \Phi \Lambda$ where Λ is a diagonal matrix with corresponding eigenvalues on the diagonal
- Thus $\Sigma = \Phi \Lambda \Phi^{-1}$ and $\Sigma^{-1} = \Phi \Lambda^{-1} \Phi^{-1}$
- Thus if $\Lambda^{-1/2}$ denotes matrix s.t. $\Lambda^{-1/2}\Lambda^{-1/2} = \Lambda^{-1}$

$$\Sigma^{-1} = \left(\Phi \Lambda^{-\frac{1}{2}} \right) \left(\Phi \Lambda^{-\frac{1}{2}} \right)^t = M M^t$$

$$(\mathbf{X}-\mu)^t \Sigma^{-1}(\mathbf{X}-\mu)$$

Thus

$$(x - \mu)^{t} \Sigma^{-1}(x - \mu) = (x - \mu)^{t} MM^{t}(x - \mu) =$$

$$= (M^{t}(x - \mu))^{t} (M^{t}(x - \mu)) = |M^{t}(x - \mu)|^{2}$$

- Thus $(x-\mu)^t \Sigma^{-1}(x-\mu) = \left| M^t(x-\mu) \right|^2$ where $M^t = \Lambda^{-\frac{1}{2}} \Phi^{-1}$ scaling rotation matrix matrix
- Points x which satisfy $\left| \mathbf{M}^{t}(\mathbf{x} \boldsymbol{\mu}) \right|^{2} = \mathbf{const}$ lie on an ellipse

$(\mathbf{X}-\boldsymbol{\mu})^{t}\boldsymbol{\Sigma}^{-1}(\mathbf{X}-\boldsymbol{\mu})$

 $(x-\mu)^{t}(x-\mu)$ usual (Eucledian) distance between x and μ

points x at equal Eucledian distance from μ lie on a circle

 $(x-\mu)^t \sum_{i=1}^{-1} (x-\mu)$ Mahalanobis distance between x and μ

points \mathbf{x} at equal $\boldsymbol{\omega}$ Mahalanobis distance from μ lie on an ellipse: Σ stretches circles to ellipses

2-d Multivariate Normal Density

Can you see much in this graph?

• At most you can see that the mean is around [0,0], but can't really tell if x_1 and x_2 are correlated

2-d Multivariate Normal Density

How about this graph?

17

2-d Multivariate Normal Density

- Level curves graph
 - p(x) is constant along each contour
 - topological map of 3-d surface

- Now we can see much more
 - x_1 and x_1 are independent
 - σ_1^2 and σ_2^2 are equal

The Multivariate Normal Density

- If X has density $N(\mu, \Sigma)$ then AX has density $N(A^t\mu, A^t\Sigma A)$
 - Thus X can be transformed into a spherical normal variable (covariance of spherical density is the identity matrix I) with whitening transform

Discriminant Functions

 Classifier can be viewed as network which computes m discriminant functions and selects category corresponding to the largest discriminant

• $g_i(x)$ can be replaced with any monotonically increasing function, the results will be unchanged

Discriminant Functions

 The minimum error-rate classification is achieved by the discriminant function

$$g_i(x) = P(c_i | x) = P(x/c_i)P(c_i)/P(x)$$

 Since the observation x is independent of the class, the equivalent discriminant function is

$$g_i(x) = P(x/c_i)P(c_i)$$

For normal density, convinient to take logarithms.
 Since logarithm is a monotonically increasing function, the equivalent discriminant function is

$$g_i(x) = \ln P(x|c_i) + \ln P(c_i)$$

23

Discriminant Functions for the Normal Density

• Suppose we for class c_i its class conditional density $p(x|c_i)$ is $N(\mu_i, \Sigma_i)$

$$p(x \mid c_i) = \frac{1}{(2\pi)^{d/2} |\Sigma_i|^{1/2}} \exp \left[-\frac{1}{2} (x - \mu_i)^t \Sigma_i^{-1} (x - \mu_i) \right]$$

- Discriminant function $g_i(x) = \ln P(x/c_i) + \ln P(c_i)$
- Plug in $p(x|c_i)$ and $P(c_i)$ get

constant for all i

$$g_i(x) = -\frac{1}{2}(x - \mu_i)^t \Sigma_i^{-1}(x - \mu_i) + \frac{d}{2}\ln 2\pi - \frac{1}{2}\ln |\Sigma_i| + \ln P(c_i)$$

$$g_{i}(x) = -\frac{1}{2}(x - \mu_{i})^{t} \Sigma_{i}^{-1}(x - \mu_{i}) - \frac{1}{2} \ln |\Sigma_{i}| + \ln P(c_{i})$$

Case $\Sigma_i = \sigma^2 I$

- That is $\sum_{i} = \begin{bmatrix} \sigma^{2} & 0 & 0 \\ 0 & \sigma^{2} & 0 \\ 0 & 0 & \sigma^{2} \end{bmatrix} = \sigma^{2} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
- In this case, features x_1 , x_2 , ..., x_d are independent with different means and equal variances σ^2

25

Case $\Sigma_i = \sigma^2 I$

Discriminant function

$$g_i(x) = -\frac{1}{2}(x - \mu_i)^t \sum_{i=1}^{-1} (x - \mu_i) - \frac{1}{2} \ln |\Sigma_i| + \ln P(c_i)$$

- Det(Σ_i)= σ^{2d} and Σ_i^{-1} =(1/ σ^2) $I = \begin{bmatrix} \frac{1}{\sigma^2} & 0 & 0 \\ 0 & \frac{1}{\sigma^2} & 0 \\ 0 & 0 & \frac{1}{\sigma^2} \end{bmatrix}$
- Can simplify discriminant function

$$g_i(x) = -\frac{1}{2}(x - \mu_i)^t \frac{I}{\sigma^2}(x - \mu_i) - \frac{1}{2}\ln(\sigma^{2d}) + \ln P(c_i)$$
constant for all i

$$g_{i}(x) = -\frac{1}{2\sigma^{2}}(x - \mu_{i})^{t}(x - \mu_{i}) + \ln P(c_{i}) =$$

$$= -\frac{1}{2\sigma^{2}}|x - \mu_{i}|^{2} + \ln P(c_{i})$$

Case $\Sigma_i = \sigma^2 I$ Geometric Interpretation

If
$$\operatorname{In} P(c_i) = \operatorname{In} P(c_j)$$
, then

$$g_i(x) = -|x - \mu_i|^2$$

voronoi diagram: points in each cell are closer to the mean in that cell than to any other mean

If
$$\ln P(c_i) \neq \ln P(c_j)$$
, then
$$g_i(x) = -\frac{1}{2\sigma^2} |x - \mu_i|^2 + \ln P(c_i)$$

Case $\Sigma_i = \sigma^2 I$

$$g_{i}(x) = -\frac{1}{2\sigma^{2}}(x - \mu_{i})^{t}(x - \mu_{i}) + \ln P(c_{i}) =$$

$$= -\frac{1}{2\sigma^{2}}(x^{t}(x - \mu_{i})^{t}(x - x^{t}\mu_{i} + \mu_{i})^{t}(x - \mu_{i})^{t}(x - x^{t}\mu_{i}) + \ln P(c_{i})$$
constant

$$g_{i}(x) = -\frac{1}{2\sigma^{2}}(-2\mu_{i}^{t}x + \mu_{i}^{t}\mu_{i}) + \ln P(c_{i}) = \frac{\mu_{i}^{t}}{\sigma^{2}}x + (-\frac{\mu_{i}^{t}\mu_{i}}{2\sigma^{2}} + \ln P(c_{i}))$$

$$g_{i}(x) = w_{i}^{t}x + w_{i0}$$

discriminant function is linear

Case $\Sigma_i = \sigma^2 I$

$$g_{i}(x) = w_{i}^{t} x + w_{i0}$$

$$linear in x:$$

$$w_{i}^{t} x = \sum_{i=1}^{d} w_{i} x_{i}$$

- Thus discriminant function is linear,
- Therefore the decision boundaries $g_i(x) = g_i(x)$ are linear
 - lines if x has dimension 2
 - planes if x has dimension 3
 - hyper-planes if x has dimension larger than 3

Case $\Sigma_i = \sigma^2 I$: Example

• 3 classes, each 2-dimensional Gaussian with

$$\mu_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 $\mu_2 = \begin{bmatrix} 4 \\ 6 \end{bmatrix}$
 $\mu_3 = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$
 $\Sigma_1 = \Sigma_2 = \Sigma_3 = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$

- Priors $P(c_1) = P(c_2) = \frac{1}{4}$ and $P(c_3) = \frac{1}{2}$
- Discriminant function is $g_i(x) = \frac{\mu_i^t}{\sigma^2} x + \left(-\frac{\mu_i^t \mu_i}{2\sigma^2} + \ln P(c_i) \right)$
- Plug in parameters for each class

$$g_1(x) = \frac{[1\ 2]}{3}x + (-\frac{5}{6} - 1.38)$$
 $g_2(x) = \frac{[4\ 6]}{3}x + (-\frac{52}{6} - 1.38)$

$$g_3(x) = \frac{[-2 \ 4]}{3}x + (-\frac{20}{6} - 0.69)$$

Case $\Sigma_i = \sigma^2 I$: Example

- Need to find out when $g_i(x) < g_i(x)$ for i,j=1,2,3
- Can be done by solving $g_i(x) = g_i(x)$ for i,j=1,2,3
- Let's take $g_1(x) = g_2(x)$ first

$$\frac{[1\ 2]}{3}x + (-\frac{5}{6} - 1.38) = \frac{[4\ 6]}{3}x + (-\frac{52}{6} - 1.38)$$

• Simplifying, $\frac{\left[-3-4\right]}{3}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = -\frac{47}{6}$

$$-x_1 - \frac{4}{3}x_2 = -\frac{47}{6}$$

line equation

3

Case $\Sigma_i = \sigma^2 I$: Example

• Next solve $g_2(x) = g_3(x)$

$$2x_1 + \frac{2}{3}x_2 = 6.02$$

• Almost finally solve $g_1(x) = g_3(x)$

$$x_1 - \frac{2}{3}x_2 = -1.81$$

• And finally solve $g_1(x) = g_2(x) = g_3(x)$

$$x_1 = 1.4$$
 and $x_2 = 4.82$

Case $\Sigma_i = \sigma^2 I$: Example

• Priors $P(c_1) = P(c_2) = \frac{1}{4}$ and $P(c_3) = \frac{1}{2}$

lines connecting means are perpendicular to decision boundaries

33

Case $\Sigma_i = \Sigma$

- Covariance matrices are equal but arbitrary
- In this case, features x₁, x₂,..., x_d are not necessarily independent

$$\varSigma = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}$$

Case $\Sigma_i = \Sigma$

Discriminant function

$$g_i(x) = -\frac{1}{2}(x - \mu_i)^t \sum_{i=1}^{-1} (x - \mu_i) - \frac{1}{2} \ln \sum_{i=1}^{\infty} |+\ln P(c_i)|$$
constant
for all classes

Discriminant function becomes

$$g_{i}(x) = -\frac{1}{2}(x - \mu_{i})^{t} \sum_{i=1}^{-1} (x - \mu_{i}) + \ln P(c_{i})$$
squared Mahalanobis Distance

- Mahalanobis Distance $\|x-y\|_{\Sigma^{-1}}^2 = (x-y)^t \sum_{x}^{-1} (x-y)^t$
- If Σ=I, Mahalanobis Distance becomes usual Eucledian distance

$$||x-y||_{l^{-1}}^2 = (x-y)^t (x-y)$$

Eucledian vs. Mahalanobis Distances

$$|x-\mu|^2=(x-\mu)^t(x-\mu)$$

points x at equal Eucledian distance from μ lie on a circle

$$|x-\mu|^2 = (x-\mu)^t (x-\mu)$$
 $||x-\mu||_{\Sigma^{-1}}^2 = (x-\mu)^t \sum_{k=0}^{-1} (x-\mu)^k$

eigenvectors of Σ

points x at equal Mahalanobis distance from μ lie on an ellipse: Σ stretches cirles to ellipses

Case $\Sigma_i = \Sigma$ Geometric Interpretation

If
$$\ln P(c_i) = \ln P(c_j)$$
, then $g_i(x) = -\|x - \mu_i\|_{\mathcal{E}^{-1}}$ decision region for c_2 decision region for c_3 μ_1 μ_3 decision region

points in each cell are closer to the mean in that cell than to any other mean under Mahalanobis distance

Case $\Sigma_i = \Sigma$

for c_1

Can simplify discriminant function:

$$g_{i}(x) = -\frac{1}{2}(x - \mu_{i})^{t} \sum_{i=1}^{-1} (x - \mu_{i}) + \ln P(c_{i}) =$$

$$= -\frac{1}{2} \left(x^{t} \sum_{i=1}^{-1} x - \mu_{i}^{t} \sum_{i=1}^{-1} x - x^{t} \sum_{i=1}^{-1} \mu_{i} + \mu_{i}^{t} \sum_{i=1}^{-1} \mu_{i} \right) + \ln P(c_{i}) =$$

$$= -\frac{1}{2} \left(x^{t} \sum_{i=1}^{-1} x - 2\mu_{i}^{t} \sum_{i=1}^{-1} x + \mu_{i}^{t} \sum_{i=1}^{-1} \mu_{i} \right) + \ln P(c_{i}) =$$

$$constant \ for \ all \ classes$$

$$= -\frac{1}{2} \left(-2\mu_{i}^{t} \sum_{i=1}^{-1} x + \mu_{i}^{t} \sum_{i=1}^{-1} \mu_{i} \right) + \ln P(c_{i})$$

$$= \mu_{i}^{t} \sum_{i=1}^{-1} x + \left(\ln P(c_{i}) - \frac{1}{2} \mu_{i}^{t} \sum_{i=1}^{-1} \mu_{i} \right) = w_{i}^{t} x + w_{i0}$$

Thus in this case discriminant is also linear

Case $\Sigma_i = \Sigma$: Example

3 classes, each 2-dimensional Gaussian with

$$\mu_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \qquad \mu_2 = \begin{bmatrix} -1 \\ 5 \end{bmatrix} \qquad \mu_3 = \begin{bmatrix} -2 \\ 4 \end{bmatrix} \qquad \Sigma_1 = \Sigma_2 = \Sigma_3 = \begin{bmatrix} 1 & -1.5 \\ -1.5 & 4 \end{bmatrix}$$

$$P(c_1) = P(c_2) = \frac{1}{4} \qquad \qquad P(c_3) = \frac{1}{2}$$

• Again can be done by solving $g_i(x) = g_i(x)$ for i,j=1,2,3

Case $\Sigma_i = \Sigma$: Example

Let's solve in general first

$$g_i(x) = g_i(x)$$

$$\mu_{j}^{t} \Sigma^{-1} x + \left(\ln P(c_{j}) - \frac{1}{2} \mu_{j}^{t} \Sigma^{-1} \mu_{j} \right) = \mu_{i}^{t} \Sigma^{-1} x + \left(\ln P(c_{i}) - \frac{1}{2} \mu_{i}^{t} \Sigma^{-1} \mu_{i} \right)$$

Let's regroup the terms

$$\left(\mu_{j}^{t} \Sigma^{-1} - \mu_{i}^{t} \Sigma^{-1}\right) \mathbf{x} = -\left(\ln \mathbf{P}(\mathbf{c}_{j}) - \frac{1}{2} \mu_{j}^{t} \Sigma^{-1} \mu_{j}\right) + \left(\ln \mathbf{P}(\mathbf{c}_{i}) - \frac{1}{2} \mu_{i}^{t} \Sigma^{-1} \mu_{i}\right)$$

• We get the line where $g_i(x) = g_i(x)$

$$\left(\mu_j^t - \mu_i^t\right) \Sigma^{-1} \mathbf{x} = \left(\ln \frac{P(c_i)}{P(c_j)} + \frac{1}{2} \mu_j^t \Sigma^{-1} \mu_j - \frac{1}{2} \mu_i^t \Sigma^{-1} \mu_i \right)$$

scalar

Case $\Sigma_i = \Sigma$: Example

$$(\mu_j^t - \mu_i^t) \Sigma^{-1} \mathbf{x} = \left(\ln \frac{P(\mathbf{c}_i)}{P(\mathbf{c}_j)} + \frac{1}{2} \mu_j^t \Sigma^{-1} \mu_j - \frac{1}{2} \mu_i^t \Sigma^{-1} \mu_i \right)$$

Now substitute for i,j=1,2

$$\begin{bmatrix} -2 & 0 \end{bmatrix} x = 0$$
$$x_1 = 0$$

Now substitute for i,j=2,3

$$[-3.14 -1.4]x = -2.41$$

 $3.14x_1 + 1.4x_2 = 2.41$

Now substitute for i,j=1,3

$$[-5.14 -1.43]x = -2.41$$

5.14 $x_1 + 1.43x_2 = 2.41$

Case $\Sigma_i = \Sigma$: Example

• Priors $P(c_1) = P(c_2) = \frac{1}{4}$ and $P(c_3) = \frac{1}{2}$

lines connecting means are **not** in general perpendicular to decision boundaries

General Case Σ_i are arbitrary

- Covariance matrices for each class are arbitrary
- In this case, features $x_1, x_2, ..., x_d$ are not necessarily independent

 $\Sigma_j = \begin{bmatrix} 1 & -0.9 \\ -0.9 & 4 \end{bmatrix}$

General Case Σ_i are arbitrary

From previous discussion,

$$g_{i}(x) = -\frac{1}{2}(x - \mu_{i})^{t} \Sigma_{i}^{-1}(x - \mu_{i}) - \frac{1}{2} \ln |\Sigma_{i}| + \ln P(c_{i})$$

This can't be simplified, but we can rearrange it:

$$g_{i}(x) = -\frac{1}{2} \left(x^{t} \Sigma_{i}^{-1} x - 2 \mu_{i}^{t} \Sigma_{i}^{-1} x + \mu_{i}^{t} \Sigma_{i}^{-1} \mu_{i} \right) - \frac{1}{2} \ln \left| \Sigma_{i} \right| + \ln P(c_{i})$$

$$g_{i}(x) = x^{t} \left(-\frac{1}{2} \Sigma_{i}^{-1} \right) x + \frac{\mu_{i}^{t} \Sigma_{i}^{-1}}{2} x + \left(-\frac{1}{2} \mu_{i}^{t} \Sigma_{i}^{-1} \mu_{i} - \frac{1}{2} \ln |\Sigma_{i}| + \ln P(c_{i}) \right)$$

$$g_i(x) = x^t W x + \frac{w^t}{w^t} x + \frac{w_{i0}}{w^t}$$

General Case Σ_i are arbitrary

$$g_{i}(x) = x^{t}Wx + w^{t}x + w_{i0}$$

$$quadratic in x since$$

$$x^{t}Wx = \sum_{j=1}^{d} \sum_{i=1}^{d} w_{ij}x_{i}x_{j} = \sum_{i,j=1}^{d} w_{ij}x_{i}x_{j}$$

- Thus the discriminant function is quadratic
- Therefore the decision boundaries are quadratic (ellipses and parabolloids)

45

General Case Σ_i are arbitrary: Example

• 3 classes, each 2-dimensional Gaussian with

$$\mu_{1} = \begin{bmatrix} -1 \\ 3 \end{bmatrix} \qquad \mu_{2} = \begin{bmatrix} 0 \\ 6 \end{bmatrix} \qquad \mu_{3} = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$$

$$\Sigma_{1} = \begin{bmatrix} 1 & -0.5 \\ -0.5 & 2 \end{bmatrix} \qquad \Sigma_{2} = \begin{bmatrix} 2 & -2 \\ -2 & 7 \end{bmatrix} \qquad \Sigma_{3} = \begin{bmatrix} 1 & 1.5 \\ 1.5 & 3 \end{bmatrix}$$

- Priors: $P(c_1) = P(c_2) = \frac{1}{4}$ and $P(c_3) = \frac{1}{2}$
- Again can be done by solving $\mathbf{g}_i(\mathbf{x}) = \mathbf{g}_j(\mathbf{x})$ for i,j=1,2,3 $\mathbf{g}_i(\mathbf{x}) = \mathbf{x}^t \left(-\frac{1}{2} \Sigma_i^{-1} \right) \mathbf{x} + \mu_i^t \Sigma_i^{-1} \mathbf{x} + \left(-\frac{1}{2} \mu_i^t \Sigma_i^{-1} \mu_i \frac{1}{2} \ln |\Sigma_i| + \ln P(\mathbf{c}_i) \right)$
- Need to solve a bunch of quadratic inequalities of 2 variables

General Case Σ_i are arbitrary: Example

$$\mu_{1} = \begin{bmatrix} -1 \\ 3 \end{bmatrix} \quad \mu_{2} = \begin{bmatrix} 0 \\ 6 \end{bmatrix} \quad \mu_{3} = \begin{bmatrix} -2 \\ 4 \end{bmatrix} \qquad \qquad \Sigma_{1} = \begin{bmatrix} 1 & -0.5 \\ -0.5 & 2 \end{bmatrix} \quad \Sigma_{2} = \begin{bmatrix} 2 & -2 \\ -2 & 7 \end{bmatrix} \quad \Sigma_{3} = \begin{bmatrix} 1 & 1.5 \\ 1.5 & 3 \end{bmatrix}$$

$$P(c_{1}) = P(c_{2}) = \frac{1}{4} \qquad P(c_{3}) = \frac{1}{2}$$

Important Points

- The Bayes classifier when classes are normally distributed is in general quadratic
 - If covariance matrices are equal and proportional to identity matrix, the Bayes classifier is linear
 - If, in addition the priors on classes are equal, the Bayes classifier is the minimum Eucledian distance classifier
 - If covariance matrices are equal, the Bayes classifier is linear
 - If, in addition the priors on classes are equal, the Bayes classifier is the minimum Mahalanobis distance classifier
- Popular classifiers (Euclidean and Mahalanobis distance) are optimal only if distribution of data is appropriate (normal)