CS434a/541a: Pattern Recognition
Prof. Olga Veksler

Lecture 4

Normal Random Variable and its
discriminant functions

Announcement

= Assignment 1 has been posted
= Note changes to problem 3 and 6 made today
= Problem 3(d) corrections to 0.99 and 0.01
= Problem 6, ¢ = number of classes




Outline

= Normal Random Variable
= Properties
= Discriminant functions

Why Normal Random Variables?

= Analytically tractable
= Works well when observation comes
form a corrupted single prototype (u)

= |s an optimal distribution of data for
many classifiers used in practice




The Univariate Normal Density

= xis a scalar (has dimension 1)

= raon 5" |

Where:
M = mean (or expected value) of x
o2 = variance
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FIGURE 2.7, A univariate normal distribution has roughly 95% of its area in the range
|x — ji| = 2a, as shown. The peak of the distribution has value p(u) = 1/y/2na. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Fattern Classification. Copyright
© 2001 by John Wiley & Sons, Inc.




Several Features

= What if we have several features x,, X,, ..., X4
= each normally distributed
= may have different means
= may have different variances
= may be dependent or independent of each other

= How do we model their joint distribution?

The Multivariate Normal Density

= Multivariate normal density in d dimensions is:

1 1 inverse of X
p(x)= eXP[——(X—ﬂ)tE_1(X—ﬂ)]
(27[)d/2|2|1/2 2
determinant of X
0.12 o Oqg X=[X15 X5 -2y Xd]t
| - _ ;
&l - o2 H= [y ey oes ol

covariance of x; and x,

= Each x;is N(u;, 07
= to prove this, integrate out all other features from
the joint density 5




More on X

ny =

2
Or " O o

: . i |plays role similar to the role
04~ Oq | that o2 plays in one dimension

= From X2 we can find out

1. The individual variances of features
X5 Xy wnuy Xg

2. If features x; and x; are
= independent g;=0
= have positive correlation ¢;>0
" have negative correlation ;<0

The Multivariate Normal Density
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= If £ is diagonal | 2% S
3

independent, and

then the features x;,..., X;are

oo [1 o]t |

i1 O, 20,
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The Multivariate Normal Density

(X)= o ex —1_]
P 2mp g T 2
p(x)=c-ex —1[

' 2

normalizing

constant scalar s (single number), the closer s to 0 the larger is p(x)

= Thus P(x) is larger for smaller (x-u)Z(x—pu)

(X-p)Z'(x—p)
= X is positive semi definite (xtX x>=0)

= |f xtX' x=0 for nonzero x then det(X)=0. This case is
not interesting, p(x) is not defined

1. one feature vector is a constant (has zero
variance)

2. or two components are multiples of each other
= so we will assume Xis positive definite (xtX x >0)

= |f Xis positive definite then so is X~/




(x—p)Z7(x—p)

= Positive definite matrix of size d by d has d distinct
real eigenvalues and its d eigenvectors are
orthogonal

= Thus if @is a matrix whose columns are normalized
eigenvectors of Z, then @-'= @t

= YP=dA where Ais a diagonal matrix with
corresponding eigenvalues on the diagonal

= Thus Z=®AP! and L1 =PpA~! P~

= Thus if A=#2 denotes matrix s.t. A2 A-12= A1

1 1\!
= (qu'?](qu 2] = MM'!

(x—p)Z'(x—u)

= Thus
(X—pu)Z7(X=p)=(x-pu) MM (x - pu)=

= (M (x—p)) (W' (X~ p2))=|M* (x - o))

= Thus |(x—p)'Z™(x- ) =|M'(x— )]

7
where M'= A2 @'
scaling rotation
matrix matrix

= Points x which satisfy \M'(x—,u)\2 =const lie on an
ellipse




(x—p)X'(x-pu)

(x=p)(x-p)
usual (Eucledian)
distance between x and u

\crease3

points x at equal
Eucledian
distance from u
lie on a circle

(x—p)> (x-p)
Mahalanobis distance
between x and u

9@9 eigenvectors
» of X

. "9@/
points x at equal ™o,
Mahalanobis distance from
Mlie on an ellipse: X
stretches circles to ellipses

2-d Multivariate Normal Density

= Can you see much in this graph?

= At most you can see that the mean is around [0,0],
but can’t really tell if x, and x, are correlated




2-d Multivariate Normal Density

= How about this graph?
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2-d Multivariate Normal Density

= Level curves graph

= p(x) is constant along . / \
each contour *

= topological map of 3-d

surface \

= Now we can see much more  « « =

= X, and x, are independent
= o,2and o,? are equal




2-d Multivariate Normal Density
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The Multivariate Normal Density

= |f X has density N(u,X) then AX has density
N(Alu, A2 A)

= Thus X can be transformed into a spherical normal

variable (covariance of spherical density is the
identity matrix /) with whitening transform

R, -
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Discriminant Functions

= Classifier can be viewed as network which
computes m discriminant functions and selects
category corresponding to the largest discriminant

select class
giving maximim

discriminant
functions

= g;(x) can be replaced with any monotonically
increasing function, the results will be unchanged

11



Discriminant Functions

= The minimum error-rate classification is achieved by
the discriminant function

gi(x) = P(c; [x)=P(x|c)P(c)/P(x)

= Since the observation x is independent of the class,
the equivalent discriminant function is

gi(x) = P(x/c;)P(c))

= For normal density, convinient to take logarithms.
Since logarithm is a monotonically increasing
function, the equivalent discriminant function is

gi(x) = In P(x/c)+ In P(c;)

23

Discriminant Functions for the Normal Density

= Suppo_se we for class ¢; its class conditional density
p(xic) is N(u, %)

1 1
p(X|C,-)— 1/2 exp __(X_ﬂi)1271(x_ﬂi):|
(2”)dl'|zi| | 2

= Discriminant function g;,(x) = In P(x/c))+ In P(c,)

= Plug in p(x/c;) and P(c;) get

constgnt /or all i

9,004~ (x =)' 57 (= ) { S - 10z, PLc,)

9,0 =~ (x= ) 5 (X ~ 1) = ZInZ | +In Pl
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Case X, = ol

0 o?

= In this case, features x;, X, ,..., X4 are independent
with different means and equal variances 62

"\

o’ 0 0 100
= Thatis Y= 0 o° 0 =0'2-[0 10]
0 001

25

Case Y, = ol

= Discriminant function
1 _ 1
gi(x)=_5(x_lui)tz 1(x_lui)_§|n|2i|+lnp(ci)

1

s 00
1

v oge O
1

V0o

= Det(X)=0?¢ and X =(1/09)I -

= Can simplify discriminant function

g,-<x)=—%(x—u,-)'%(x—ui)—MlnP(ci)
o

constant for all i

1
20

gi(x)=- z(x_ﬂi)t(x_ﬂi)+lnp(ci)=

1
507 Ix— [ +InP(c,)

26
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Case X, = 0’ Geometric Interpretation

If InP(c;)=InP(c;), then If InP(c;)#InP(c;), then
gi(x)=_

2 L x=uf +InP(c,)

9/(x)=-x—s4 o

decision region

decision region | decision region

for ¢, for ¢,
K Hs3
X .
N C3 decision regig
for ¢4

decision region

decision region
for ¢,

for ¢,
voronoi diagram: points in each

cell are closer to the mean in that cell
than to any other mean

Case Y, = ol

1
gi(x) = _20_2 (X_ﬂi)t(x_/‘i) +InP(c;) =
=— 2;2 (XK~ ' X = X't + g, )+ InP(c;)
constant
for all classes
9,(X)= =5 (~244' X+ iy )+ InP(c))

g:(x)=

discriminant function is linear

28
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Case J, = &°l

linear in x:
d

wix= Zw,.x.

1

i=1

= Thus discriminant function is linear,
= Therefore the decision boundaries
g{x)=g;x) are linear
= |ines if x has dimension 2
= planes if x has dimension 3
= hyper-planes if x has dimension larger than 3

Case 2, = o°I: Example

= 3 classes, each 2-dimensional Gaussian with

woli] wef] wl nenenfid

= Priors P(c,)=P(cz)=% and P(c3)=%

ﬂ? ﬂfﬂ.
= Discriminant function is gi(X)=a—’2X+(—ﬁ+lnP(ci)J

= Plug in parameters for each class

3, 5 s, 52
g,(x)_7x+( 6 138 g.(x)= 3 X+( 6 1.38
a0="24x+( 2069

15



Case J;, = o°I: Example

= Need to find out when g;(x) < gj(x) for i,/=1,2,3
= Can be done by solving g{x) = g{(x) for i,j=1,2,3
= Let’s take g,(Xx) = g,(x) first

M X+ (—9- -1.38)= [4¢6] X+( 52 1.38
3 6 3 6
= Simplifying, [—3—4][x,]__4_7
3 |X:] 6
x4, __ ¥
1 3 2~ 6

line equation !

Case 2, = o°I: Example

= Next solve g,(x) = g5(x)
2X, +£ X,=6.02
3

= Almost finally solve g;(x) = g5(x)

X, —%xz =-1.81

= And finally solve g,(x) = g,(X) = g5(x)
x,=1.4 and x,=4.82

32
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Case J;, = o°I: Example

1

= Priors P(c,)=P(c2)=z !

and P(c,)= 2

lines connecting
means
are perpendicular to
decision boundaries

33

Casel).=J)

= Covariance matrices are equal but arbitrary

= In this case, features x;, X, ,..., X4 are not
necessarily independent

34
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Casel, =)

Discriminant function
1
gi(x)= _%(X_ﬂi)tz _1(X_ﬂi)_%i| +InP(c;)

constant
) .. . for all classes
= Discriminant function becomes

1 N
g:(x)= —E(X—,u,-)tz "(x—p;)+InP(c;)
squared Mahalanobis Distance

Mahalanobis Distance |x-y[i. =(x-y)Y."(x-y)

If 2=1, Mahalanobis Distance becomes usual
Eucledian distance

[x =yl =(x=y)(x-y)

Eucledian vs. Mahalanobis Distances

X -d =(x-p)' (x=p) | =g = (=)' Y (x - 1)
eigenvectors of X

points x at equal points x at equal
Eucledian Mahalanobis distance from

distance from u M lie on an ellipse:
lie on a circle Y stretches cirles to ellipses
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Case 2; = ¥ Geometric Interpretation

If InP(c;)=InP(c;), then If InP(c;);eInP(cj), then
gi(x)= _”X_ﬂi”);—1 gi(x)= _E"X_/‘i”z—v +InP(c;)
decision region decision region
for ¢4
M, | decision region decision region
. for c; for 3
H1 Hs Hs
decision region * y
for ¢, decision region

for ¢,

points in each cell are closer to the
mean in that cell than to any other

mean under Mahalanobis distance

Casel. =X

= Can simplify discriminant function:

1
g:(x)= _E(X_ﬂi)tz “(x—p)+InP(c)) =
= _%(X'Z“x—y,.'z“x— X'E '+ p2 )+ InP(c,) =

= —%(x><x —2u'3 X+ p'E )+ InP(c,) =
constant for all classes

=~ Me2us x4 piz )+ InP(c))
- - (A - -

= Thus in this case discriminant is also linear
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Case X, = X: Example

= 3 classes, each 2-dimensional Gaussian with

1 -1 - 17 -1.
ﬂ1=[2] ﬂ2=[5] ﬂ3=[42] 21=22=23=|:_1_5 25]

= Again can be done by solving gi(x) = g;(x) for i,j=1,2,3

Case 2; = X: Example

= Let’s solve in general first
g,(x)=g,(x)

uj.E"x+(InP(cj)—%,u;E",u,) ,u’Z"x+(lnP(c )——,u,E ,u,

\- Let’s regrou terms \'

(ﬂ}E"—ﬂi'E") (lnP(C) SuE ﬂ,) (IHP(C,-)—%#IE"/I,-)
= We get the line where g,.(x)= g,(x)

_ (07
(! — ’X{ Ple), ﬂ,E ;-

1 51
2.
Pl s Lz pui

2

row vector
scalar

20



Case X, = X: Example

(- ot )z x = [ln g;zlﬁ +%ﬂ52"ﬂ, —%ﬂi’i"ﬂij
= Now substitute for i,j=1,2
[-2 o]x=0
x,=0
= Now substitute for i,j=2,3

[-3.14 -1.4]x=-2.41
3.14x,+1.4x, =2.41

= Now substitute for i,j=1,3
[-5.14 -1.43]x=-2.41
5.14x,+1.43x, = 2.41

Case 2. =Y : Example

= Priors P(c,):P(cz)=% and p(ca)=%

lines connecting
means
are not in general
perpendicular to
decision boundaries

4
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General Case X; are arbitrary

= Covariance matrices for each class are arbitrary

= In this case, features x;, X, ,..., X4 are not
necessarily independent

43

General Case X; are arbitrary

= From previous discussion,

9,0 =~ (x= ) 5 (X ~ 1) = ZInZ | +In Pl

= This can’t be simplified, but we can rearrange it:

0,00 =~ (X' - 2157 x + 57 1) - JIn | +In P
0,00 =x(= 327" e w7 x (- uieit - Jni |+ P |

g:(x) = x'Wx +w'x +w,

44
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General Case X; are arbitrary

constant in x

quadgatjc in x sinc%
t
x'Wx = ZZ W,X,X; = Zw,.,x,.x,

=1 i=1 i, j=1

= Thus the discriminant function is quadratic

= Therefore the decision boundaries are quadratic
(ellipses and parabolloids)

45

General Case X; are arbitrary: Example

= 3 classes, each 2-dimensional Gaussian with
M= [_31] He = [g] My = [_42]
2= [- 05 %5] L= [—22 _72] L= [1.15 1.'3'5]

= Priors: P(c,)=P(cz)=% and P(c3)=%

= Again can be done by solving gi(x) = g;(x) for i,j=1,2,3
¢ 1 -1 ty -1 _l ty-1 _l
g.(x)=x (—22, )x+,u,.2,. x+[ 2,u,.):,. U 2In|):‘.,.|+InP(c,.))

= Need to solve a bunch of quadratic inequalities of 2
variables

23



General Case X; are arbitrary: Example

) wl aE] eda ] 2] 5]

P(C,)=P(Cz)=z P(C3)=*

Important Points

= The Bayes classifier when classes are normally
distributed is in general quadratic
= |f covariance matrices are equal and proportional to
identity matrix, the Bayes classifier is linear

= If, in addition the priors on classes are equal, the Bayes
classifier is the minimum Eucledian distance classifier

= |f covariance matrices are equal, the Bayes
classifier is linear

= |f, in addition the priors on classes are equal, the Bayes
classifier is the minimum Mahalanobis distance classifier

= Popular classifiers (Euclidean and Mahalanobis
distance) are optimal only if distribution of data
is appropriate (normal)

24



