CS434a/541a: Pattern Recognition
Prof. Olga Veksler

Lecture 4

Normal Random Variable and its
discriminant functions

Outline

= Normal Random Variable
= Properties
= Discriminant functions

Announcement

= Assignment 1 has been posted
= Note changes to problem 3 and 6 made today
= Problem 3(d) corrections to 0.99 and 0.01
= Problem 6, ¢c = number of classes

Why Normal Random Variables?

= Analytically tractable
= Works well when observation comes
form a corrupted single prototype (u)

= |s an optimal distribution of data for
many classifiers used in practice




The Univariate Normal Density

= Xis a scalar (has dimension 1)
_ 1 _1(x-pY
]

Where:
M = mean (or expected value) of x

o2 = variance

Several Features

= What if we have several features x;, Xy, ..., X4
= each normally distributed
= may have different means
= may have different variances
= may be dependent or independent of each other
= How do we model their joint distribution?
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FIGURE 2.7. A univariate normal distribution has roughly 95% of its area in the range
|x = 1| = 2a, as shown. The peak of the dislribution has value p(u) = I,’\,-"ﬂn. From:
Richard O. Duda, Peter £. Hart, and David G. Stork, Pattern Classification. Copyright
© 2001 by John Wiley & Sons, Inc.
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The Multivariate Normal Density

= Multivariate normal density in d dimensions is:

1 1 inverse of X
& x)=73XP[—*(X—;1)'2"(X—#)]
(2”)d/2|2|1/2 2
determinant of X
of - oy 0 fF 5 e T
E=| & )
Oy 0-3 H= [y foy oeey Bt

covariance of x, and x,

= Each x;is N(u;,07)
= to prove this, integrate out all other features from
the joint density 3




More on ¥

ny_

0-1 0-1d . .
P b plays role similar to the role
94 " 04 | that &2 plays in one dimension

= From X we can find out
1. The individual variances of features
Xi5 Xy eeey Xy
2. If features x; and x; are
= independent ;=0
= have positive correlation ¢;>0
= have negative correlation ;<0

The Multivariate Normal Density

p(x)= ;ﬁgexl’[-1_]
(2”)d/2|2| 2

p(x)=c-ex| —%[

normalizing
constant  scalar s (single number), the closer s to 0 the larger is p(x,

= Thus P(x) is larger for smaller (x—u)'Z7'(x-pu)

The Multivariate Normal Density
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= If £ is diagonal | §%

independent, and

then the features x;..., x;are

71 _(x -’
p(x)—l;laimexp[ 25 ? }

i

(X-p)Z'(x-p)

= X is positive semi definite (xtX x>=0)

If xtX x=0 for nonzero x then det(X)=0. This case is
not interesting, p(x) is not defined

1. one feature vector is a constant (has zero
variance)

2. or two components are multiples of each other
so we will assume Zis positive definite (xZ x >0)

If Zis positive definite then so is !




(X—p) T (x-—p)

= Positive definite matrix of size d by d has d distinct
real eigenvalues and its d eigenvectors are
orthogonal

= Thus if @is a matrix whose columns are normalized
eigenvectors of X, then &= @t

= Yd=pA where Ais a diagonal matrix with
corresponding eigenvalues on the diagonal

= Thus Z=PAP?! and L~ =PA~1 o1
= Thus if A=#2 denotes matrix s.t. A2 A-12= A-!

1 AN
= [qu'ZJ(qu 2) = MM!

(X-p)Z7'(x-p)

(x—p)(x-p) (x—p)y "(x-u)
usual (Eucledian) Mahalanobis distance
distance between x and u between x and u
&
» eigenvectors
\oreases & ofg 3

9.;-

oints x at equal , <
P 9 points x at equal %,

Eucledian .
distance from u Mahalllanobls dls”tlance. from
lie on a circle Alie on an ellipse: ~

stretches circles to ellipses

(X—p)Z(x-—p)

= Thus
(X—p)Z7(x—p)=(x—-p) MM (x-p)=

= (W (x= ) (M (x =)= | (x = o)}

= Thus |(x—-p) =" (x-p)=|M'(x-p)

7
where M'= A2 &'
scaling rotation
matrix matrix
a g a 2 a
= Points x which satisfy |M'(x- ) =const lie on an

ellipse

2-d Multivariate Normal Density

= Can you see much in this graph?

7/ \

= At most you can see that the mean is around [0,0],
but can'’t really tell if x; and x, are correlated




2-d Multivariate Normal Density

2-d Multivariate Normal Density

= How about this graph?

0.15,

0.1-

p(x1,x2)

0.05

==[39] LR

u=[0,0] “ =11

\ Y / r=[o0,0] % r=[0,0]

2-d Multivariate Normal Density

2-d MuItivariate Normal Density p=[0,0]

= Level curves graph

= p(x) is constant along
each contour

= topological map of 3-d
surface

= Now we can see much more \\ /

= X, and x; are independent
= o, and o,? are equal
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The Multivariate Normal Density

= |f X has density N(x ) then AX has density
N(Alu, AZA)
= Thus X can be transformed into a spherical normal
variable (covariance of spherical density is the
identity matrix /) with whitening transform

Discriminant Functions

= The minimum error-rate classification is achieved by
the discriminant function

9i(x) = P(c; [x)=P(x|c)P(c)/P(x)

= Since the observation x is independent of the class,
the equivalent discriminant function is

9i(x) = P(x|c)P(c)

= For normal density, convinient to take logarithms.
Since logarithm is a monotonically increasing
function, the equivalent discriminant function is

gi(x) = In P(x/c)+ In P(c)
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Discriminant Functions

= Classifier can be viewed as network which
computes m discriminant functions and selects
category corresponding to the largest discriminant

select class
giving maximim

discriminant
functions

= g,(x) can be replaced with any monotonically
increasing function, the results will be unchanged

Discriminant Functions for the Normal Density

= Suppo_se we for class c;its class conditional density
p(xfc) is N(u;X)

1
P(X|ci)

= Discriminant function g;(x) = In P(x/c;)+ In P(c;)

exp -%(X-ﬂ:)'271(x-ﬂ:)]

= Plug in p(x/c;)) and P(c) get
constent/or all i

90 1~ (x =)' 57" (x— o) f T2

%In\}:i\ +InP(c;)

9(x) = =5 (X~ )5 (x~ ) = INE | +In P(c)




Case J, = o°I

g’ 0 0 100
= Thatis X.,,= 0 6 0 |=0*:(010
0 0 &2 001

= In this case, features x;, x, ,..., Xy are independent
with different means and equal variances c?

Case Z; = 6’ Geometric Interpretation

If InP(c;)=1InP(c;), then
9,(x)=—x-4,

If InP(c;)#InP(c;), then

9(x)=--"

‘2
20?

\x—,a,.\z +InP(c;)

decision region
for ¢,
s

decision region | decision region
for ¢ for ¢,

4 H

X in ¢

Hs3

ision regi
“ decision regig

. : Mz for ¢,
decision regian decision region
for ¢, for ¢,

voronoi diagram: points in each
cell are closer to the mean in that cell
than to any other mean

Case J, = o°l
= Discriminant function

900 == (x= ) L "(x- ) - N5 |+InP(c,)

1
— 0 0
011
o o
o o -

v

= Can simplify discriminant function

* Det(Z)=0?? and Z'=(1/6)I -

1 | 10
gi(x)=-5(x—ﬂi) ?(x—ﬂi)-fl +InP(ci)

constant for all i

1 g _
gi(x) =-ﬁ(x—ﬂi) (x-/‘li)+|np(ci) =

1
=—2—o_2\x—,u,\2 +InP(c,)

Case Y, = o°l

9(x) == 5 (X~ )/ (x— ) +InP(c) =

2;2 (X5€ =/ x = X'ty + gy, )+ InP(c; )
constant
for all classes

1 t t [l'ﬂ
(X)=———5(-2u x+u u )+InP(c; i=li=1Y .
9i(X) == 5 (=20 X+ )+ InP(c;) 220 x 4 (=15 + InP(c, ),

9:(x) =w)x +w,,

discriminant function is linear
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Case J, = o°I

constant in X

WilJ

9,(x)=w|

linear in x:
wix= Zd:W,x,
= Thus discriminant function is linear,
= Therefore the decision boundaries
gi(x)=gj(x) are linear
= lines if x has dimension 2
= planes if x has dimension 3
= hyper-planes if x has dimension larger than 3

Case J; = o°I: Example

Need to find out when gy(x) < g{(x) for ij=1,2,3

= Can be done by solving g{x) = g{x) for i,j=1,2,3

Let's take g;(x) = g,(x) first

[121 1339_[46]
= Simplifying, [—3—4][x,]__47
3 x|~
- X. —ilx ——i7
1 3 2= 6

line equation

6

- 1.38)

Case X, = 0°I: Example
= 3 classes, each 2-dimensional Gaussian with
ol ol wefi?) memenef3g)

= Priors P(c,)=P(c2)=% and P(c3)=%

t t
= Discriminant function is g,-(X)=%X+(—Z%:§+InP(C,-))
= Plug in parameters for each class

g,(x)—[ 5 139 grz(x)—["d 22 139

9%( X)—m 29_069

Case ;= o°I: Example

= Next solve g,(x) = g5(x)
2x,+ ixz 6.02
= Almost finally solve g,(x) = gs(x)

X, —§x2 =-1.81

= And finally solve g,(x) = g,(X) = g5(X)
x;=14 and x,=4.82




Case J; = 0°I: Example

1
4

and P(c_.,)=1

= Priors P(c,)=P(c,)= 3

means

lines connecting

are perpendicular to
decision boundaries

Case’t;=J

= Discriminant function
g;(x)= _%(x_,ui)lz _1(X_/‘li) _%i‘ +InP(c;)
constant

. L. . for all classes
= Discriminant function becomes

1 =
g,-(x)=—§(X—ﬂ,)’Z "(x—p)+InP(c;)
squared Mahalanobis Distance
= Mahalanobis Distance [x-y[5. =(x-y)'Y."(x-y)

= |f 2=I, Mahalanobis Distance becomes usual
Eucledian distance

2 =(x=y)(x-y)

|x-y

Caselt . =%

= Covariance matrices are equal but arbitrary

= In this case, features x;, X, ,..., Xy are not
necessarily independent

Eucledian vs. Mahalanobis Distances

=g == (x=p) | |x=pl = (x= )Y " (x~p)

eigenvectors of ¥

points x at equal points x at equal

Eucledian Mahalanobis distance from
distance from u ulie on an ellipse:
lie on a circle

X stretches cirles to ellipses




Case X2, = ¥ Geometric Interpretation

If InP(c;)=1InP(c;), then
gi(x)=_Hx_ﬂi

Pl

decision region

for c5

decision region
for ¢,

points in each cell are closer to the
mean in that cell than to any other
mean under Mahalanobis distance

decision region

decision region

decision region
for ¢,

If InP(c;)#InP(c;), then
1
gi(x)=—EHx—/‘iHr’ +InP(ci)

ecision region

for c5

Case 2; = 2: Example

= 3 classes, each 2-dimensional Gaussian with
M= I:;:I M = [-51] M = [-42] Li=2,=%= [_ ;_5

—2.5]
P(c1)= P(cz)=

Ple))=1

ENEN

= Again can be done by solving gy(x) = g{x) for i,j=1,2,3

Case 2, =2

constant for all classes

= Can simplify discriminant function:
1
g,(x)= ‘E(x‘”')'z _1(x_ﬂl)+|n P(c)) =
=~ (XE el X B BT ) + I Ple,) =

= -% (x?<x— 24T X+ pZy)+InP(c,) =

=M 2usx+ iz )+ InPie))
- - (P ) -

= Thus in this case discriminant is also linear

Case X; = 2: Example

iz x+ (In P(c,)—%,u;l,"’,u,)

erms \
(,u}E" —,u,.’E")x=—(InP(c,.)—Ey}E",u,)+( ! )

= We get the line where g,(x)=g,(x)

= Let’s solve in general first
g/(x)= gi(x)

-z x+(InP(e, )~ iz n

s ——————

~
InP(c, )~ HEp,

. P(c,) 1 ,i 1 .o
t_ ot T x = i) i1, 1 iy
(ut = )2 x [np(ci)+2y,): py= 5 HE ﬂ,]
row vector
scalar

10



Case X, = X: Example

General Case X; are arbitrary

P(c, )" 2% 2 = Covariance matrices for each class are arbitrary
i
. L. = In this case, features x;, X, ,..., Xy are not
e oS o fh=1l necessarily independent
[-2 olx=0
x,=0

= Now substitute for i,j=2,3
[-3.14 -1.4]x=-2.41
3.14x,+1.4x,=2.41

= Now substitute for i,j=1,3

[-5.14 -1.43]x=-2.41
5.14x,+1.43x, = 2.41

43

Case J; =Y : Example

General Case X; are arbitrary

1

and P(c_.,):E = From previous discussion,

= Priors P(c,)=P(c,)=

ENEN

9(x) == (x- ) 5 (x~ ) -5 T, [ +InP(c,)

= This can’'t be simplified, but we can rearrange it:

lines connecting g/(x) = —% (x'z' x — 2457 x + 'z ) - % InZ,|+InP(c,)

means . " "
are not in general gi(x)= X'(—EE.T‘)X + 5T X + (—Eﬂ.-'zfﬂ,- —5 N +In P(c,-)J
perpendicular to

decision boundaries g,(x) = x'Wx +w'x +w,

42 44




General Case X; are arbitrary

constant in x

quadgatjc in x sinc%
XWx=YYwx,x,=> wxXx,

=1 i=1 ij=1

= Thus the discriminant function is quadratic

= Therefore the decision boundaries are quadratic
(ellipses and parabolloids)

45

General Case X; are arbitrary: Example

we[J] wef] wo[ZF] me[3578] B[ 2F] 2o (Y]

Ple)=Ple)=T  Ple)=

General Case X; are arbitrary: Example

= 3 classes, each 2-dimensional Gaussian with
weld] w-ls] w-[¥]
5= [_ 3.5 = 2.5] = [_22 -72]

= Priors: P(c,)=P(cz)=% and P(c,)=

% =[1.15 1.’;5]

u

2

= Again can be done by solving g{x) = g{x) for i,j=1,2,3
g;(x) = x’(—%z;‘)x+ﬂ,.'):,7‘x+(—%ﬂ,.’):,7‘ﬂ,. —%In\}:,.\ +In P(c,.))

= Need to solve a bunch of quadratic inequalities of 2
variables

Important Points

= The Bayes classifier when classes are normally
distributed is in general quadratic
= If covariance matrices are equal and proportional to
identity matrix, the Bayes classifier is linear

= [f, in addition the priors on classes are equal, the Bayes
classifier is the minimum Eucledian distance classifier

= |f covariance matrices are equal, the Bayes
classifier is linear
= |f, in addition the priors on classes are equal, the Bayes
classifier is the minimum Mahalanobis distance classifier
= Popular classifiers (Euclidean and Mahalanobis
distance) are optimal only if distribution of data
is appropriate (normal)
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