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Prof. Olga Veksler

Lecture 5

Maximum Likelihood Parameter
Estimation

Introducton

= Bayesian Decision Theory in previous lectures
tells us how to design an optimal classifier if we
knew:
= P(c) (priors)
= P(x| ¢) (class-conditional densities)

= Unfortunately, we rarely have this complete
information!

= Suppose we know the shape of distribution, but
not the parameters

= Two types of parameter estimation
= Maximum Likelihood Estimation
= Bayesian Estimation (will not do this one in detail)

Today

= Introduction to parameter estimation
= Maximum Likelihood Estimation
= Bayesian Estimation
= will not do this one in detail

= | have more slides on this when what we’ll actually go
through for those who are interested

ML Parameter Estimation

= Shape of probability distribution is known |arotis

5 known
= Happens sometimes “easier”
= Labeled training data .= o0 g
= Need to estimate parameters of probability ®

distribution from the training data

Example
respected fish expert says salmon’s
length has distribution Mimf) andsea -
bass’s length has distribution M,,0?) y \
= Need to estimate parameters 4,07, 4,02 '

= Then design classifiers according to the little is

bayesian decision theory known
“harder”




Independence Across Classes

= We have training data for each class

salmon sea bass salmon  salmon  seabass  seabass
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= When estimating parameters for one class, will
only use the data collected for that class

= reasonable assumption that data from class c; gives
no information about distribution of class ¢;

estimate parameters for
distribution of salmon from

estimate parameters for
distribution of bass from
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ML vs. Bayesian Parameter Estimation

= Maximum Likelihood

= Parameters @are unknown but fixed (i.e. not random
variables)

= Bayesian Estimation

= Parameters @are random variables having some known a
priori distribution (prior)
= Can lead to better results but is more difficult

\ P(6)

/ \

= After parameters are estimated with either ML or
Bayesian Estimation we use methods from Bayesian
decision theory for classification

Independence Across Classes

= For each class c; we have a proposed density
pi(x/ ¢;) with unknown parameters @7 which we
need to estimate

= Since we assumed independence of data
across the classes, estimation is an identical
procedure for all classes

= To simplify notation, we drop sub-indexes and
say that we need to estimate parameters g for
density p(x)

= the fact that we need to do so for each class on the
training data that came from that class is implied

Maximum Likelihood Parameter Estimation

= We have density p(x) which is completely
specified by parameters 6=[4,...., 6
= If p(x) is N(g, o2) then =[y, 63

= To highlight that p(x) depends on parameters
o we will write p(x/6)
= Note overloaded notation, p(x/6) is not a
conditional density
= Let D={x,, X,,..., X,} be the nindependent
training samples in our data
= If p(x) is N(u, o?) then x;, X,,..., X,, are iid
samples from N(y, o2




Maximum Likelihood Parameter Estimation

= Consider the following function, which is
called likelihood of @with respect to the set
of samples D

p(D16)=T]p(x.16)=F(8)
* Note if D is fixed p(D/é) is not a density

= Maximum likelihood estimate (abbreviated
MLE) of gis the value of gthat maximizes
the likelihood function p(D/6)

6 = argmax(p(D |9))

ML Parameter Estimation vs. ML Classifier

fixed

= Recall ML classifier data
decide class ¢; which maximizes p(}(/c,-)
= Compare with ML parameter estimation

fixed
data

choose @ that maximizes p(D/6)
= ML classifier and ML parameter estimation use

the same principles applied to different
problems

Maximum Likelihood Estimation (MLE)
k=n
p(D[6)=]]p(x(16)
k=1

= |f Dis allowed to vary and @is fixed, by independence
p(D/6) is the joint density for D={x;, X,,..., X, }

= |f @ is allowed to vary and D is fixed, p(D/@) is not
density, it is likelihood F(6)!

= Recall our approximation of integral trick

PriDe Blx, ... x,]/6]= [ p(x, 16)

= Thus ML chooses @that is most likely to have given
the observed data D

Maximum Likelihood Estimation (MLE)

= Instead of maximizing p(D/@), it is usually easier to
maximize In(p(D/&))

= Since log is monotonic p(D/6)
d=argma D/e))= 4
gmax(p(D[0)) M/@

=argmax(Inp(D|[6))
= To simplify notation, In(p(D/6))=I(6)

n k=n n
6 =argmax 1(6) = arg max[lnn p(x, |6 )] =arg max[z Inp(x, | 0))
6 8 k=1 o k=1




R MR MLE Example: Gaussian with unknown y
»i/{" ,:’ - \‘f‘; \j . = Fortunately for us, most of the ML estimates of any
P00 ) densities we would care about have been computed
B e = Let's go through an example anyway
jiiaf RSN To. SRRSO = Let p(x/ y) be N(u,0?) that is o2 is known, but uis
) unknown and needs to be estimated, so 8= u
:'.‘" i fi=argmax I(u)=arg max(i Inp(x, | ,u)) =
P P 2 3 4 5 6 7 H H k=1

FIGURE 3.1. The top graph shows several training points in one dimension, known or
assumed to be drawn from a Gaussian of a particular variance, bul unknown mean.
Four of the infinite number of candidate source distributions are shown in dashed
lines. The middle figure shows the likelihood p(D|¢} as a function of the mean. If we
had a very large number of training points, this likelihood would be very narrow. The
value that maximizes the likelihood is marked d; it also maximizes the logarithm of
the likelihood—that is, the log-likelihood [(f), shown at the bottom. Note that even
though they look similar, the likelihood p(D|#) is shown as a function of # whereas the
conditional density p(x|#) is shown as a function of x. Furthermaore, as a function of 4,
the likelihood p(Da) is not a probability density function and its area has no signifi-
cance. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification
Copyright @ 2001 by John Wiley & Sons, Inc. 2

=arg lrlnax{g In( \/21% exp(- (sz;-f y DJ =
= arg;naxé(- In2z0 _%)

MLE: Maximization Methods

= Maximizing I(6) can be solved using standard
methods from Calculus

= Let 6= (6y, 6, ..., 0,,)t and let V,be the gradient

operator
t
d 0 9
Vo= oy
e [aa, 90, aa,,]

= Set of necessary conditions for an optimum is:

= Also have to check that @that satisfies the above
condition is maximum, not minimum or saddle point.
Also check the boundary of range of @

MLE Example: Gaussian with unknown u

arg ;nax(l(p)) =arg Tax g(— Inv270 - %J

d - 1 S
ZMw)=N —(x,—u)=0 X, —nu=0
@) 2 oz (x-n) =2 X -nu=0 =
2%
k=1

= Thus the ML estimate of the mean is just the
average value of the training data, very intuitive!

= average of the training data would be our guess for
the mean even if we didn’t know about ML estimates

> A=

S|=




MLE for Gaussian with unknown u, o?

How to Measure Performance of MLE?s

= Similarly it can be shown that if p(x/ 4,02 is
N(u, o), that is x both mean and variance are
unknown, then again very intuitive result

n

L1 - 1 o
p:;;xk 02:;2()(1(_.”)2

k=1

= Similarly it can be shown that if p(x/ &2) is
N(u, 2), that is x is a multivariate gaussian with
both mean and covariance matrix unknown, then

Xy

3=
M-
"8
I
Siw
M-

ﬁ = (Xk _ﬁ)(xk —ﬁ)t

= |t is usually much easier to compute an almost
equivalent measure of performance, the mean
squared error: El( o— é)z I

= Do a little algebra, and use Var(X)=E(X?)-(E(X))2

E[(e-éf]=@c@ +  (E(@)-6)

variance bias
estimator should  expectation should
have low variance be close to the true 6

How to Measure Performance of MLE?

How to Measure Performance of MLE?

= How good is a ML estimate 4 ?
= or actually any other estimate of a parameter?
= The natural measure of error would be [9-§|
= But \e—é\ is random, we cannot compute it
before we carry out experiments

= We want to say something meaningful about our
estimate as a function of

= A way to solve this difficulty is to average the
error, i.e. compute the mean absolute error

Ella - éu= ﬂa - é‘p(x,, X yenny X, )AX,0X...0X,,

efo-oF |- varld) + (£6)-o

variance bias
ideal case bad case bad case
p(é P(é ) p(é)
a T
X EGN\ x
Ko T 5 e
no bias large bias no bias

low variance high variance

low variance




Bias and Variance for MLE of the Mean

= Let’'s compute the bias for ML estimate of the mean
. 1L 13 o1&
G 9PN [0 3228 B P
= Thus this estimate is unbiased!

= How about variance of ML estimate of the mean? ,

Ela-py|= El@? - 203+ p7]= w* - 2uE(@)+ E[(;;Xk) ]

0,2

n
= Thus variance is very small for a large number of
samples (the more samples, the smaller is variance)
= Thus the MLE of the mean is a very good estimator

MLE Bias for Mean and Variance

= How about ML estimate for the variance?
El6?]= E[%kz:(xk -,iz)z] ="T_1a'2 #0o’
= Thus this estimate is biased!
= This is because we used # instead of true u
= Bias =0 as n- infinity, asympitotically unbiased
= Unbiased estimate 6° =ﬁkz:‘(x"_ﬁ)2

= Variance of MLE of variance can be shown
to go to 0 as n goes to infinity

Bias and Variance for MLE of the Mean

= Suppose someone claims they have a new great
estimator for the mean, just take the first sample!

A= x,

= Thus this estimator is unbiased: E(2)= E(x,)= u

MLE for Uniform distribution U[0,6]

= However its variance is: 0(6)

El(a- py = Elix, - n¥ )= o*
O~

= Thus variance can be very large o
and does not improve as we E(é): 9
increase the number of samples

no bias
high variance

= Xis U[0,8] if its density is 1/@inside [0,6] and O
otherwise (uniform distribution on [0,4] )

+ p(x [6) F(6)
X k

—
X % B 6

4
6

X, X, X, @

k=n 1 i
o e e s F(g)=np(xk/a)={an if 6> max{x,,...,X,}
k=1 0 if @<max{x,,..,X,}

~ k=n
= Thus @ = arg max [H p(x, | 0)) =max{ X,,.., X,,}
6 k=1

= This is not very pleasing since for sure @ should be
larger than any observed x!




Bayesian Parameter Estimation

= Suppose we have some idea of the range
where parameters @ should be
= Shouldn’t we formalize such prior knowledge in

hopes that it will lead to better parameter
estimation?

= Let gbe a random variable with prior
distribution P(6)
= This is the key difference between ML and
Bayesian parameter estimation

= This key assumption allows us to fully exploit the
information provided by the data

Bayesian Estimation: Formula for p(x|D)

= From the definition of joint distribution:
p(x|D)=[p(x,01D)do

= Using the definition of conditional probability:
p(x | D)= p(x|6,D)p(6 | D)do

= But p(x/6,D)=p(x/6) since p(x/6) is completely
specified by @ known unknown

p(x| D)= [[plxI8)p(@] D)6

= Using Bayes formula,

_POIORE) 5 5) [ p(x, |6)

JFRIIERD =

p(@|D)=

Bayesian Parameter Estimation

= As in MLE, suppose p(x|8) is completely specified if
@ is given

= But now @is a random variable with prior p(6)

= Unlike MLE case, p(x|) is a conditional density

After we observe the data D, using Bayes rule we

can compute the posterior p(6/D)

Recall that for the MAP classifier we find the class ¢;

that maximizes the posterior p(c/D)

By analogy, a reasonable estimate of @is the one

that maximizes the posterior p(é /D)

But @is not our final goal, our final goal is the

unknown p(x)

Therefore a better thing to do is to maximize p(x/D),

this is as close as we can come to the unknown p(x) |

Bayesian Estimation vs. MLE

= So in principle p(x/D) can be computed
= In practice, it may be hard to do integration analytically,
may have to resort to numerical methods

I1p(x. 16)0(6)
p(x D)= [p(x6)—r= dé
[T1 p(x, 16)p(6)de

= Contrast this with the MLE solution which requires
differentiation of likelihood to get p(x |6

= Differentiation is easy and can always be done analytically




Bayesian Estimation vs. MLE

= p(x/D) can be thought of as the weighted average of
the proposed model all possible values of 8

support @ receives

from the data
p(x|D)= [ p(x|6)p(6| D)o

proposed model
with certain 6
= Contrast this with the MLE solution which always
gives us a single model:

plx /6)

= When we have many possible solutions, taking their
sum averaged by their probabilities seems better
than spitting out one solution

Bayesian Estimation: Example for U[0,]

= We need to compute p(x | D)= [ p(x |8)p(6 | D)do

= using p(a/D)=I,§(:/’9% and  p(16)=[] pix. o)

= When computing MLE of 8, we had

1
p(D]6)= Yo for 6 2 max{ x,,..., X,,} p(D/G)
0 otherwise 1| p(6)

= Thus

1
p(@|D)={C5n for max{ X,,..,x,}< <10
0 otherwise

= where cis the normalizing constant, i.e. c¢=

10 de

19"

e

Bayesian Estimation: Example for U[0,60]

= Let X be U[0,4. Recall p(x/@)=1/8inside [0,6, else 0
. P(x/6) . P(6)

1 L ——— e @

] 10

9 x 10 6

= Suppose we assume a U[0,10] prior on &

= good prior to use if we just now the range of @but don’t
know anything else

= We need to compute p(x | D)= [ p(x|6)p(¢ | D)do

0 o __p(D]|6)p(6) _
with p(GID)_ifp(Dlo)p(o)do and p(Dla)-lk]p(xklo)

Bayesian Estimation: Example for U[0,6]

= We need to compute p(x | D)= jp(x |8)p(6| D)d6
p(0/D)= ce—{, for max{ x,,..., X,}<6<10
0 otherwise
1) p(x/6)
0

4 X

= We have 2 cases:
1. case X < max{xy, X,,..., X,,}

constant
5 1 independent of x
p(X /D)= Imax{ Xy Xp } 9""’1 deé
2. case x> max{Xy, Xa,..., X, }
10 1 c c [+
x|/D)=| c——dé= 0 - -
p(x D) -[x o -n@"'* |nx"| n10"




Bayesian Estimation: Example for U[0,60]

ML _p(x /6)
Bayes p(x |D)

10
X

X X; X

= Note that even after x >max {X;, X,,..., X,}, Bayes
density is not zero, which makes sense

= curious fact: Bayes density is not uniform, i.e. does
not have the functional form that we have assumed!

ML vs. Bayesian Estimation: General Prior

= Maximum Likelihood Estimation
= Easy to compute, use differential calculus
" Easx\to interpret (returns one model)
= p(x/6 has the assumed parametric form

= Bayesian Estimation

= Hard compute, need multidimensional integration

= Hard to interpret, returns weighted average of
models

= p(x/D) does not necessarily have the assumed
parametric form

= Can give better results since use more
information about the problem (prior information)

ML vs. Bayesian Estimation with Broad Prior
= Suppose p(@ is flat and broad (close to uniform prior)
p(@/D) tends to sharpen if there is a lot of data
p6/D p(6 /D) p(6 /D)

p(x16) | plx /6)

6 6 9 @ 9
= Thus p(D/6) <p(6/D)/p(6) wilfhave the same saharp
peak as p(6/D)
= But by definition, peak of p(D|é) is the ML estimate 3
= The integral is dominated by the peak:
p(x /D)= [ p(x |6)p(6 | D)d6 ~ p(x | 6)[ p(6 | D)d6 =p(x |6

= Thus as n goes to infinity, Bayesian estimate will
approach the density corresponding to the MLE!




