CS434b/654b : Pattern Recognition
Prof. Olga Veksler

Lecture 6

Nonparametric Density Estimation

Today

Introduction to nonparametric techniques
Basic Issues in Density Estimation

Two Density Estimation Methods
1. Parzen Windows (today)
2. Nearest Neighbors (next time)




Non-Parametric Methods
= Neither probability distribution nor alot is

. .. . . k
discriminant function is known il
= Happens quite often
= All we have is labeled data
= Estimate the probability distribution
from the labeled data @
v
little is
known
“harder”

NonParametric Techniques: Introduction

= In previous lectures we assumed that either

1. someone gives us the density p(x)

= In pattern recognition applications this never happens
2. someone gives us p(x/6)

= Does happen sometimes, but

= we are likely to suspect whether the given p(x/6)
models the data well

= Most parametric densities are unimodal (have a
single local maximum), whereas many practical
problems involve multi-modal densities




NonParametric Techniques: Introduction

= Nonparametric procedures can be used with
arbitrary distributions and without any
assumption about the forms of the underlying
densities

= There are two types of nonparametric methods:
= Parzen windows
= Estimate likelihood p(x / c;)

= Nearest Neighbors

= Bypass likelihood and go directly to posterior estimation
P(c;/ x)

NonParametric Techniques: Introduction

= Nonparametric techniques attempt to estimate the
underlying density functions from the training data
= |dea: the more data in a region, the larger is the density
tuneton pr{x e %t]=|[ f(x)dx
% average of f(x)
over ®

p(x)

1ol *—o o N —

salmon length x




NonParametric Techniques: Introduction

Pr[X e ®]= j f(x)dx

R
= How can we approximate pr[xe %®,] and Pr[Xe%,]?

6 6
8 Pr[XeSR,]z% and Pr[XeERz]zE

= Should the density curves above ® , and ® , be

equally high?
= No, since is ® ; smaller than ® ,

PrlX e ®,]= [f(x)dx = [ f(x)dx =Pr[X e R,]
= To get density, normmélize by re%ion size

A

p(x)
—~
—_—
9{1‘ R, salmon length x
1 oo NH

NonParametric Techniques: Introduction

Assuming f(x) is basically flat inside ®,

#of samples inR

~Pr[X e R]= J'f(y)dy = f(x)* Volume(R)

total # of samples A

Thus, density at a point x inside ®, can be
approximated

£(x) = #of samples inR 1
total # of samples Volume(R)

Now let’s derive this formula more formally




Binomial Random Variable

= Let us flip a coin ntimes (each one is called “trial”)
= Probability of head p, probability of tail is 1-p

= Binomial random variable K counts the number of
heads in ntrials

P(k = k)=()p*(1- p)*

where (ﬂ) = ﬁlk)'

= Mean is E(K)=np
= Variance is var(K)= np(1- p)

Density Estimation: Basic Issues

= From the definition of a density function, probability
p that a vector x will fall in region R is:

p=Pr[xeR]= Ip(x’ )dx’

= Suppose we have samples X;, X,,..., X, drawn from
the distribution p(x). The probability that k points fall
in ® is then given by binomial distribution:

PriK = k]= (Z) (1= p)™

= Suppose that k points fall in ® we can use MLE to
estimate the value of p. The likelihood function is

p(X,eees X, |p)=(z) (1= p)*




Density Estimation: Basic Issues

P(X1,...,Xn |p)=(z) P (1= p)*

= This likelihood function is maximized at p=
= Thus the MLE is j="

= Assume that p(x) is continuous and that the region ®
is so small that p(x) is approximately constant in ®

[ plx')dx'= p(x)V
R

= xis in R and Vis the volume of ®

= Recall from the previous slide: P = IP(X')dX'
R

= Thus p(x) can be approximated: |p(x) = vV

Density Estimation: Basic Issues
= This is exactly what we had before:

k/n X is inside some region ®
p(x) = TV k=number of samples inside ®
n=total number of samples
5 > V = volume of ®

R

= Qur estimate will always be the average of true
density over ®

wn p P00

p(x) o~ = £ ~% 000000
74 74 74

= |deally, p(x) should be constant inside ®




Density Estimation: Histogram
(x)=X/N

p(x

{0(1) v
10

190

N IA

190

19 @ IM—I»
0 10 20 30 4 50

\ SN~ ~ jHr—J

Y
R 1 Rz R3
S

= If regions R ;'s do not overlap, we have a histogram

Density Estimation: Accuracy
k/n o

= How accurate is density approximation p(x)=—— *

L 4
= We have made two approximations
. k
1.

n
= as nincreases, this estimate becomes more accurate

2. [p(x")dx'= p(x)V
< as® grows smaller, the estimate becomes more accurate
° = As we shrink ® we have to make sure
° it contains samples, otherwise our
bt estimated p(x) = 0 for all xin |
= Thus in theory, if we have an unlimited number of
samples, to we get convergence as we
simultaneously increase the number of samples n,

and shrink region ®, but not too much so that ® still
contains a lot of samples




Density Estimation: Accuracy

k/n
plx)~=

= |n practice, the number of samples is always fixed

= Thus the only available option to increase the
accuracy is by decreasing the size of ® (V gets
smaller)

= |f Vis too small, p(x)=0 for most x, because most
regions will have no samples

= Thus have to find a compromise for V
= not too small so that it has enough samples

= but also not too large so that p(x) is
approximately constant inside V

Density Estimation: Two Approaches

k/n
p(x) =
1. Parzen Windows:

= Choose a fixed value for volume V | [f%fp EL
and determine the corresponding k EI
from the data * e
2. k-Nearest Neighbors

= Choose a fixed value for k and @“ IE
determine the corresponding |: ‘I
volume V from the data ®le
= Under appropriate conditions and as number
of samples goes to infinity, both methods can
be shown to converge to the true p(x)




Parzen Windows

= |In Parzen-window approach to estimate densities we
fix the size and shape of region ®

= | et us assume that the region ® is a d-dimensional
hypercube with side length h thus it's volume is h9

A R A R
— fr L
> / ...... .
h > >
1 dimension 2 dimensions 3 dimensions

Parzen Windows

= To estimate the density at point x, simply center the
region R, at x, count the number of samples in R,
and substitute everything in our formula

k/n
P(X)~T

X
——co-@9g-o—o0 >

R

3/6
X)=——
()~




Parzen Windows

= We wish to have an analytic expression for our
approximate density ®

= Let u=[uy, U,,..., Uy] and define a window function
1 ‘u]‘sl j=1,...,d
p(u)= 2
0 otherwise
1 dim?nsion au, o is 1 inside
T o) /

7 1/2{ I’ "

>
>

o is 0 outside

V:

i 2 dimensions

Parzen Windows

= Recall we have d-dimensional samples x;, X,,..., X,
Let x; be the jth coordinate of sample x;.Then

h .
)= ] ‘XJ_/\//J SE J=],...,d

O otherwise

X - X,

¢(h

1 if x; is inside the hypercube with
p(—-")= width h and centered at x

0 otherwise

10



Parzen Windows

= How do we count the total number of sample points
X4, Xo,..., X, Which are inside the hypercube with
side h and centered at x?

< (x-x;
k = :
§¢( h )

k/n
= Recall p(x)= -

= Thus we get the desired analytical expression for
the estimate of density p,(x)

Py =13 ,:d ¢(X;X")

n‘=

Parzen Windows

= Let's make sure p,(x) is in fact a density

" P ¢(X ) 20 vx volume of hj}(percube
1i=n 1 X—X, B 1 i=nl X—X, A\
 [putnie =[5 o o= 2o o
113
n hd i=1

11



Parzen Windows
k/n X is inside some region ®
p(x) = k = number of samples inside ®.
4 n=total number of samples
V = volume of ®

= To estimate the density at point x, simply center the
region R, at x, count the number of samples in R,

and substitute everything in our formula

X 3/6
o —co-@g-o—o0 0> p()()zW
R

Parzen Windows

= Formula for Parzen window estimation

12



Parzen Windows: Example in 1D

p,(x )—Z:;,:dw(";’")
= Suppose we have 7 samples D={2,3,4,8,10,11,12}
Py(X)

21 © X
L 11 ¢ 1 ¢4 &
1

= Let window width h=3, estimate density at x=1

O R N T )

1
(<172 |_2|, 4,2 |-1>1/2 ‘ 11‘
3 3 -

—|>1/2
3

i=7 — .
p¢(1)=1z1¢(1 x’)=211[1+0+0+...+0]=1

743 3 21

Parzen Windows: Sum of Functions

= Fix x, let i vary and ask Y x
= For which samples x; is ¢( = ")= 17

R

h o X;

= Now fix fand let x v, ry a d ask
= For which x is ¢(a =17 For all xin gray box

)— 1is simply a function which is 1 inside
square of W|dth h centered at x;and 0 otherwise!

13



Parzen Windows: Sum of Functions

= Now let’s look at our density estimate p, (x) again:

13851 (x-x,) & 1 X—X;
p*’(x):FZF?’( h )=Znhd¢( h )

i=1 i=1
ﬁ_/

1 inside square centered at x;
0 otherwise

= Thus p,(x) is just a sum of n “box like” functions

each of height nhe

Parzen Windows: Example in 1D

= Let’'s come back to our example
= 7 samples D={2,3,4,8,10,11,12}, h=3

P4X)

z’rll.l.m.ml. JLLLLL

= To see what the function looks like, we need to
generate 7 boxes and add them up

= The width is h=3 and the height, according to
previous slide is . .

nh® 21

14



Parzen Windows: Interpolation

= In essence, window function ¢ is used for interpolation:
each sample x; contributes to the resulting density at x
if x is close enough to Xx;

P4X)

é[l.l,l.l.l.l.l. RARANE

Parzen Windows: Drawbacks of Hypercube ¢

= As long as sample point x; and x are in the same
hypercube, the contribution of x;to the density at x is
constant, regardless of how close Xx;is to x

e S NENESAINESAR

= The resulting density p (x) is not smooth, it has
discontinuities

P4X)

I

| ¢ o1 1| ¢ | ¢ ¢ b

15



Parzen Windows: general ¢

p,,,(x)=1§% ¢(X;X")

n5

= We can use a general window ¢ as long as the
resulting p,(x) is a legitimate density, i.e. ’

iy i (1) {‘\@(u)
= satisfied if p(u)> 0
2. Ipq,(x)dx =1
= satisfied if [ p(u)du=1
oo =i 5 (o5 oz e S et

X=X thus du=d—:

V:

change coordinates to u =

Parzen Windows: general ¢

p¢(x)=l’i#¢(X;,xij

n i=1

= Notice that with the general window ¢ we are no
longer counting the number of samples inside ®.

= We are counting the weighted average of potentially
every single sample point (although only those within
distance h have any significant weight)

A%
tL/ X\_

0@ o>
= With infinite number of samples, and appropriate

conditions, it can still be shown that
Py (x) — p(x)

16



Parzen Windows: Gaussian ¢

n5

= A popular choice for ¢ is N(0,7) density

A

u

= Solves both drawbacks of the “box” window

= Points x which are close to the sample point x;
receive higher weight

= Resulting density p,(x) is smooth

Parzen Windows: Example with General ¢

= Let’'s come back to our example
= 7 samples D={2,3,4,8,10,11,12}, h=1

1 i=7
Po(x)==2 olx—-x,)
i=1
012} /\ 7\

10

= p,(X) is the sum of of 7 Gaussians, each centered at
one of the sample points, and each scaled by 1/7

17



Parzen Windows: Did We Solve the Problem?

= Let’s test if we solved the problem
1. Draw samples from a known distribution

2. Use our density approximation method and
compare with the true density
= We will vary the number of samples n and
the window size h

= We will play with 2 distributions

VAANE VNI

i 2

N(0, 1) triangle and
uniform mixture

Parzen Windows: True
Density N(0,1)

h=1 h=0.5 h=0.1

I A b

18



Parzen Windows: True i \

Density N(0,1)

h=1 h=0.5 h=0.1

-2 i 2 -z ] 2
= A A
2 " z -z i 2
FIGURE 4.5. Parzen-window estimates of a univariate normal density using different
window widths and numbers of samples. The vertical axes have been scaled to best

show the structure in each graph. Note particularly that the n = oo eslimates are the
same (and match the true density function), regardless of window width. From: Richard

-2 @

Parzen Windows: True

density is Mixture of '
Uniform and Triangle A H

fry=1 fy=i5 fry=i 2

19



Parzen Windows: True ’
density is Mixture of A H
Uniform and Triangle ’

h=0.5 h=0.2

h-1
= A A A
N VANTRES VAN | VAN

o
FIGURE4.7. Parzen-window estimates of a bimadal distribution using different window
widths and numbers of samples. Note particularly that the n = oo estimates are the same
{and match the true distribution), regardless of window width. From: Richard O. Duda,
Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John
Wiley & Sons, Inc.

o o

Parzen Windows: Effect of Window Width h

= By choosing h we are guessing the region where
density is approximately constant

= Without knowing anything about the distribution, it is
really hard to guess were the density is approximately
constant

p(x)

A

!
!

A
\ 4
o

20



Parzen Windows: Effect of Window Width h

= |f his small, we superimpose n sharp pulses
centered at the data
= Each sample point x; influences too small range of x

= Smoothed too little: the result will look noisy and not smooth
enough
= If his large, we superimpose broad slowly changing

functions,
= Each sample point x; influences too large range of x
= Smoothed too much: the result looks oversmoothed or “out-
of-focus”
* Finding the best his challenging, and indeed no
single h may work well
= May need to adapt h for different sample points
= However we can try to learn the best h to use from
our labeled data

Learning window width h From Labeled Data

= Divide labeled data into training set, validation set,
test set

= For a range of different values of h (possibly using
binary search), construct density estimate p(x) using
Parzen windows

= Test the classification performance on the validation
set for each value of h you tried

= For the final density estimate, choose h giving the
smallest error on the validation set

= Now you can test the performance of the classifier on
the test set
= Notice we need validation set to find best parameter h, we
can’t use test set for this because test set cannot be used
for training
= In general, need validation set if our classifier has some
tunable parameters

21



Parzen Windows: Classification Example

= |[n classifiers based on Parzen-window
estimation:

= We estimate the densities for each category
and classify a test point by the label
corresponding to the maximum posterior

= The decision region for a Parzen-window
classifier depends upon the choice of window
function as illustrated in the following figure

Parzen Windows: Classification Example

= For small enough window size = For larger window size h,

h is classification on training classification on training data
data is be perfect is not perfect

= However decision boundaries = However decision boundaries
are complex and this solution are simpler and this solution is
is not likely to generalize well more likely to generalize well
to novel data to novel data

22



Parzen Windows: Summary

= Advantages
= Can be applied to the data from any distribution
= |n theory can be shown to converge as the number of
samples goes to infinity
= Disadvantages

= Number of training data is limited in practice, and so
choosing the appropriate window size h is difficult

= May need large number of samples for accurate
estimates

= Computationally heavy, to classify one point we have to
compute a function which potentially depends on all

samples i=n X— X,
p¢(X)=%Z1h—1d¢( - )

= But we need a lot of samples for accurate density
estimation!

k-Nearest Neighbors

= Recall the generic expression for density
estimation (x) k/n

v

= |In Parzen windows estimation, we fix V and that
determines k, the number of points inside V

= In k-nearest neighbor approach we fix k, and find
V that contains k points inside

23



k-Nearest Neighbors

= kNN approach seems a good solution for the
problem of the “best” window size
= Let the cell volume be a function of the training data

= Center a cell about x and let it grows until it captures k
samples

= k are called the k nearest-neighbors of x

AR

= 2 possibilities can occur:

= Density is high near x; therefore the cell will be small
which provides a good resolution

= Density is low; therefore the cell will grow large and
stop until higher density regions are reached

k-Nearest Neighbor

= Of course, now we have a new question

= How to choose k?
= A good “rule of thumb“is k= vh

= Can prove convergence if n goes to infinity
= Not too useful in practice, however

= Let’s look at 1-D example
= we have one sample, i.e. n=1

P(X)z k/n = 1 _ A ox >
V  2x-x| — :
|x — x|

= But the estimated p(x) is not even close to a

density function: T2|x1 o X = 00 £ 1
—o0 - Ny

24



k-Nearest Neighbor: Density estimation

/1N [Aﬂ
[ 2 [ § 2 3
I \ 1
n=l =l
k=1 k=l
o— L
i ! 2 i 4 il 1 2 i 4
I i
=10 n=1h
k=4 k=4
i ! 2 i 4 0 I 2 k 4

k-Nearest Neighbor

I i
n=236
bl M
i T 2 i i ) I 3 i
I i
= ca
Jh,: w /\
i I 2 i i o ! 2 3 d

FIGURE 4.12. Several k-nearest-neighbor estimates of two unidimensional densities:
a Gaussian and a bimodal distribution. Notice how the finite n estimales can be quite
“spiky.” From: Richard O. Duda, Peter E. Hart, and David C. Stork, Pattern Classification.
Copyright @ 2001 by John Wiley & Sons, Inc.

25



k-Nearest Neighbor

= Thus straightforward density estimation p(x)
does not work very well with KNN approach
because the resulting density estimate

1. Is not even a density

2. Has a lot of discontinuities (looks very spiky,
not differentiable)

3. Even for large regions with no observed
samples the estimated density is far from zero
(tails are too heavy)

= Notice in the theory, if infinite number of samples is
available, we could construct a series of estimates that
converge to the true density using kNN estimation. However
this theorem is not very useful in practice because the
number of samples is always limited

k-Nearest Neighbor

= However we shouldn’t give up the nearest
neighbor approach yet

= Instead of approximating the density p(x), we
can use kNN method to approximate the
posterior distribution P(c;x)
= We don'’t need p(x) if we can get a good
estimate on P(c;|x)

26



k-Nearest Neighbor

= How would we estimate P(c; [ x) from a set of n

labeled samples?
k/n

v
= Let’s place a cell of volume V around x and
capture k samples

= Recall our estimate for density: p(x)=

711 3
= k; samples amongst k labeled c; then: ; o X
k./n 22 3
p(cilx) = Vv
= Using conditional probability, let’s estimate posterior:
p(x,c;) __p(x,c) ~ ki/n k; k;

p(cilx)= kj/n_

p(x) ip(xycl_) vi / ik/ k
j=1 j=1

k-Nearest Neighbor Rule

= Thus our estimate of posterior is just the fraction of
samples which belong to class c;:.

ki
p(c; | x) = I

= This is a very simple and intuitive estimate

= Under the zero-one loss function (MAP classifier) just
choose the class which has the largest number of
samples in the cell

= Interpretation is: given an unlabeled example (that is
X), find k most similar labeled examples (closest
neighbors among sample points) and assign the most
frequent class among those neighbors to x

27



k-Nearest Neighbor: Example

= Back to fish sorting
= Suppose we have 2 features, and collected sample points
as in the picture
" Letk=3

= 2 sea bass, 1 salmon are the 3
length P nearest neighbors

= Thus classify as sea bass

5

= _ L

g
>

lightness

kNN: How Well Does it Work?

= kNN rule is certainly simple and intuitive, but does it
work?

= Assume we have an unlimited number of samples

= By definition, the best possible error rate is the Bayes
rate E*

= Nearest-neighbor rule leads to an error rate greater
than E*

= But even for k=1, as n — oo it can be shown that
nearest neighbor rule error rate is smaller than 2E*

= As we increase k, the upper bound on the error gets
better and better, that is the error rate (as n — ) for
the kNN rule is smaller than cE*with smaller ¢ for
larger k

= |f we have a lot of samples, the kNN rule will do very
well !

28



1NN: Voronoi Cells

FIGURE 4.13. In two dimensions, the nearest-neighbor algorithm leads to a partition-
ing of the input space inlo Voronoi cells, each labeled by the category of the training
point it contains. In three dimensions, the cells are three-dimensional, and the decision
boundary resembles the surface of a crystal. From: Richard O. Duda, Peter E. Harl, and
David G. Stork, Pattern Classification. Copyright @ 2001 by John Wiley & Sons, Inc.

kNN: Multi-Modal Distributions

= Most parametric -.. "
distributions would not f. .-. N
work for this 2 class L = u
classification problem: ® ..l o

= Nearest neighbors will M : O
[ | O [
do reasonably well, m 00
. [ |
provided we have a lot m B o .. O
of samples u .. BN

29



kNN: How to Choose k?

= In theory, when the infinite number of samples is
available, the larger the k, the better is
classification (error rate gets closer to the optimal
Bayes error rate)

= But the caveat is that all k neighbors have to be
close to x
= Possible when infinite # samples available
= Impossible in practice since # samples is finite

kNN: How to Choose k?

= |n practice
1. k should be large so that error rate is
minimized
= k too small will lead to noisy decision
boundaries

2. k should be small enough so that only nearby
samples are included

= ktoo large will lead to over-smoothed
boundaries

= Balancing 7 and 2is not trivial

= This is a recurrent issue, need to smooth data,
but not too much

30



kNN: How to Choose k?

A o
X5 00 %°

= For k=1, ...,7 point x gets classified correctly
= red class

= For larger k classification of xis wrong
= blue class

kNN: Computational Complexity

= Basic kNN algorithm stores all examples. Suppose

we have n examples each of dimension k
= O(d) to compute distance to one example
= O(nd) to find one nearest neighbor
= O(knd) to find k closest examples examples
= Thus complexity is O(knd)
= This is prohibitively expensive for large number of

samples

= But we need large number of samples for kNN to
work well!

31



Reducing Complexity: Editing 1NN

= [f all voronoi neighbors have the same class, a
sample is useless, we can remove it:

= Number of samples decreases

= We are guaranteed that the decision boundaries
stay the same

Reducing Complexity: kNN prototypes

= Explore similarities between samples to
represent data as search trees of prototypes

147 253

)\ o\
// 4 7 // 5 '3
B agy Hg/

= Advantages: Complexity decreases
= Disadvantages:
= finding good search tree is not trivial

= will not necessarily find the closest neighbor,
and thus not guaranteed that the decision
boundaries stay the same

32



kNN: Selection of Distance

= So far we assumed we use Euclidian Distance to
find the nearest neighbor:
D(a,b) = Z(ak - bk )2
k
= However some features (dimensions) may be

much more discriminative than other features
(dimensions)

= Eucleadian distance treats each feature as
equally important

kNN: Selection of Distance

= Extreme Example
= feature 1 gives the correct class: 1 or 2
= feature 2 gives irrelevant number from 100 to 200

= Suppose we have to find the class of x=[1 100]
and we have 2 samples [1 150] and [2 110]

O 140 ][ 130 =1= 17+ (100150 =50 ([ 3] [ 130} =1-2) + (100~ 170) =105
= x=[1 100] is misclassified!
= The denser the samples, the less of the problem
= But we rarely have samples dense enough

33



kNN: Extreme Example of Distance Selection

[

®
180

—_
(o2}

feature2

—
3
o

ollalles olb s

o

120

12 14 18 18
feature 1

N

= decision boundaries for blue and green classes are in red
= These boundaries are really bad because
= feature 1 is discriminative, but it’s scale is small

= feature 2 gives no class information (noise) but its scale is
large

kNN: Selection of Distance

= Notice the 2 features are on different scales:
= feature 1 takes values between 1 or 2
= feature 2 takes values between 100 to 200

= We could normalize each feature to be between
of mean 0 and variance 1

= |f Xis a random variable of mean x and varaince
o?, then (X - u)/o has mean 0 and variance 1

= Thus for each feature vector x;, compute its
sample mean and variance, and let the new
feature be [x;- mean(x;)]/sqrt[var(x;)]

= Let’s do it in the previous example

34



kNN: Normalized Features

feature2

5.5}
®

5 /
4
s feature 1

A 05 0 0.5

R B
]

= The decision boundary (in red) is very good now!

kNN: Selection of Distance

= However in high dimensions if there are a lot of
irrelevant features, normalization will not help

D(alb)=\/;(ak _bk)2 =\/Z(ai _bi)2 +Z(aj _bj)z

discriminative noisy
feature features
If the number of discriminative features is smaller

than the number of noisy features, Euclidean
distance is dominated by noise

35



kNN: Feature Weighting

= Scale each feature by its importance for
classification

D(a,b) = \/Zwk(ak —b, )

= Can learn the weights w, from the validation data

= Increase/decrease weights until classification
improves

kNN Summary

= Advantages
= Can be applied to the data from any distribution
= Very simple and intuitive
= Good classification if the number of samples is
large enough
= Disadvantages
= Choosing best k may be difficult

= Computationally heavy, but improvements
possible
= Need large number of samples for accuracy

= Can never fix this without assuming parametric
distribution

36



