CS434b/654b : Pattern Recognition
Prof. Olga Veksler

Lecture 8
Fisher LDA and MDA

Today

Continue with Dimensionality Reduction
= Last lecture: PCA
= This lecture: Fisher Linear Discriminant




Data Representation vs. Data Classification

= PCA finds the most accurate data representation
in a lower dimensional space
= Project data in the directions of maximum variance
= However the directions of maximum variance may
be useless for classification
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= Fisher Linear Discriminant project to a line which
preserves direction useful for data classification

Fisher Linear Discriminant

= Main idea: find projection to a line s.t. samples
from different classes are well separated

Example in 2D
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bad line to project to, good line to project to,
classes are mixed up classes are well separated




Fisher Linear Discriminant

= Suppose we have 2 classes and d-dimensional
samples x;,...,X,, where

= n, samples come from the first class
= n, samples come from the second class

= consider projection on a line
= Let the line direction be given by unit vector v

= Scalar vix;is the distance of
projection of x;from the origin

= Thus it vix;is the projection of
X;into a one dimensional
subspace

v

Fisher Linear Discriminant

= Thus the projection of sample x; onto a line in
direction v is given by vix;

= How to measure separation between projections of
different classes?

= lLet @&, and &, be the means of projections of
classes 1 and 2

= Let 4, and u,be the means of classes 1 and 2

Lﬂ1 —}12\ seems like a good measure




Fisher Linear Discriminant

= How good is |#, - i| as a measure of separation?
= The larger | - /15|, the better is the expected separation
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= the vertical axes is a better line than the horizontal
axes to project to for class separability

= however |m, - i,|> |it, - &,

Fisher Linear Discriminant

= The problem with | - f,| is that it does not
consider the variance of the classes
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Fisher Linear Discriminant

= We need to normalize |, - i| by a factor which is
proportional to variance

: 1
= 1D samples z,,...,Z,. Sample meanis .= ;Z z;

= Define their scatter as
S = Z (zi —H, )2
i=1

= Thus scatter is just sample variance multiplied by n
= scatter measures the same thing as variance, the spread
of data around the mean

= scatter is just on different scale than variance
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Fisher Linear Discriminant

= Fisher Solution: normalize |, — f1,| by scatter

= Let y;= Vix;, i.e. y; ‘s are the projected samples

=  Scatter for projected samples of class 1 is
§12 = Z (y,' —ﬂ1)2

yieClass 1

=  Scatter for projected samples of class 2 is
§2‘? = Z (.Vi -, ) 2

yeClass 2




Fisher Linear Discriminant

= We need to normalize by both scatter of class 1 and
scatter of class 2

= Thus Fisher linear discriminant is to project on line
in the direction v which maximizes

want projected means are far from each other
r—)ﬁ
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J(v)= (ﬂ1 a, )
/31 + 32 -
want scatter in class 1 is as want scatter in class 2 is as

small as possible, i.e. samples small as possible, i.e. samples
of class 1 cluster around the  of class 2 cluster around the

projected mean [, projected mean fi,

Fisher Linear Discriminant

J(V) ( ﬂz )2
§2+82
= |f we find v which makes J(v) large, we are
guaranteed that the classes are well separated

projected means are far from each other
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small &, implies that small S, implies that
projected samples of projected samples of
class 1 are clustered class 2 are clustered

around projected mean around projected mean




Fisher Linear Discriminant Derivation
J(v)= (ﬂ1 2, )
§2 §2
= All we need to do now is to express J explicitly as a
function of v and maximize it

= straightforward but need linear algebra and Calculus

= Define the separate class scatter matrices S; and
S, for classes 1 and 2. These measure the scatter
of original samples x; (before projection)

S, = Z(Xi _ﬂ1)(xi _ﬂ1)t

x;eClass 1

S, = Z(Xi _ﬂz)(xi _ﬂz)t

x;eClass 2

Fisher Linear Discriminant Derivation

= Now define the within the class scatter matrix
Sy =S5,+S,

= Recallthat &= Y (y,-2,)?

yieClass 1

= Using y;= vix; and 2, = v'u,

8= ¥ vix,-vig)?

yeClass 1

T ; (Zt(xi —u)) (v (x, - 1)
=S (G Y - )

= Zv’(x,.—,u,)(x,.—,u,)tv=v’S1v

yieClass 1




Fisher Linear Discriminant Derivation

= Similarly 87 =v'S,v
= Therefore 82+82=v'Sv+v'S,v=v'S,v
= Define between the class scatter matrix

Se = (1 — 1 s — 11

= Sg measures separation between the means of two
classes (before projection)

= Let’s rewrite the separations of the projected means
(ﬂ1 -1, )2 = (Vtﬂ1 - thu2)2
= Vt(/l1 _ﬂz)(ﬂ1 _/uz)tv

=v'S,v

Fisher Linear Discriminant Derivation

= Thus our objective function can be written:
J(v)= (2, - 8,) _ v'Spv

§2+82 v'S,v

= Maximize J(v) by taking the derivative w.r.t. v and
setting itto 0

i t t _ i t t

d (dv v SBV)V Syv (dv v Swv)v Spv

—J(v)=

dv (v'syvf
_(2Spv)v's,v-(2S,v)v'S,v - ¢

(V‘SWV)2




Fisher Linear Discriminant Derivation

= Needtosolve Vv'S,v(Szv)-v'S,v(S,v)=0

v'S,v(Ssv) v'Syv(S,v)
viS, v v'S,v
wV)

= Spv mtsts :(Sv

= S,v =4S,V
H_J

=0

=0

generalized eigenvalue problem

Fisher Linear Discriminant Derivation
S,v=AS,v

= |f §yhas full rank (the inverse exists), can convert
this to a standard eigenvalue problem

S,/ Sgv = Av
= But Sgx for any vector x, points in the same
direction as u; - i, a
Sux = (g )t~ 1 X = (a _ﬂz) ol ~ 1)
= Thus can solve the eigenvalue problem immediately

V= sv_v1(/‘1 _ﬂz)

Sl/_V1sB\[SV_V1(/u1 —H; )L: SV_V1 [a(ﬂ1 —H; )] =\:’_[EV_V1 (lu1 —H; )] )

~
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Fisher Linear Discriminant Example

= Data
= Class 1 has 5 samples ¢,=[(1,2),(2,3),(3,3),(4,5),(5,5)]
= Class 2 has 6 samples ¢,=[(1,0),(2,1),(3,1),(3,2),(5,3),(6,5)]

= Arrange data in 2 separate matrices
12 10
c,=|: : c,=|: :
" 155 7165

= Notice that PCA performs very
poorly on this data because the
direction of largest variance is not
helpful for classification
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Fisher Linear Discriminant Example

= First compute the mean for each class
4, =mean (c,)=[3 3.6] U, =mean (c,)=[3.3 2]

Compute scatter matrices S, and S, for each class
S, =4*cov(c,)=[81_% ‘;g] 32=5*cov(cz)=[117é3 ;g]

Within the class scatter: )
S, =S +8, = [27.3 24

24 23.2]
= it has full rank, don’t have to solve for eigenvalues
o i ‘« -1 _ _[ 0.39 -0.41]
The inverse of Sy is S,/ = inv (S, )=| "5°21 "0.47 _

Finally, the optimal line direction v
V= Sv_v1(ﬂ1 - ﬂ2)= [_0‘_7'8;9}
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Fisher Linear Discriminant Example

= Notice, as long as the line
has the right direction, its
exact position does not
matter

= |Last step is to compute
the actual 1D vector Y.
Let’s do it separately for
each class

L o o N w N o

0 2 4 6

Y, =vict=[-0.79 0.89][; » §]=[o.98 .. 0.48]

Y, =v'ct =[-0.79 0.89][5 - g]=[—o.79 . —0.31]

Multiple Discriminant Analysis (MDA)

= Can generalize FLD to multiple classes

= |n case of ¢ classes, can reduce dimensionality to
1,2, 3,..., c-1 dimensions

= Project sample x;to a linear subspace y; = Vix;
= Vis called projection matrix
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Multiple Discriminant Analysis (MDA)

= |Let = n;bythe number of samples of class i
= and y; be the sample mean of class i
= ube the total mean of all samples

-1 =1y x,
ﬂi - ni xeclzassxi ﬂ n ; X’
det (V's,V)
det (V'S, V)
= within the class scatter matrix Sy, is

szsz > (x4 - )%, - 1)

i=1 xyeclass i

= Objective function: J(V)=

=  between the class scatter matrix Sgis

/SB = g ni(lui _ﬂ)(/‘i - )

maximum rank is ¢ -1

Multiple Discriminant Analysis (MDA)

= QObjective function:
det (V's,V)

JV)= et (vis,V)

= |t can be shown that “scatter” of the samples is
directly proportional to the determinant of the scatter
matrix
= the larger del(S), the more scattered samples are
= det(S) is the product of eigenvalues of S

= Thus we are seeking transformation V which maximizes the
between class scatter and minimizes the within-class scatter




Multiple Discriminant Analysis (MDA)

det (V's,V)

det (V's,V)

= First solve the generalized eigenvalue problem:
S,v=A4AS,v

J(V)=

= At most ¢-1 distinct solution eigenvalues
= Letvy, v,,..., v, be the corresponding eigenvectors

= The optimal projection matrix Vto a subspace of
dimension kis given by the eigenvectors
corresponding to the largest k eigenvalues

= Thus can project to a subspace of dimension at
most c-1

FDA and MDA Drawbacks

= Reduces dimension only to k= ¢-1 (unlike PCA)
= For complex data, projection to even the best line may
result in unseparable projected samples
= Will fail:
1. J(v) is always 0: happens if g, = @,
OO
O> o0
PCA performs PCA also fails:

reasonably well =
here: ——

2. If J(v) is always small: classes have large overlap when
projected to any line (PCA will also fail)
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