CS434b/654b : Pattern Recognition Prof. Olga Veksler

Lecture 9

Linear Discriminant Functions

Announcements

- Final project proposal due March 8
 - 1-2 paragraph description
- Final project progress report
 - Meet with me the week of March 20-24
- Final project due April 11

Today

- Linear Discriminant Functions
 - Introduction
 - 2 classes
 - Multiple classes
 - Optimization with gradient descent
 - Perceptron Criterion Function
 - Batch perceptron rule
 - Single sample perceptron rule

Linear Discriminant Functions: Basic Idea

- Have samples from 2 classes $x_1, x_2, ..., x_n$
- Assume 2 classes can be separated by a linear boundary $I(\theta)$ with some unknown parameters θ
- Fit the "best" boundary to data by optimizing over parameters $\boldsymbol{\theta}$
- What is best?
 - Minimize classification error on training data?
 - Does not guarantee small testing error

Parametric Methods

Discriminant Functions Assume discriminant

functions are or known shape

Assume the shape of density for classes is known $p_1(\mathbf{x}|\theta_1)$, $p_2(\mathbf{x}|\boldsymbol{\theta}_2),...$

Estimate $\theta_1, \theta_2, \dots$ from data

Use a Bayesian classifier to find decision regions

- In theory, Bayesian classifier minimizes the risk
 - In practice, do not have confidence in assumed model shapes
 - In practice, do not really need the actual density functions in the end
- Estimating accurate density functions is much harder than estimating accurate discriminant functions
- Some argue that estimating densities should be skipped
 - Why solve a harder problem than needed?

LDF: Introduction

- Discriminant functions can be more general than linear
- For now, we will study linear discriminant functions
 - Simple model (should try simpler models first)
 - Analytically tractable
- Linear Discriminant functions are optimal for Gaussian distributions with equal covariance
- May not be optimal for other data distributions, but they are very simple to use
- Knowledge of class densities is not required when using linear discriminant functions
 - we can say that this is a non-parametric approach

LDF: 2 Classes

- Decision boundary $g(x) = w^t x + w_0 = 0$ is a hyperplane
 - set of vectors x which for some scalars $\alpha_0, \ldots, \alpha_d$ satisfy $\alpha_0 + \alpha_1 \mathbf{x}^{(1)} + \ldots + \alpha_d \mathbf{x}^{(d)} = 0$
- A hyperplane is
 - a point in 1D
 - a line in 2D
 - a plane in 3D

LDF: 2 Classes

$$g(x) = w^t x + w_0$$

- w determines orientation of the decision hyperplane
- $\mathbf{w_0}$ determines location of the decision surface

LDF: 2 Classes

FIGURE 5.1. A simple linear classifier having d input units, each corresponding to the values of the components of an input vector. Each input feature value x_i is multiplied by its corresponding weight w_i ; the effective input at the output unit is the sum all these products, $\sum w_i x_i$. We show in each unit its effective input-output function. Thus each of the d input units is linear, emitting exactly the value of its corresponding feature value. The single bias unit unit always emits the constant value 1.0. The single output unit emits a +1 if $\mathbf{w}^t \mathbf{x} + w_0 > 0$ or a -1 otherwise. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

LDF: Many Classes

- Suppose we have m classes
- Define *m* linear discriminant functions

$$g_i(x) = w_i^t x + w_{i0}$$
 $i = 1,...,m$

• Given **x**, assign class **c**_i if

$$g_i(x) \ge g_j(x) \quad \forall j \ne i$$

- Such classifier is called a linear machine
- A linear machine divides the feature space into c decision regions, with g_i(x) being the largest discriminant if x is in the region R_i

LDF: Many Classes

LDF: Many Classes

• For a two contiguous regions R_i and R_j ; the boundary that separates them is a portion of hyperplane H_{ij} defined by:

$$g_i(x) = g_j(x) \Leftrightarrow w_i^t x + w_{i0} = w_j^t x + w_{j0}$$
$$\Leftrightarrow (w_i - w_j)^t x + (w_{i0} - w_{j0}) = 0$$

- Thus $\mathbf{w}_i \mathbf{w}_j$ is normal to \mathbf{H}_{ij}
- And distance from x to H_{ij} is given by

$$d(x, H_{ij}) = \frac{g_i(x) - g_j(x)}{\|w_i - w_j\|}$$

LDF: Many Classes

Decision regions for a linear machine are convex

$$y, z \in R_i \Rightarrow \alpha y + (1-\alpha)z \in R_i$$

$$\forall j \neq i$$
 $g_i(y) \geq g_j(y)$ and $g_i(z) \geq g_j(z) \Leftrightarrow \Leftrightarrow \forall j \neq i$ $g_i(\alpha y + (1 - \alpha)z) \geq g_j(\alpha y + (1 - \alpha)z)$

In particular, decision regions must be spatially contiguous

R_j is not a valid decision region

LDF: Many Classes

- Thus applicability of linear machine to mostly limited to unimodal conditional densities $p(x|\theta)$
 - even though we did not assume any parametric models
- Example:

- need non-contiguous decision regions
- thus linear machine will fail

LDF: Augmented feature vector

- Linear discriminant function: $g(x) = w^t x + w_0$
- Can rewrite it: $g(x) = \begin{bmatrix} w_0 & w^t \end{bmatrix} \begin{bmatrix} 1 \\ x \end{bmatrix} = a^t y = g(y)$ new weight new feature
- y is called the augmented feature vector
- Added a dummy dimension to get a completely equivalent new *homogeneous* problem

old problemnew problem
$$g(x) = w^t x + w_0$$
 $g(y) = a^t y$
$$\begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix}$$
$$\begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_d \end{bmatrix}$$

LDF: Augmented feature vector

- Feature augmenting is done for simpler notation
- From now on we always assume that we have augmented feature vectors
 - Given samples $x_1, ..., x_n$ convert them to augmented samples $y_1, ..., y_n$ by adding a new dimension of value 1 $y_i = \begin{bmatrix} 1 \\ x_i \end{bmatrix}$

LDF: Training Error

- For the rest of the lecture, assume we have 2 classes
- Samples $y_1, ..., y_n$ some in class 1, some in class 2
- Use these samples to determine weights a in the discriminant function $g(y) = a^t y$
- What should be our criterion for determining a?
 - For now, suppose we want to minimize the training error (that is the number of misclassifed samples $y_1, ..., y_n$)
- Recall that $g(y_i) > 0 \Rightarrow y_i$ classified c_1 $g(y_i) < 0 \Rightarrow y_i$ classified c_2
- Thus training error is 0 if $\begin{cases} g(y_i) > 0 & \forall y_i \in c_1 \\ g(y_i) < 0 & \forall y_i \in c_2 \end{cases}$

LDF: Problem "Normalization"

- Thus training error is $\mathbf{0}$ if $\begin{cases} \mathbf{a}^t \mathbf{y}_i > \mathbf{0} \ \forall \mathbf{y}_i \in \mathbf{c}_1 \\ \mathbf{a}^t \mathbf{y}_i < \mathbf{0} \ \forall \mathbf{y}_i \in \mathbf{c}_2 \end{cases}$
- Equivalently, training error is 0 if

$$\begin{cases} a^t y_i > 0 & \forall y_i \in C_1 \\ a^t (-y_i) > 0 & \forall y_i \in C_2 \end{cases}$$

- This suggest problem "normalization":
 - 1. Replace all examples from class c_2 by their negative

$$y_i \rightarrow -y_i \quad \forall y_i \in C_2$$

2. Seek weight vector **a** s.t.

$$a^t y_i > 0 \quad \forall y_i$$

- If such a exists, it is called a separating or solution vector
- Original samples x_1, \ldots, x_n can indeed be separated by a line then

LDF: Solution Region

• Find weight vector \mathbf{a} s.t. for all samples $\mathbf{y_1}, \dots, \mathbf{y_n}$ $\mathbf{a}^t \mathbf{y}_i = \sum_{k=0}^d \mathbf{a}_k \mathbf{y}_i^{(k)} > \mathbf{0}$

$$a^t y_i = \sum_{k=0}^d a_k y_i^{(k)} > 0$$

In general, there are many such solutions a

LDF: Solution Region

- Solution region for a: set of all possible solutions
 - defined in terms of normal a to the separating hyperplane

Optimization

Need to minimize a function of many variables

$$J(x) = J(x_1, ..., x_d)$$

- We know how to minimize J(x)
 - Take partial derivatives and set them to zero

$$\begin{bmatrix} \frac{\partial}{\partial x_1} J(x) \\ \vdots \\ \frac{\partial}{\partial x_d} J(x) \end{bmatrix} = \nabla J(x) = 0$$
gradient

- However solving analytically is not always easy
 - Would you like to solve this system of nonlinear equations?

$$\begin{cases} \sin(x_1^2 + x_2^3) + e^{x_4^2} = 0 \\ \cos(x_1^2 + x_2^3) + \log(x_2^3)^{x_4^2} = 0 \end{cases}$$

 Sometimes it is not even possible to write down an analytical expression for the derivative, we will see an example later today

Optimization: Gradient Descent

• Gradient $\nabla J(x)$ points in direction of steepest increase of J(x), and $-\nabla J(x)$ in direction of steepest decrease

a

one dimension

Optimization: Gradient Descent

Gradient Descent for minimizing any function J(x)

set k = 1 and $x^{(1)}$ to some initial guess for the weight vector while $\eta^{(k)} |\nabla J(x^{(k)})| > \varepsilon$

choose learning rate $\eta^{(k)}$

$$\mathbf{X}^{(k+1)} = \mathbf{X}^{(k)} - \boldsymbol{\eta}^{(k)} \nabla J(\mathbf{X})$$
 (update rule)
 $\mathbf{k} = \mathbf{k} + \mathbf{1}$

Optimization: Gradient Descent

Gradient descent is guaranteed to find only a local minimum

 Nevertheless gradient descent is very popular because it is simple and applicable to any function

Optimization: Gradient Descent

- Main issue: how to set parameter η (*learning rate*)
- If η is too small, need too many iterations

 If η is too large may overshoot the minimum and possibly never find it (if we keep overshooting)

Today

- Continue Linear Discriminant Functions
 - Perceptron Criterion Function
 - Batch perceptron rule
 - Single sample perceptron rule

LDF: Augmented feature vector

Linear discriminant function:

$$g(x) = w^t x + w_0$$

 need to estimate parameters w and w₀ from data

Augment samples x to get equivalent homogeneous problem in terms of samples y:

$$g(x) = \begin{bmatrix} w_0 & w^t \end{bmatrix} \begin{bmatrix} 1 \\ x \end{bmatrix} = a^t y = g(y)$$

"normalize" by replacing all examples from class c₂
 by their negative

$$y_i \rightarrow -y_i \quad \forall y_i \in \mathbf{c}_2$$

LDF

- Augmented and "normalized" samples y₁,..., y_n
- Seek weight vector \mathbf{a} s.t. $\mathbf{a}^t \mathbf{y}_i > \mathbf{0} \quad \forall \mathbf{y}_i$

before normalization

- If such a exists, it is called a separating or solution vector
- original samples $x_1, ..., x_n$ can indeed be separated by a line then

Optimization: Gradient Descent

Gradient Descent for minimizing any function J(x)

set k = 1 and $x^{(1)}$ to some initial guess for the weight vector while $\eta^{(k)} |\nabla J(x^{(k)})| > \varepsilon$ choose learning rate $\eta^{(k)}$

$$\mathbf{X}^{(k+1)} = \mathbf{X}^{(k)} - \boldsymbol{\eta}^{(k)} \nabla \mathbf{J}(\mathbf{X})$$
 (update rule)
 $\mathbf{K} = \mathbf{K} + \mathbf{1}$

LDF: Criterion Function

• Find weight vector \mathbf{a} s.t. for all samples $\mathbf{y}_1, \dots, \mathbf{y}_n$

$$a^t y_i = \sum_{k=0}^{a} a_k y_i^{(k)} > 0$$

- Need criterion function J(a) which is minimized when a is a solution vector
- Let Y_M be the set of examples misclassified by a $Y_M(a) = \{sample \ y_i \ s.t. \ a^t y_i < 0\}$
- First natural choice: number of misclassified examples

$$J(a) = |Y_{M}(a)|$$

 piecewise constant, gradient descent is useless

LDF: Perceptron Criterion Function

• Better choice: **Perceptron** criterion function

$$J_{p}(a) = \sum_{y \in Y_{M}} \left(-a^{t}y\right)$$

- If y is misclassified, $a^t y \le 0$
- Thus $J_p(a) \ge 0$
- J_p(a) is -||a|| times sum of distances of misclassified examples to decision boundary

 J_p(a) is piecewise linear and thus suitable for gradient descent

DF: Perceptron Batch Rule

$$J_p(a) = \sum_{y \in Y_M} \left(-a^t y \right)$$

- Gradient of $J_p(a)$ is $\nabla J_p(a) = \sum_{v \in V_{ij}} (-y)$
 - Y_M are samples misclassified by a^(k)
 - It is not possible to solve $\nabla J_p(a) = 0$ analytically because of Y_M
- Update rule for gradient descent: $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} \boldsymbol{\eta}^{(k)} \nabla J(\mathbf{x})$
- Thus gradient decent batch update rule for $J_n(a)$ is:

$$a^{(k+1)} = a^{(k)} + \eta^{(k)} \sum_{y \in Y_M} y$$

It is called batch rule because it is based on all misclassified examples

LDF: Perceptron Single Sample Rule

Thus gradient decent single sample rule for $J_p(a)$ is: $a^{(k+1)} = a^{(k)} + \eta^{(k)} y_M$

$$a^{(k+1)} = a^{(k)} + \eta^{(k)} y_M$$

- note that y_M is one sample misclassified by $a^{(k)}$
- must have a consistent way of visiting samples
- Geometric Interpretation:
 - y_M misclassified by a^(k) $\left(a^{(k)}\right)^t y_M \leq 0$
 - y_M is on the wrong side of decision hyperplane
 - adding ηy_M to a moves new decision hyperplane in the right direction with respect to y_M

LDF: Perceptron Single Sample Rule

$$a^{(k+1)} = a^{(k)} + \eta^{(k)} y_M$$

 η is too large, previously correctly classified sample y_k is now misclassified

 η is too small, $\mathbf{y_{M}}$ is still misclassified

LDF: Perceptron Example

	features				grade
name	good attendance?	tall?	sleeps in class?	chews gum?	
Jane	yes (1)	yes (1)	no (-1)	no (-1)	Α
Steve	yes (1)	yes (1)	yes (1)	yes (1)	F
Mary	no (-1)	no (-1)	no (-1)	yes (1)	F
Peter	yes (1)	no (-1)	no (-1)	yes (1)	Α

- class 1: students who get grade A
- class 2: students who get grade F

LDF Example: Augment feature vector

		features			grade	
name	extra	good attendance?	tall?	sleeps in class?	chews gum?	
Jane	1	yes (1)	yes (1)	no (-1)	no (-1)	Α
Steve	1	yes (1)	yes (1)	yes (1)	yes (1)	F
Mary	1	no (-1)	no (-1)	no (-1)	yes (1)	F
Peter	1	yes (1)	no (-1)	no (-1)	yes (1)	Α

• convert samples $x_1, ..., x_n$ to augmented samples $y_1, ..., y_n$ by adding a new dimension of value 1

LDF: Perform "Normalization"

		features			grade	
name	extra	good attendance?	tall?	sleeps in class?	chews gum?	
Jane	1	yes (1)	yes (1)	no (-1)	no (-1)	Α
Steve	-1	yes (-1)	yes (-1)	yes (-1)	yes (-1)	F
Mary	-1	no (1)	no (1)	no (1)	yes (-1)	F
Peter	1	yes (1)	no (-1)	no (-1)	yes (1)	Α

• Replace all examples from class c_2 by their negative

$$y_i \rightarrow -y_i \quad \forall y_i \in \mathbf{c}_2$$

• Seek weight vector \mathbf{a} s.t. $\mathbf{a}^t \mathbf{y}_i > \mathbf{0}$ $\forall \mathbf{y}_i$

LDF: Use Single Sample Rule

	features			grade		
name	extra	good attendance?	tall?	sleeps in class?	chews gum?	
Jane	1	yes (1)	yes (1)	no (-1)	no (-1)	Α
Steve	-1	yes (-1)	yes (-1)	yes (-1)	yes (-1)	F
Mary	-1	no (1)	no (1)	no (1)	yes (-1)	F
Peter	1	yes (1)	no (-1)	no (-1)	yes (1)	Α

- Sample is misclassified if $a^t y_i = \sum_{k=0}^4 a_k y_i^{(k)} < 0$
- gradient descent single sample rule: $a^{(k+1)} = a^{(k)} + \eta^{(k)} y_M$
- Set *fixed* learning rate to $\eta^{(k)} = 1$: $a^{(k+1)} = a^{(k)} + y_M$

LDF: Gradient decent Example

- set equal initial weights **a**⁽¹⁾=[0.25, 0.25, 0.25, 0.25]
- visit all samples sequentially, modifying the weights for after finding a misclassified example

name	a ^t y	misclassified?
Jane	0.25*1+0.25*1+0.25*1+0.25*(-1)+0.25*(-1) >0	no
Steve	0.25*(-1)+0.25*(-1)+0.25*(-1)+0.25*(-1)+0.25*(-1)<0	yes

new weights

$$a^{(2)} = a^{(1)} + y_M = [0.25 \ 0.25 \ 0.25 \ 0.25 \ 0.25] +$$

$$+[-1 \ -1 \ -1 \ -1] =$$

$$=[-0.75 \ -0.75 \ -0.75 \ -0.75 \ -0.75]$$

LDF: Gradient decent Example

$$a^{(2)} = [-0.75 -0.75 -0.75 -0.75 -0.75]$$

name	aty	misclassified?
Mary	-0.75*(-1)-0.75*1 -0.75 *1 -0.75 *1 -0.75*(-1) <0	yes

new weights

$$a^{(3)} = a^{(2)} + y_M = \begin{bmatrix} -0.75 & -0.75 & -0.75 & -0.75 \end{bmatrix} +$$

$$+ \begin{bmatrix} -1 & 1 & 1 & 1 & -1 \end{bmatrix} =$$

$$= \begin{bmatrix} -1.75 & 0.25 & 0.25 & 0.25 & -1.75 \end{bmatrix}$$

LDF: Gradient decent Example

$$a^{(3)} = [-1.75 \quad 0.25 \quad 0.25 \quad 0.25 \quad -1.75]$$

name	a ^t y	misclassified?
Peter	-1.75 *1 +0.25* 1+0.25* (-1) +0.25 *(-1)-1.75*1 <0	yes

new weights

$$a^{(4)} = a^{(3)} + y_M = [-1.75 \quad 0.25 \quad 0.25 \quad 0.25 \quad -1.75] +$$

$$+ [1 \quad 1 \quad -1 \quad -1 \quad 1] =$$

$$= [-0.75 \quad 1.25 \quad -0.75 \quad -0.75 \quad -0.75]$$

LDF: Gradient decent Example

$$a^{(4)} = [-0.75 \ 1.25 \ -0.75 \ -0.75 \ -0.75]$$

name	a ^t y	misclassified?
Jane	-0.75 *1 +1.25*1 -0.75*1 -0.75 *(-1) -0.75 *(-1)+0	no
Steve	-0.75*(-1)+1.25*(-1) -0.75*(-1) -0.75*(-1)-0.75*(-1)>0	no
Mary	-0.75 *(-1)+1.25*1-0.75*1 -0.75 *1 -0.75*(-1) >0	no
Peter	-0.75 *1+ 1.25*1-0.75* (-1)-0.75* (-1) -0.75 *1 >0	no

- Thus the discriminant function is $g(y) = -0.75 * y^{(0)} + 1.25 * y^{(1)} 0.75 * y^{(2)} 0.75 * y^{(3)} 0.75 * y^{(4)}$
- Converting back to the original features x: $g(x) = 1.25 * x^{(1)} - 0.75 * x^{(2)} - 0.75 * x^{(3)} - 0.75 * x^{(4)} - 0.75$

LDF: Gradient decent Example

Converting back to the original features x:

1.25 *
$$x^{(1)}$$
 – 0.75 * $x^{(2)}$ – 0.75 * $x^{(3)}$ – 0.75 * $x^{(4)}$ > 0.75 \Rightarrow grade A
1.25 * $x^{(1)}$ – 0.75 * $x^{(2)}$ – 0.75 * $x^{(3)}$ – 0.75 * $x^{(4)}$ < 0.75 \Rightarrow grade F
good tall sleeps in class chews gum
attendance

- This is just one possible solution vector
- If we started with weights $a^{(1)}=[0,0.5, 0.5, 0, 0]$, solution would be [-1,1.5, -0.5, -1, -1]1.5 * $x^{(1)} - 0.5$ * $x^{(2)} - x^{(3)} - x^{(4)} > 1 \Rightarrow grade A$ 1.5 * $x^{(1)} - 0.5$ * $x^{(2)} - x^{(3)} - x^{(4)} < 1 \Rightarrow grade F$
 - In this solution, being tall is the least important feature

LDF: Nonseparable Example

- Suppose we have 2 features and samples are:
 - Class 1: [2,1], [4,3], [3,5]
 - Class 2: [1,3] and [5,6]
- These samples are not separable by a line

- Still would like to get approximate separation by a line, good choice is shown in green
 - some samples may be "noisy", and it's ok if they are on the wrong side of the line
- Get y₁, y₂, y₃, y₄ by adding extra feature and "normalizing" [1]

$$\begin{array}{ll}
\mathbf{9}^{"} \\
\mathbf{y}_{1} = \begin{bmatrix} \mathbf{1} \\ \mathbf{2} \\ \mathbf{1} \end{bmatrix} \quad \mathbf{y}_{2} = \begin{bmatrix} \mathbf{1} \\ \mathbf{4} \\ \mathbf{3} \end{bmatrix} \quad \mathbf{y}_{3} = \begin{bmatrix} \mathbf{1} \\ \mathbf{3} \\ \mathbf{5} \end{bmatrix} \quad \mathbf{y}_{4} = \begin{bmatrix} -\mathbf{1} \\ -\mathbf{1} \\ -\mathbf{3} \end{bmatrix} \quad \mathbf{y}_{5} = \begin{bmatrix} -\mathbf{1} \\ -\mathbf{5} \\ -\mathbf{6} \end{bmatrix}$$

LDF: Nonseparable Example

 Let's apply Perceptron single sample algorithm

- this is line $x^{(1)} + x^{(2)} + 1 = 0$
- fixed learning rate $\eta = 1$ $a^{(k+1)} = a^{(k)} + y_M$

$$y_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \quad y_2 = \begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix} \quad y_3 = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} \quad y_4 = \begin{bmatrix} -1 \\ -1 \\ -3 \end{bmatrix} \quad y_5 = \begin{bmatrix} -1 \\ -5 \\ -6 \end{bmatrix}$$

- $y_{t_1}^t a^{(1)} = [1 \ 1 \ 1]^* [1 \ 2 \ 1]^t > 0$
- $y^{t}_{2}a^{(1)} = [1 \ 1 \ 1]^{*}[1 \ 4 \ 3]^{t} > 0$
- $y^{t}_{3}a^{(1)} = [1 \ 1 \ 1]^{*}[1 \ 3 \ 5]^{t} > 0$

LDF: Nonseparable Example

$$a^{(1)} = [1 \ 1 \ 1]$$

$$a^{(1)} = [1 \ 1 \ 1]$$
 $a^{(k+1)} = a^{(k)} + y_M$

$$y_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \quad y_2 = \begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix} \quad y_3 = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} \quad y_4 = \begin{bmatrix} -1 \\ -1 \\ -3 \end{bmatrix} \quad y_5 = \begin{bmatrix} -1 \\ -5 \\ -6 \end{bmatrix}$$

$$a^{(2)} = a^{(1)} + y_M = [1 \ 1 \ 1] + [-1 - 1 - 3] = [0 \ 0 \ -2]$$

•
$$y_5^t a^{(2)} = [0 \ 0 \ -2]^*[-1 \ -5 \ -6]^t = 12 > 0$$

•
$$y_1^t a^{(2)} = [0 \ 0 \ -2]^* [1 \ 2 \ 1]^t < 0$$

$$a^{(3)} = a^{(2)} + y_M = [0 \ 0 \ -2] + [1 \ 2 \ 1] = [1 \ 2 \ -1]$$

LDF: Nonseparable Example

$$a^{(3)} = [1 \ 2 \ -1]$$

$$a^{(3)} = [1 \ 2 \ -1]$$
 $a^{(k+1)} = a^{(k)} + y_M$

$$y_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \quad y_2 = \begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix} \quad y_3 = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} \quad y_4 = \begin{bmatrix} -1 \\ -1 \\ -3 \end{bmatrix} \quad y_5 = \begin{bmatrix} -1 \\ -5 \\ -6 \end{bmatrix}$$

- $y^{t}_{2}a^{(3)}=[1 \ 4 \ 3]^{*}[1 \ 2 \ -1]^{t}=6>0$
- $y_3^t a^{(3)} = [1 \ 3 \ 5]^* [1 \ 2 \ -1]^t > 0$
- $y^t_4 a^{(3)} = [-1 \ -1 \ -3]^* [1 \ 2 \ -1]^t = 0$

$$a^{(4)} = a^{(3)} + y_M = [1 \ 2 \ -1] + [-1 \ -1 \ -3] = [0 \ 1 \ -4]$$

LDF: Nonseparable Example

$$a^{(4)} = [0 \ 1 - 4]$$

$$a^{(4)} = [0 \ 1 - 4]$$
 $a^{(k+1)} = a^{(k)} + y_M$

$$y_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \quad y_2 = \begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix} \quad y_3 = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} \quad y_4 = \begin{bmatrix} -1 \\ -1 \\ -3 \end{bmatrix} \quad y_5 = \begin{bmatrix} -1 \\ -5 \\ -6 \end{bmatrix}$$

- $y^{t_2}a^{(3)}=[1 \ 4 \ 3]^*[1 \ 2 \ -1]^t=6>0$
- $y_3^t a^{(3)} = [1 \ 3 \ 5]^* [1 \ 2 \ -1]^t > 0$
- $y^{t_4}a^{(3)}=[-1 -1 -3]^*[1 2 -1]^t=0$

$$a^{(4)} = a^{(3)} + y_M = [1 \ 2 \ -1] + [-1 \ -1 \ -3] = [0 \ 1 \ -4]$$

LDF: Nonseparable Example

- we can continue this forever
 - there is no solution vector a satisfying for all i

$$a^t y_i = \sum_{k=0}^5 a_k y_i^{(k)} > 0$$

- need to stop but at a good point:
- solutions at iterations 900 through 915. Some are good some are not.
- How do we stop at a good solution?

LDF: Convergence of Perceptron rules

- If classes are linearly separable, and use fixed learning rate, that is for some constant c, $\eta^{(k)} = c$
 - both single sample and batch perceptron rules converge to a correct solution (could be any a in the solution space)
- If classes are not linearly separable:
 - algorithm does not stop, it keeps looking for solution which does not exist
 - by choosing appropriate learning rate, can always ensure convergence: $\eta^{(k)} \to 0$ as $k \to \infty$
 - for example inverse linear learning rate: $\eta^{(k)} = \frac{\eta^{(1)}}{k}$
 - for inverse linear learning rate convergence in the linearly separable case can also be proven
 - no guarantee that we stopped at a good point, but there are good reasons to choose inverse linear learning rate

LDF: Perceptron Rule and Gradient decent

- Linearly separable data
 - perceptron rule with gradient decent works well
- Linearly non-separable data
 - need to stop perceptron rule algorithm at a good point, this maybe tricky

Batch Rule

 Smoother gradient because all samples are used

Single Sample Rule

- easier to analyze
- Concentrates more than necessary on any isolated "noisy" training examples