CS434b/654b : Pattern Recognition
Prof. Olga Veksler

Lecture 9
Linear Discriminant Functions

Today

= Linear Discriminant Functions
= |ntroduction
= 2classes
= Multiple classes
= Optimization with gradient descent
= Perceptron Criterion Function

= Batch perceptron rule
= Single sample perceptron rule

Announcements

Final project proposal due March 8
= 1-2 paragraph description

Final project progress report

= Meet with me the week of March 20-24

Final project due April 11

Linear discriminant functions on Road Map

= No probability distribution (no shape or

alotis

known

parameters are known)

= Labeled data s, g gomer

= The shape of discriminant functions is
known

linear
discriminant|
function

lightness

I length

= Need to estimate parameters of the
discriminant function (parameters of the

little is
known

line in case of linear discriminant)

Linear Discriminant Functions: Basic Idea

o,
)
3
5]
3

lightness
lightness

. ° length ®length

' bad boundary I good boundary

= Have samples from 2 classes x;, X, ,..., X,

= Assume 2 classes can be separated by a linear
boundary /() with some unknown parameters @

= Fit the “best” boundary to data by optimizing over
parameters @

= What is best?
= Minimize classification error on training data?

LDF: Introduction

= Does not guarantee small testing error

= Discriminant functions can be more general than
linear

= For now, we will study linear discriminant functions
= Simple model (should try simpler models first)
= Analytically tractable

= Linear Discriminant functions are optimal for
Gaussian distributions with equal covariance

= May not be optimal for other data distributions, but
they are very simple to use

= Knowledge of class densities is not required when
using linear discriminant functions

= we can say that this is a non-parametric approach

Discriminant Functions

Assume discriminant
functions are or known shape

Parametric Methods vs.
Assume the shape of density
for classes is known p,(x|8,),

PAX18)),... 18)), I8y, with parameters
. ' O
Estimate 6, 6... from data Estimate 8,, 6,,... from data

Use a Bayesian classifier to
find decision regions

Use discriminant functions for
classification

c
c; 2

Cy

= In theory, Bayesian classifier minimizes the risk
= In practice, do not have confidence in assumed model shapes
= In practice, do not really need the actual density functions in the end
= Estimating accurate density functions is much harder than
estimating accurate discriminant functions
= Some argue that estimating densities should be skipped
= Why solve a harder problem than needed ?

LDF: 2 Classes

= A discriminant function is linear if it can be written as
g(x) =wix +w,
= wis called the weight vector and w,, called bias or threshold

\$ x@ [| 9{1 g(x)>0 =xeclass
dg(x)<0 = xeclass 2
S m B g(x)=0 = either class
gx)>0
9{ [

2 m

[] |
x(7)

gx) <0 :\\decision boundary g(x) = 0

LDF: 2 Classes

= Decision boundary g(x) = wix + w,=0is a hyperplane

= set of vectors x which for some scalars a,..., ay
satisfy a, +axM+...+ aux@ =0

= A hyperplane is N
= a pointin 1D T XS
L N A
= alinein 2D A AN

= aplane in 3D

LDF: 2 Classes

Dias unit

lx}

autpat it

input units

FIGURE 5.1. A simple linear classifier having d input units, each corresponding to the
values of the components of an input vector. Each input feature value x; is multiplied
by its corresponding weight wi; the effective input at the output unit is the sum all these
products, 3 wx;. We show in each unil its effective input-output function. Thus each of
the d input units is linear, emitting exactly the value of its corresponding feature value.
The single bias unit unit always emils the constant value 1.0. The single oulput unit
emils a +1 if w'x + wy = 0 ora —1 otherwise. From: Richard O. Duda, Peter E. Harl,
and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons,

Inc.

LDF: 2 Classes

g(x) =wix + w,

= wdetermines orientation of the decision hyperplane
= w, determines location of the decision surface

4 x(2
\ N X
N
(}1)
¢ gx)>0

N\
&
P

gx)<0 \=\g(x) -0

LDF: Many Classes

= Suppose we have m classes

= Define m linear discriminant functions
t
gi(x)=w;x+w,

i=1,..,m

= Given x, assign class ¢;if

9i(x) 2 g;(x)

Such classifier is called a linear machine

Vj=#i

= A linear machine divides the feature space into ¢
decision regions, with g;(x) being the largest
discriminant if x is in the region R;

LDF: Many Classes

LDF: Many Classes

= Decision regions for a linear machine are convex
y,ze R, =>ay+(1-a)ze R, y
\.z
Ri
vj=i g,(y)2g,(y) and g,(2)29,(2) &
ovizi gley+(-a)z)2g(ay+(1-a)2)

= In particular, decision regions must be spatially
contiguous

R, R | |R;

1

R; is a valid

s 1 R; is not a valid
decision region

decision region

LDF: Many Classes

= For a two contiguous regions R;and R; the
boundary that separates them is a portion of
hyperplane Hjdefined by:

9i(X)=9,(x) ewx+w,=wix+w,
& W, -w,) x+ W, -w,)

= Thus w; —wj;is normal to Hj;
= And distance from x to Hj; is given by

gi(x)_gi(x)

T)
i j

0

LDF: Many Classes

= Thus applicability of linear machine to mostly limited
to unimodal conditional densities p(x|8)
= even though we did not assume any parametric models

= Example:

= need non-contiguous decision regions
= thus linear machine will fail

LDF: Augmented feature vector

= Linear discriminant function: g(x)=w'x+w,

= Canrewrite it: g(x)= [wo w'] [}] =a'y=g(y)
——
new weight new feature
vector a vector y
= yis called the augmented feature vector
= Added a dummy dimension to get a completely
equivalent new homogeneous problem
old problem new problem
9(x)=w'x+w, gly)=a'y

i i

LDF: Training Error

= For the rest of the lecture, assume we have 2 classes
= Samples y;,..., ¥, some inclass 1, some in class 2

= Use these samples to determine weights a in the
discriminant function g(y)=a'y

What should be our criterion for determining a?
= For now, suppose we want to minimize the training error
(that is the number of misclassifed samples y;,..., ¥,)
g(y;)>0=y, classified c,

= Recall th
ecall that g(y;)<0=y, classified c,
g(y;)>0 Vy,ec,

= Thus training error is 0 if {Q(Y.-)<° vy ec,

LDF: Augmented feature vector

= Feature augmenting is done for simpler notation

= From now on we always assume that we have

augmented feature vectors

= Given samples x;,..., X,, convert them to 1
augmented samples y;,,..., ¥, by adding i =[]
a new dimension of value 1 !

y(Z)

LDF: Problem “Normalization”

t
= Thus training error is 0if {a yi>0vy,ec

a'y, <0 Vy,ec,
= Equivalently, training error is 0 if

a'y,>0 vy, ec

a'(-y)>0 vyec,

= This suggest problem “normalization”:
1. Replace all examples from class ¢, by their negative
Yi—=-Y; Vy;ec,
2. Seek weight vector a s.t.
a'y,>0 vy,
= |f such aexists, it is called a separating or solution vector

= Original samples Xj,..., X, can indeed be separated by a
line then

LDF: Problem “Normalization”
after “normalization

”

before normalization

y(2) y(z)

Seek hyperplane that
puts normalized
patterns on the same
(positive) side

Seek a hyperplane that
separates patterns from
different categories

LDF: Solution Region

= Solution region for a: set of all possible solutions
= defined in terms of normal a to the separating hyperplane

y(2)

LDF: Solution Region

= Find weight vector asat. for all samples y;,..., ¥n
ay,=Yay">0
k=0

y(2)

HE ‘*a <besta

= In general, there are many such solutions a

Optimization

= Need to minimize a function of many variables
J(x) = J(Xypees X5)

= We know how to minimize J(x)
= Take partial derivatives and set them to zero

] gradient
o J(x)

3 : =VJ(x)=0
—J
Xy ()

= However solving analytically is not always easy
= Would you like to solve this system of nonlinear equations?
sin(x? + x3)+e% =0
cos(x? + x})+Iog(xj)'3 =0
= Sometimes it is not even possible to write down an analytical
expression for the derivative, we will see an example later today

Optimization: Gradient Descent

= Gradient VJ(x) points in direction of steepest increase of
J(x),and -VJ(x) in direction of steepest decrease

one dimension two dimensions

_ﬂ(a) 200
J(x) dx . -vJ(a)
200 \
-400.
10
’ g °
> 40 -0
a X
_ay
@
a

Optimization: Gradient Descent

= Gradient descent is guaranteed to find only a local
minimum
J(x)

x() x@ x©3 x(k) global minimum

= Nevertheless gradient descent is very popular
because it is simple and applicable to any function

Optimization: Gradient Descent

J(x) -vJ(x™)

s s
XN x2 x@ x®

Gradient Descent for minimizing any function J(x)
set k=1 and x(") to some initial guess for the weight vector
while 7% VJ(X(k))‘ >e

choose learning rate p®
Xtk D= x(0) — 19 09 7 ()
k=k+1

(update rule)

Optimization: Gradient Descent
= Main issue: how to set parameter 7 (learning rate)
= |f pis too small, need too many iterations

J(x)
X
| OO T T >
J(x)
= If pis too large may
overshoot the minimum
and possibly never find it
(if we keep overshooting) | - X
x(1 x2

Today

= Continue Linear Discriminant Functions

= Perceptron Criterion Function
= Batch perceptron rule
= Single sample perceptron rule

LDF
= Augmented and “normalized” samples y;,..., ¥,
= Seek weight vector as.t. a'y,>0 vy,

y(2)

y(Z)

CY4 yu)'

before normalization after “normalization”

= |f such aexists, it is called a separating or solution vector
original samples xj,..., X,, can indeed be separated by a

line then

LDF: Augmented feature vector

= Linear discriminant function:
a(x)=w'x+w,

lightness

= need to estimate parameters w
and w, from data

/éng[h

= Augment samples x to get equivalent homogeneous
problem in terms of samples y:
9(x)=[w, w'] [,1(] =a'y=g(y)

= “normalize” by replacing all examples from class ¢,

by their negative

Yi—=>-Y; Vy,ec,

Optimization: Gradient Descent

—VJ(X”’)

J(x)

s s
| XD x@ x3 x®
st = x ke _ x () = p®(_ g g(x®))

Gradient Descent for minimizing any function J(x)
set k=1 and x(") to some initial guess for the weight vector
while 7% VJ(X(k))‘ >e

choose learning rate n®

x(k+1)= x (k) — n k) VJ(X)
k=k+1

(update rule)

LDF: Criterion Function

= Find weight vector ast for all samples y;,..., ¥n
a'y, =Y 8,y >0
k=0

= Need criterion function J(a) which is minimized when
ais a solution vector

= Let Y, be the set of examples misclassified by a
Y, (a)={sample y, s.t. a'y,<0}
= First natural choice: number of misclassified examples

LDF: Perceptron Batch Rule
Jy(a)= Y (-a'y)

yeYu
Gradient of J,(a) is VJ,(a)= Zy(— y)
ye¥m
= Y, are samples misclassified by a®
= ltis not possible to solve VJ,(a)=0 analytically
because of Yy,
= Update rule for gradient descent: xtk+1)= x®—p &) v 4(x)

= Thus gradient decent batch update rule for Jy(a) is:

J(a)=|Y,(a)
J(a) a*)=aW g 3y
= piecewise constant, gradient , . veVu
descent is useless —_ = |t is called batch rule because it is based on all
~ misclassified examples
a
LDF: Perceptron Criterion Function LDF: Perceptron Single Sample Rule
= Better choice: Perceptron criterion function = Thus gradient decent single sample rule for J,(a) is:
J,(a)= ZV:(_ a'y) a = g®) 4 gy
Ye¥m
] . . y S = note that yy, is one sample misclassified by at®
= If y is misclassified, a'y <0 — = must have a consistent way of visiting samples
S

* Thus J,(a)20 o 7 = Geometric Interpretation:
= Jy(a) is -||al| times sum of = yy misclassified by a®

distances of misclassified @)y, <o

examples to decision boundary = yy is on the wrong side of
. L . . decision hyperplane

Jy(a)is piecewise linear J(a) = adding 7y, to @ moves new

and t.hus suitable for decision hyperplane in the right

gradient descent direction with respect to yy,

) a

LDF: Perceptron Single Sample Rule LDF Example: Augment feature vector

2k = g 4 p®y

features grade
name | extra good tall? sleeps in| chews
attendance? class? | gum?
Jane 1 yes (1) yes (1) | no(-1) | no (-1) A
Steve | 1 yes (1) yes (1) | yes (1) | yes (1) F
Mary 1 no (-1) no(-1) | no(-1) | yes (1) F
Peter | 1 yes (1) no(-1) | no(-1) | yes (1) A

Yie = convert samples x;,..., X, to augmented samples
nis too large, previously nis too small, y,, is still Y1+ ¥n by adding a new dimension of value 1
correctly classified sample misclassified

¥, is now misclassified

LDF: Perceptron Example LDF: Perform “Normalization”
features grade features grade
name good tall? sleeps in | chews -
attendance? class? gum? hame | extra a tte?rzggce? tall? slcelg;; z,;" ZIL%V:
Jane yes (1) |yes(1)| no(-1) | no(1) A Jane 1 yes (1) yes (1) | no(-1) | no(-1) A
Steve yes (1) |yes(1)| yes(1) |yes(1) F Steve | -1 yes (-1) | yes (-1) | yes (-1) | yes (-1) F
Mary no (1) |no(1)| no(-1) |yes(1) F Mary | -1 no (1) no(1) | no(1) |yes(-1)| F
Peter yes (1) | no(-1)| no(-1) |yes(1) A Peter | 1 yes (1) no(-1) | no(-1) | yes (1) A
= Replace all examples from class ¢, by their negative
= class 1: students who get grade A Yi—=-y; Vy,ec,

= class 2: students who get grade F = Seek weightvector ast. a'y,>0 Vy,

LDF: Use Single Sample Rule

features grade

name | extra good tall? sleeps in| chews
attendance? class? gum?

Jane 1 yes (1) yes (1) | no(-1) | no(-1)
Steve | -1 yes (-1) | yes(-1) | yes (-1) | yes (-1)
Mary | -1 no (1) no (1) | no(1) |yes(-1)
Peter | 1 yes (1) no(-1) | no(-1) | yes (1)

PNIE AR IBS

4
= Sample is misclassified if a'y,=Y.ay® <0
k=0
= gradient descent single sample rule: a*" =a® +5®y,,

= Set fixed learning rate to 7%= 1:

LDF: Gradient decent Example

a® =[-0.75 -0.75 —0.75 -0.75 —0.75]

name aty misclassified?

Mary | -0.75%-1)-0.75"1-0.75 *1 -0.75 *1 -0.75*(1) <0 yes

= new weights
a®=a® 4y, =[-0.75 -0.75 -0.75 -0.75 —0.75]+
-1 1 11 1=
=[-1.75 0.25 0.25 0.25 -1.75]

LDF: Gradient decent Example

= set equal initial weights a(=[0.25, 0.25, 0.25, 0.25]

= visit all samples sequentially, modifying the weights
for after finding a misclassified example

LDF: Gradient decent Example

a®=[-1.75 0.25 0.25 0.25 —1.75]

name aty misclassified?

Peter | -1.75 *1 +0.25" 1+0.25" (-1) +0.25 *(-1)-1.75*1 <0 yes

name a!y misclassified?
Jane 0.25*1+0.25*1+0.25*1+0.25%(-1)+0.25*(-1) >0 no
Steve | 0.25%(-1)+0.25%(-1)+0.25%(-1)+0.25%(-1)+0.25%(-1)<0 yes

* new weights
a®=a"+y, =[0.25 0.25 0.25 0.25 0.25]+
+-1 -1 -1 -1 1]=
=[-0.75 —-0.75 —-0.75 -0.75 -0.75]

= new weights
a9 =a®4+y, =[-1.75 0.25 0.25 0.25 -1.75]+
+f. 1 1 -1 A1]=
=[-0.75 1.25 -0.75 -0.75 —0.75]

11

LDF: Gradient decent Example

a®=[-0.75 1.25 -0.75 -0.75 -0.75]

name aty misclassified?
Jane -0.75 *1 +1.25*1 -0.75%1 -0.75 *(-1) -0.75 *(-1)+0 no
Steve | -0.75%(-1)+1.25%(-1) -0.75%(-1) -0.75%(-1)-0.75*(-1)>0 no
Mary -0.75 *(-1)+1.25*1-0.75*1 -0.75 *1 -0.75%(-1) >0 no
Peter -0.75 *1+ 1.25*1-0.75* (-1)-0.75* (-1) -0.75 *1 >0 no

= Thus the discriminant function is
g(y)=-0.75*y® +1.25* yMW _0.75* y® —0.75* y©) - 0.75* y)

= Converting back to the original features x:
g(x)=1.25*x"-0.75* x® —0.75* x® -0.75* x) - 0.75

LDF: Nonseparable Example

= Suppose we have 2 features
and samples are:
= Class 1: [2,1], [4,3], [3,5]
= Class 2:[1,3] and [5,6]

= These samples are not
separable by a line T T

= Still would like to get approximate separation by a
line, good choice is shown in green

= some samples may be “noisy”, and it’s ok if they are on
the wrong side of the line

= Get y,, ¥», Y3, Y4 by adding extra feature and

6
5
4
3
2
1
0

“normalizing” 4 1 1 —1 1
=2 =4 =|3 ={-1 =-5
Y |:1:| Y2 |:3] Y3 |:5:| Y |:_3:| Ys |: 6

|

LDF: Gradient decent Example

= Converting back to the original features x:
1.25* x_-0.75* x® ~0.75* x® - 0.75* x¥) > 0.75 = grade A
1.25* x0-0.75* x® -0.75* x® - 0.75* x*) < 0.75 = grade F

good tall sleepsinclass chews gum
attendance

= This is just one possible solution vector

= |If we started with weights a("=[0,0.5, 0.5, 0, 0],
solution would be [-1,1.5, -0.5, -1, -1]
1.5*xM-0.5*x® — x _ x“) 5 1= grade A
1.5*xM-0.5*x® _ x _ x) < 1= grade F
= In this solution, being tall is the least important feature

LDF: Nonseparable Example

= Let’s apply Perceptron single : =
sample algorithm ¢
e . o _ ’) [|
= initial equal weights a® =[111] -
= thisis line x(W+x(2+1=0 oW |

= fixed learning rate 7=1

\|
\%'
al) — g0 4y TN
0 o8] mefg] el el
= = = = -1 ==
Y, g Y, 3 Y3 5 Y, T3 Vs _6

= yah=[1 111 21]t>0 ¥
= ya=[111][143]t>0 ¥
= yla®=[111][135]t>0 ¥

5

12

LDF: Nonseparable Example LDF: Nonseparable Example

a"=[111 a*"=a®+y, - a=[01-4] a*"=aW+y, ; m

T e I N R P P = LN
= yta=[1 1 1] -1-3]t= -5< 0 00' .la@ LT

Ak,

s © ya®=[1 431 2-1]t=6>0 ¥ + o « « 5 i s
a®=a"yy, =[111]+[-1-1-3]=[00-2] « ytad=[1 351 2-1]'>0 ¥
* ya?=[00-2][-1-5-6]t=12>0 ¥ = y,ad=[-1-1-3[12-1]'=0
« yt,a?d=[00-2][121]t<0 a=a 4y, =[12-1+[-1-1-3]=[01-4]

al=a®yy,=[00-2]+[1 2 1]=[1 2 -1]

LDF: Nonseparable Example LDF: Nonseparable Example

= we can continue this forever
= there is no solution vector a satisfying for all i

a9=[12-1 a*=a¥+y,
5
a'y, =X ay" >0
k=0

o el ol o 0
..................... = need to stop but at a good point:

- yt,ad=[1 4 3]"[1 2-1]'=6 >0 ¥ T

= yl3a9=[135][12-1]'>0 ¥ = solutions at iterations °
= yt,ad=[-1-1-3][12-1]=0 900 through 915. :
a=a® 4y, =[12 -1]+[-1-1-3]=[0 1 -4] Some are good ,
some are not. L

= Howdowe stopata |

good solution? 4

LDF: Convergence of Perceptron rules

= |f classes are linearly separable, and use fixed
learning rate, that is for some constant ¢, p®'=c
= both single sample and batch perceptron rules converge to
a correct solution (could be any a in the solution space)
= If classes are not linearly separable:
algorithm does not stop, it keeps looking for solution which
does not exist

by choosing appropriate learning rate, can always ensure
convergence: 7% >0 as k — oo

w_ 1"
k

for example inverse linear learning rate: 7

for inverse linear learning rate convergence in the linearly
separable case can also be proven

no guarantee that we stopped at a good point, but there are
good reasons to choose inverse linear learning rate

LDF: Perceptron Rule and Gradient decent

= Linearly separable data
= perceptron rule with gradient decent works well
= Linearly non-separable data
= need to stop perceptron rule algorithm at a good point, this

maybe tricky
Batch Rule Single Sample Rule
= Smoother gradient = easier to analyze
because all samples are
used = Concentrates more than

necessary on any isolated
“noisy” training examples

14

