
CS 434a-654b
Assignment 2 (Due Feb. 22)

Instructions: Hand in all the work you do. This should include matlab code, print outs of graphs, if any, and
written answers. Also, the matlab code should be emailed to me as scripts or function files. Make sure your email
includes your name in the subject, and explanation which scripts go with which problem in the body of the email. The
paper copy of the homework should be put in the locker #87 in the basement of the Middlesex college building by the
midnight of the due date. Please note that for the undergraduate students, the maximum score is 100, and for
graduate students, the maximum score is 120. (Of course, a score of 100 for undergrads is 100% on the homework,
and for graduate students the score of 100 is just 83%)

Problem 2 (10%): Consider a one dimensional two class classification problem, where we
have collected the following data for each class: D1 = {-3,-2,8,3,6,7} and
D2 = {-5,-2,3,4,8}. Suppose we decided to use Parzen windows with window width h = 2
and ϕ ϕ ϕ ϕ (x) defined as

(a) Classify sample x = 4 using the ML classifier
(b) Plot the density estimate pϕϕϕϕ(x) in matlab

(((())))
����
����
���� ≥≥≥≥====

−−−−

otherwise0
0ue4u

u4

ϕϕϕϕ

Problem 1 (15% for undergraduates, 20% for graduate students): Do problem 1 on p. 140.
Undergraduate students do parts (a) and (b). Graduate students do all parts.

Problem 3 (40%): In this problem we will try to build a simple face recognition system. You will
have 58 face images for training, 58 non-face images for training, 57 face images for
testing, 57 non-face images for testing. Each image is of size 24 by 24, but will be stored
as a feature vector of size 24*24=576. To download this data into Matlab, use the
provided file A2.mat. Simply use command “load A2” in matlab. When you type who, you
will see 4 matrices:

faceTrain --- is a 58 by 576 array of face examples for training
faceTest --- is a 57 by 576 array of face examples for training
nonfaceTrain --- is a 58 by 576 array of non-face examples for training
nonfaceTest --- is a 57 by 576 array of non-face examples for training

The examples are stored as rows in each of the matrix above. I have provided a function
display_image to visualize the images. To see what the 2nd training image for faces looks
like, use in matlab display_image(faceTrain(2,:),24,24). The first parameter just takes
the 2nd row of faceTrain matrix, which is just the 2nd image for face training, and the last 2
parameters specify the image dimensions.

(a) (5%) Assume that both the face and nonface class can be modeled by a
multivariate gaussian distribution. Use ML estimation (see lecture notes for the
mean and covariance ML estimates, you do not need to derive them!), to find the
parameters for class conditional densities for both classes. Warning, this is a
tricky question, try this but you will run into problems. Explain the problems you
are having and take your best guess of why problems arise.

(b) (5%) For this part, let’s still assume now that both the face and nonface class
can be modeled by a multivariate gaussian distribution. However, now assume
that the sample features are independent, that is the covariance matrix is
diagonal. Find ML estimates of the mean and the variances for the multivariate
distribution. (The MLE estimate of σσσσi

2, that is the ith entry on the diagonal of the
covariance matrix is just the sample variance of the ith feature). Visualize the
mean and variance of the face class and the mean and the variance of the
nonface class. Discuss your results.

(c) (20%) Write a matlab function ClassifyNormal which takes 4 arguments as an
input, namely faceTrain, faceTest,nonfaceTrain ,nonfaceTest and outputs a 2 by
2 confusion matrix, where the (i,j)th entry of the confusion matrix is the number of
samples of class i that have been classified as class j. Notice that
trace(confusion matrix) gives the number of correctly classified examples. The
function ClassifyNormal should classify faceTest and nonfaceTest examples
assuming that classes have normal distributions with independent features.

(d) (10%) Now write a matlab function ClassifyNormalNormalized which takes 4
arguments as an input, namely faceTrain, faceTest,nonfaceTrain ,nonfaceTest
and outputs a 2 by 2 confusion matrix. It will do the exactly the same thing as the
function ClassifyNormal above, but before estimating MLE parameters and
classifying, the features in all the 4 matrices are normalized, that is each sample
in the 4 arrays is normalized so that it has mean 0 and variance 1. Compare the
performance of this classifier with the one in (d) and discuss any difference in
performance.

Problem 5 (35%): Use the same dataset for this problem as the previous problem.
(a) (20%) Write a matlab function ClassifyKnn which takes 5 arguments as an input,

namely k (an integer), faceTrain, faceTest,nonfaceTrain ,nonfaceTest , and
outputs a 2 by 2 confusion matrix, where the (i,j)th entry of the confusion matrix is
the number of samples of class i that have been classified as class j. Notice that
trace(confusion matrix) gives the number of correctly classified examples. The
function ClassifyNormal should classify faceTest and nonfaceTest examples
using the kNN classifier.

(b) (5%) Write a matlab function ClassifyKnnNormalized which does the exactly the
same thing as the function ClassifyKnnl above, but before classifying all the
features in all the 4 matrices are normalized, that is each sample in the 4 arrays
is normalized so that it has mean 0 and variance 1. Compare the performance of
this classifier with the one in (a) and discuss any difference in performance.

(c) (5%) Run the ClassifyKnn for different values of k and discuss the difference in
performance as k grows from 1 to 10.

(d) Discuss the difference in performance between the kNN classifier and the
classifier based on assumption on Normal density in problem 4

Problem 6 (15%): For graduate students.

Choose the best classifier for faces from problems 4 and 5 and run it on the .tif images provided
which contain faces. To do this, you will have to apply your classifier to windows of
different sizes in the input picture, at different scales. Choose a scaling factor that you
think is appropriate. Mark correctly detected faces with red color and points falsely
classified as faces with blue color. Hand in your code and printout of images.

