CS4442/9542b: Artificial Intelligence II Prof. Olga Veksler

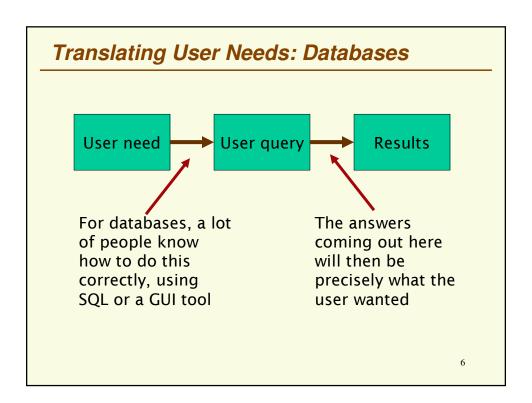
Lecture 11 NLP: Information Retrieval

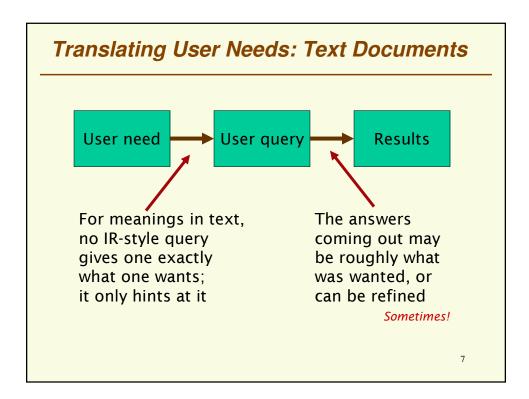
Many slides from: L. Kosseim (Concordia), Jamie Callan (CMU), Christopher Manning (Stanford), L. Venkata Subramaniam, Phillip Resnik

Outline

- Introduction to Information Retrieval (IR)
- Ad hoc information retrieval
 - Boolean Model
 - Vector Space Model
 - Cosine similarity measure
 - Choosing term weights
 - Performance evaluation methods
 - Improving IR system
 - Query expansion
 - Relevance feedback

Information Retrieval Intro

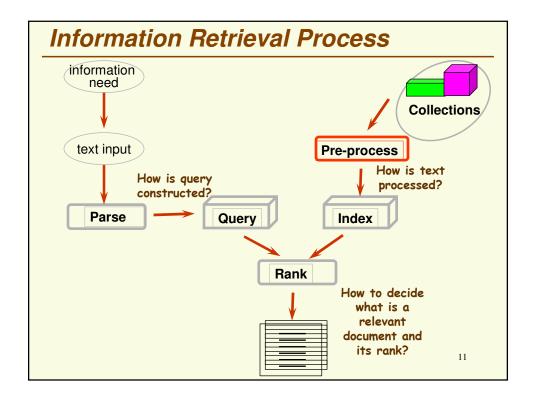

- Then: most digital information is stored in databases
 - Structured data storage
 - Supports efficient information extraction with queries
 - mostly used by corporations/governments
- Now: most digital information is stored in unstructured text form (reports, email, web pages, discussion boards, blogs, etc)
 - Estimates: 70%, 90% ?? All depends how you measure.
 - Unstructured data, not in traditional databases
 - Used by companies/organizations/people
 - How do you extract information from unstructured text data?


The Problem

- When people see text, they understand its meaning (by and large)
- When computers see text, they get only character strings (and perhaps HTML tags)
- We'd like computer agents to see meanings and be able to intelligently process text
- These desires have led to many proposals for structured, semantically marked up formats
- But often human beings still resolutely make use of text in human languages
- This problem isn't likely to just go away

Information Retrieval

- IR deals with retrieving information from unstructured document repositories
- Traditionally
 - Text documents repositories
- More recently
 - Speech
 - Images
 - music
 - Video


Major Types of Information Retrieval

- ad-hoc retrieval
 - user creates an "ad hoc" query which is usually not reused or saved
 - system returns a list of (hopefully) relevant documents
 - sometimes also called "archival" retrieval
 - no training data is available
 - topic of the lecture
- classification / categorization
 - training data is available
 - documents are classified in a pre-determined set of categories
 - Ex: Reuters (corporate news (CORP-NEWS), crude oil (CRUDE), acquisitions (ACQ), ...)
 - any of machine learning techniques can be used
- filtering / routing
 - special cases of categorization
 - 2 categories: relevant and not-relevant
 - filtering:
 - absolute assessment (d1 is relevant but d2 is not)
 - routing:
 - relative ranking of documents (like in ad-hoc) (d1 is more relevant than d2)

Different Types of Ad-Hoc Retrieval

- Web search
 - Massive collection (108-109) of documents
 - Query log analysis reveals population-based patterns
 - Typically high precision (most retrieved documents are relevant), low recall (not all relevant documents are retrieved)
- Commercial information providers (e.g. West, LexisNexis)
 - Large Collection (10⁶-10⁸) of documents
 - often high recall is essential (e.g. legal or patent search)
- Enterprise search (e.g. UWO, IBM)
 - Medium-sized to large collection (10⁴-10⁶) of documents
 - Opportunity to exploit domain knowledge
- Personal search (e.g. your PC)
 - Small collection (10³-10⁴) of documents
 - Good opportunity to learn a user model, do personalization

Relevance

- In what ways can a document be relevant to a query?
 - Answer precise question precisely
 - Partially answer question
 - Suggest a source for more information
 - Give background information
 - Remind the user of other knowledge
 - Others ...

Two Major Issues

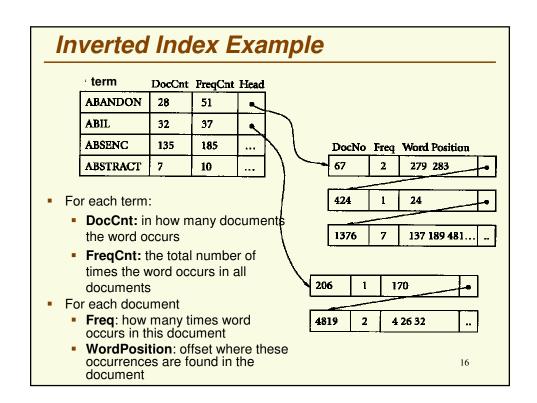
- Indexing
 - How do we represent a collection of documents to support fast search?
- Retrieval methods
 - How do we match a user query to indexed documents?

13

Indexing

- Most IR systems use inverted index to represent collection of texts
- Inverted Index = a data structure that lists for each word all documents in the collection that contain that word

 $\begin{array}{ll} \textit{assassination} & \{\mathsf{d_1},\mathsf{d_4},\mathsf{d_{95}},\mathsf{d_5},\mathsf{d_{90}}...\} \\ \textit{murder} & \{\mathsf{d_3},\mathsf{d_7},\mathsf{d_{95}}...\} \\ \textit{Kennedy} & \{\mathsf{d_{24}},\mathsf{d_7},\mathsf{d_{44}}...\} \\ \textit{conspiracy} & \{\mathsf{d_3},\mathsf{d_{55}},\mathsf{d_{90}},\mathsf{d_{98}}...\} \end{array}$


- Inverted Index is also called inverted file and postings file
- Inverted index is usually implemented as a dictionary which allows fast lookups based on word
 - B-trees, hash tables, etc are used to implement a dictionary

Indexing

- More sophisticated version of inverted index also contains position information, say byte offset from the beginning of the document
 - Can search for phrases efficiently
 - Example: need to find "car insurance"
 - "car" occurs in documents (d₁, offset 5), (d₇, offset 10), (d₉, offset 35)
 - "insurance" occurs in documents (d₂, offset 3), (d₇, offset 11), (d₈, offset 7)
 - "car insurance" occurs in document d₇
 - Still rather primitive: "car insurance" ≠ "insurance for car"
 - Possible solution: can find frequent phrases (simply frequently occurring bigrams, trigrams, etc.) and index those too, in addition to words:

 $\begin{array}{ll} \text{car insurance} & \{d_1, d_4, d_{95}, d_5, d_{90}...\} \\ \text{insurance for car} & \{d_5, d_7, d_{95}, \ d_{90}...\} \end{array}$

- So we index words and word phrases
- I will often say "term" to refer to these indexed entities
 - However, sometimes I will just say "word", because it's simpler.

Choosing Terms To Index

- 1. Controlled Vocabulary Indexing
 - A human expert selects a set of terms to index
 - This is done for libraries, web directories, etc.
 - Pros
 - Usually "controlled" terms are unambiguous
 - Cons:
 - Expensive, need manual work
 - Controlled vocabularies can't represent arbitrary detail
- 2. Free Text Indexing
 - Automatically select "good" terms to index
 - Some search engines do this
- 3. Full Text Indexing
 - Most search engines do this
 - Cons:
 - Many words are ambiguous
 - Pros:
 - Can represent arbitrary detail
 - Inexpensive and easy

1

Full Text Indexing

TT.	ngn @	m.	TTC	T	40
1 erm	11	1 erm	11	1 erm	tf
the	78	up	8	pictures	6
to	35	for	7	red	6
i	31	have	7	digital	5
and	29	image	7	eye	5
a	19	like	7	not	5
camera	17	mode	7	on	5
is	17	much	7	or	5
in	12	software	7	shutter	5
with	11	very	7	sony	5
be	9	can	6	than	5
but	9	images	6	that	5
it	9	movies	6	after	4
of	9	my	6	also	4
this	9	no	6	: :	:
	to i and a camera is in with be but it of	the 78 to 35 i 31 and 29 a 19 camera 17 is 17 in 12 with 11 be 9 but 9 it 9 of 9	the 78 up to 35 for i 31 have and 29 image a 19 like camera 17 mode is 17 much in 12 software with 11 very be 9 can but 9 images it 9 movies of 9 my	the 78 up 8 to 35 for 7 i 31 have 7 and 29 image 7 a 19 like 7 camera 17 mode 7 is 17 much 7 in 12 software 7 with 11 very 7 be 9 can 6 but 9 images 6 it 9 my 6	the 78 up 8 pictures to 35 for 7 red i 31 have 7 digital and 29 image 7 eye a 19 like 7 not camera 17 mode 7 on is 17 much 7 or in 12 software 7 shutter with 11 very 7 sony be 9 can 6 than but 9 images 6 that it 9 movies 6 after of 9 my 6 also

Can you tell what this document is about?

Full Text Indexing Design Issues

To stem or not to stem

- Stemming: *laughing, laughs, laugh* and *laughed* are all stemmed to *laugh*
- Problem: semantically different words like gallery and gall may both be truncated to gall making the stems unintelligible to

Exclude/Include Stop words

- Stop words make up about 50% of the text, excluding them makes representation more space efficient
- But impossible to search for documents for phrases containing stop words
 - "to be or not to be", "take over"
 - Most queries are unaffected, but could be very annoying sometimes

19

Full Text Indexing: after Stemming and Stop Word Removal

Term	Tf	Term	Tf	Term	tf
camera	18	sony	5	lag	3
image	13	after	4	last	3
1ike	8	any	4	led	3
mode	8	auto	4	mavica	3
up	8	battery	4	record	3
buy	7	flash	4	reduce	3
movie	7	problem	4	size	3
picture	7	zoom	4	15	2
software	6	include	3	2mp	2
red	6	2100	3	8x10	2
digital	5	button	3	98	2
eye	5	down	3	automatic	2
look	5	feature	3	bag	2
shutter	5	focus	3	best	2

20

© 2006, Jamie Callan

Problems with Index Terms

- May not retrieve relevant documents that include synonymous terms.
 - "restaurant" vs. "café"
 - "PRC" vs. "China"
- May retrieve irrelevant documents that include ambiguous terms.
 - "bat" (baseball vs. mammal)
 - "Apple" (company vs. fruit)
 - "bit" (unit of data vs. act of eating)

2

Retrieval models

- 3 basic models:
 - boolean model
 - the oldest one, similar to what is used in database queries
 - vector-space model
 - most popular in IR
 - probabilistic model
 - more powerful than those above
 - tries to model the probability that the document is generated by the given query
 - but we will not study this one
- Different approaches vary on:
 - how they represent the query & the documents
 - how they calculate the relevance between the query and the documents

Boolean Model

- user gives a set of terms (keywords) that are likely to appear in relevant documents
 - Ex: JFK Kennedy conspiracy assassination
- Connects the terms in the query with Boolean operators (AND, OR, NOT)

```
AND (Kennedy, conspiracy, assassination)
```

Can expand query using synonyms

```
AND (OR (Kennedy, JFK),

(OR (conspiracy, plot),

(OR (assassination, assassinated,

assassinate, murder, murdered, kill, killed)

)

)

)
```

Example

Which of these documents will be returned for the following query:

```
computer AND (information OR document) AND retrieval
```

document collection:

```
d<sub>1</sub>: {computer \sqrt{\ }, software, information \sqrt{\ }, language} \sqrt{\ } d<sub>2</sub>: {computer \sqrt{\ }, document \sqrt{\ }, retrieval \sqrt{\ }, library} \sqrt{\ } d<sub>3</sub>: {computer \sqrt{\ }, information \sqrt{\ }, filtering, retrieval \sqrt{\ }}
```

Implementation With Set Operators

- Assume that:
 - the inverted index contains:

```
t1-list: {d1,d2,d3,d4} t2-list: {d1,d2} t3-list: {d1,d2,d3} t4-list: {d1}
```

- The query Q = (t1 AND t2) OR (t3 AND (NOT t4))
- We perform set operations:
 - to satisfy (t1 AND t2), we intersect the t1 and t2 lists
 - $\{d1,d2,d3,d4\} \cap \{d1,d2\} = \{d1,d2\}$
 - to satisfy (t3 AND (NOT t4)), we subtract the t4 list from the t3 list
 - $\{d1,d2,d3\} \{d1\} = \{d2,d3\}$
 - to satisfy (t1 AND t2) OR (t3 AND (NOT t4)), we take the union of the two sets of documents obtained for the parts.
 - $\{d1,d2\} \cup \{d2,d3\} = \{d1,d2,d3\}$

2

Analysis of the Boolean Model

- advantages
 - simple retrieval model
 - queries are expressed with Boolean operators (semantics is clearly defined)
 - Results are easy to explain
 - usually computationally efficient
- disadvantages
 - retrieval strategy is a binary decision (relevant or not)
 - difficult to rank documents in order of relevance
 - non-expert users have difficulty to express their need as Boolean expressions. Studies show that people create quires that are either
 - too strict: few relevant documents are found
 - too loose: too many documents (most of them irrelevant) are found
 - Therefore most boolean searches on the web either return no documents or a huge set of documents

Vector-Space Model

- Documents and queries can be represented by a "term vector"
 - Each dimension corresponds to a term in the vocabulary
- Similarity between a document and a query is determined by a distance in vector space
- First system is "SMART" system
 - Developed by G. Salton at Cornell 1960-1999
 - Still used widely today

Gerard Salton

27

Term-Document Matrix

 the collection of documents is represented by a matrix of weights called a term-by-document matrix

	d_1	d ₂	d ₃	d_4	d_5	
term ₁	W ₁₁	W ₁₂	W ₁₃	W ₁₄	W ₁₅	
term ₂	W ₂₁	W ₂₂	W ₂₃	W ₂₄	W ₂₅	
term ₃	W ₃₁	W ₃₂	W 33	W ₃₄	W ₃₅	
$Term_N$	W _{n1}	W _{n2}	W _{n3}	W _{n4}	W _{n5}	

- 1 column = representation of one document
- 1 row = representation of 1 term across all documents
- cell w_{ii} = weight of term i in document j
 - simplest weight w_{ij} is the number of times term i occurred in document j
- note: the matrix is sparse (most weights are 0)

Bags of Words

- This is also called bags of words representation
 - The document is the "Bag"
 - The "bag" contains word tokens
 - A particular word may occur more than once in the bag
 - "Stop" words are usually ignored
 - "the","a","to",...
 - Word order is completely ignored

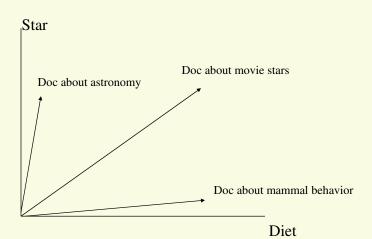
"I see what I eat " = "I eat what I see"

Document 1

The quick brown fox jumped over the lazy dog's back.

Document 2

Now is the time for all good men to come to the aid of their party.

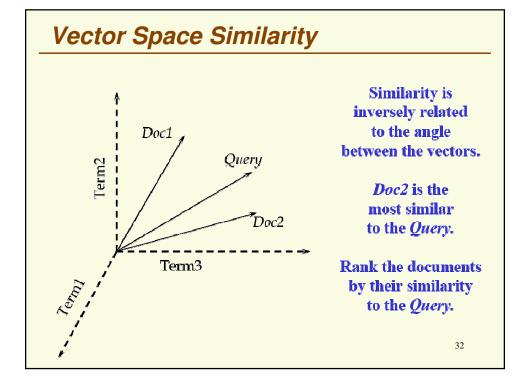

Indexed Term

Term	Ω	Ω
aid	0	1
all	0	1
back	1	0
brown	1	0
come	0	1
dog	1	0
fox	1	0
good	0	1
jump	1	0
lazy	1	0
men	0	1
now	0	1
over	1	0
party	0	1
quick	1	0
their	0	1
time	0	1

30

Stop words: for, is, of, 's, the, to

Documents as Vectors



Query Representation

 A query can also be represented as a vector, like a document

$$q = (0,0,0,1,0,....,1,....0,1)$$

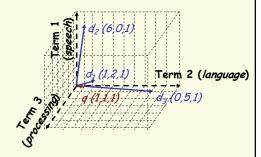
 Size of vector corresponding to query q is also the number of terms

Example

- The collection:
 - d₁ = {introduction knowledge in speech and language processing ambiguity models and algorithms language thought and understanding the state of the art and the near-term future some brief history summary}
 - d₂ = {hmms and speech recognition speech recognition architecture overview of the hidden markov models the viterbi algorithm revisited advanced methods in decoding acoustic processing of speech computing acoustic probabilities training a speech recognizer waveform generation for speech synthesis human speech recognition summary}
 - d₃ = {language and complexity the chomsky hierarchy how to tell if a language isn't regular the pumping lemma are English and other languages regular languages? is natural language context-free complexity and human processing summary}
- The query:
 - Q = {speech language processing}

33

Example Continued

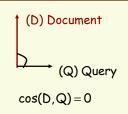

- The collection:
 - d₁ = {introduction knowledge in <u>speech</u> and <u>language processing</u> ambiguity models and algorithms <u>language</u> thought and understanding the state of the art and the near-term future some brief history summary}
 - d₂ = {hmms and <u>speech</u> recognition <u>speech</u> recognition architecture overview of the hidden markov models the viterbi algorithm revisited advanced methods in decoding acoustic <u>processing</u> of <u>speech</u> computing acoustic probabilities training a <u>speech</u> recognizer waveform generation for <u>speech</u> synthesis human <u>speech</u> recognition summary}
 - d₃ = {<u>language</u> and complexity the chomsky hierarchy how to tell if a <u>language</u> isn't regular the pumping lemma are English and other <u>language</u> regular <u>language</u>? is natural <u>language</u> context-free complexity and human processing summary}
- The query:

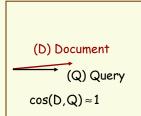
Q = {speech language processing}

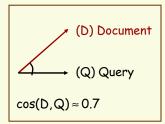
Example Continued

using raw term frequencies for weights

	d_1	d_2	d_3	Q
introduction				
knowledge				
speech	1	6	0	1
language	2	0	5	1
processing	1	1	1	1




- vectors for the documents and the query can be seen as a point in a multi-dimensional space
 - where each dimension is a term


3:

The Cosine Measure

- similarity between the document and query (or two documents) is measured by the cosine of the angle (in N-dimensions) between the 2 vectors
 - if two vectors are identical, they will have a cosine of 1
 - if two vectors are orthogonal (i.e. share no common term), they will have a cosine of 0

- Only the direction is relevant, not the magnitude:
 - any query q is as close to document [1, 2, 1] as to document [2, 4, 2]

The Cosine Measure Continued

The cosine of 2 vectors (in N dimensions)

$$cos(d,q) = \frac{d \cdot q}{\|d\| \|q\|} = \frac{\sum_{i=1}^{N} d_i \ q_i}{\sqrt{\sum_{i=1}^{N} d_i^2} \sqrt{\sum_{i=1}^{N} q_i^2}}$$

$$lengths \ of \ the \ vectors$$

also known as the normalized inner product

37

Example Again

	d_1	d ₂	d ₃	Q
introduction	1	0	0	0
knowledge	1	0	0	0
speech	1	6	0	1
language	2	0	5	1
processing	1	1	1	1

Q = {speech language processing} query (1,1,1)

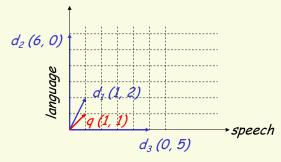
$$sim(d_1,Q) = \frac{(1x1) + (2x1) + (1x1)}{\sqrt{(1^2 + 2^2 + 1^2)} \times \sqrt{(1^2 + 1^2 + 1^2)}} = \frac{1 + 2 + 1}{\sqrt{6} \times \sqrt{3}} = 0.943$$

$$sim(d_2,Q) = \frac{(6x1) + (0x1) + (1x1)}{\sqrt{(6^2 + 0^2 + 1^2)} \times \sqrt{(1^2 + 1^2 + 1^2)}} = \frac{6 + 0 + 1}{\sqrt{37} \times \sqrt{3}} = 0.664$$

$$sim(d_3,Q) = \frac{(0x1) + (5x1) + (1x1)}{\sqrt{(0^2 + 5^2 + 1^2)} \times \sqrt{(1^2 + 1^2 + 1^2)}} = \frac{0 + 5 + 1}{\sqrt{26} \times \sqrt{3}} = 0.680$$

The Cosine Measure Continued

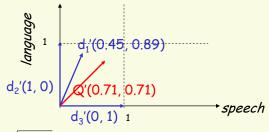
- For efficiency, can normalize raw term frequencies to convert all vectors to length 1
- If **q** and **d** are normalized, then


$$cos(d,q) = \frac{d \cdot q}{\|d\| \|q\|} = d \cdot q$$

39

Example

Query = "speech language"


original representation:

Normalization: reduces vectors to the same length to compute angle

Normalized vectors

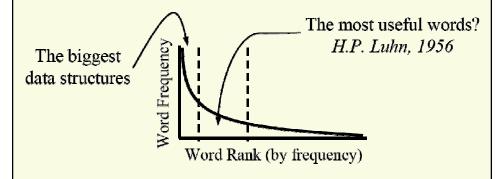
Query = "speech language" representation after normalization:

Q(1,1)
$$L = \sqrt{1^2 + 1^2} = 1.41 --> \text{normalized } Q'(0.71, 0.71)$$

$$d_1(1,2)$$
 $L = \sqrt{1^2 + 2^2} = 2.24$ --> normalized $d_1''(0.45, 0.89)$

$$d_2(6,0)$$
 $L = \sqrt{6^2 + 0^2} = 6$ --> normalized $d_2'(1,0)$

$$d_3(0,5)$$
 $L = \sqrt{0^2 + 5^2} = 5$ --> normalized $d_3'(0, 1)$


7

Term Weights

- The weight w_{ij} reflects the importance of the term T_i in document D_i .
- So far we have used term counts as term weights
 - Normalized them
- Can also use binary weights
 - 0 of term T_i does not occur in document D_i and 1 otherwise
- Vector space model can support real-valued term weights
 - Which might be useful
- But it gives no guidance about what the term weights should be
 - Ad-hoc solutions (use whatever you want for term weights)
 - Use expected distribution of terms
 - Borrow ideas from other retrieval models

Term Weights

 We know something about word distributions: Zipf's law: a few words are frequent, most words are rare

43

Term Weights

- The weight w_{ij} reflects the importance of the term T_i in document D_i .
- Intuitions:
 - 1. If a term is frequent in a document, it is probably important in that document: *star*, *play*,...
 - 2. But if a term that appears in many documents it is not important: e.g., *going*, *come*, ...

Assigning Weights to terms

- Want to weight terms highly if they are
 - Frequent in relevant documents...BUT
 - Infrequent in the collection as a whole
- For any term, tf (term frequency) is stored in the inverted index
- The higher is **tf** in a document, the better it is describing what the document is about
 - But only if this term is not frequent across all documents!

45

Inverse Document Frequency

- IDF provides high values for rare words and low values for common words
- Let **M** be the number of documents in the collection and **df** be the number of as: $idf = log \left(\frac{M}{df}\right)$ be the number of documents containing the term

$$idf = log\left(\frac{M}{df}\right)$$

- Logarithmic "damping", since if a word which is twice more frequent is not necessarily twice more important
- For a collection of 10,000 documents:

$$log\left(\frac{10000}{10000}\right) = 0 \qquad log\left(\frac{10000}{5000}\right) = 0.301$$
$$log\left(\frac{10000}{20}\right) = 2.698 \qquad log\left(\frac{10000}{1}\right) = 4$$

Term Weights: tf x idf

- Term frequency (tf)
 - the frequency count of a term in a document
- Inverse document frequency (idf)
 - The amount of information contained in the statement "Document X contains the term T_i".
- We want to combine tf and idf for term weighting
- Simplest way:
 - Assign tf x idf weight to each term in each document

47

tf x idf

$$W_{ik} = tf_{ik} \times log(M/df_k)$$

C is the collection of documents

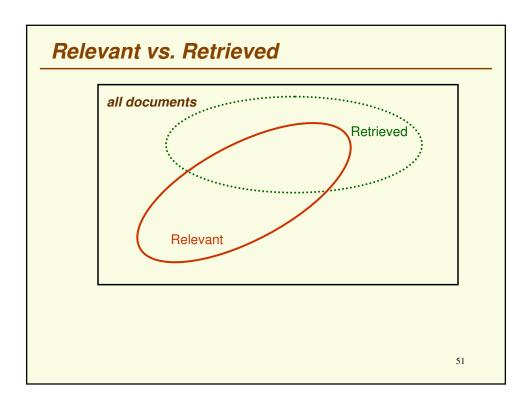
 $T_k = term k$

 $tf_{ik} = frequency \ of \ term \ T_k \ in \ document \ D_i$

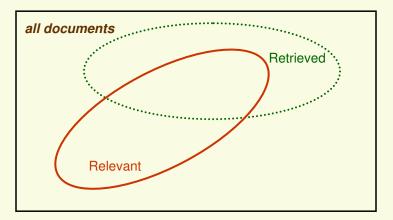
 $idf_k = log(\frac{M}{df_k})$ inverse document frequency of term T_k in C

M = total number of documents in the collection C

 df_k = the number of documents in C that contain T_k


Analysis of the Vector Space Model

- advantages:
 - Simple and effective
 - term-weighting scheme improves retrieval performance
 - partial matching allows for retrieval of documents that approximate the query
 - cosine ranking allows for sorting the results
- disadvantages
 - no real theoretical basis for the assumption of a term space
 - Assumed independence between terms is not really true
- Note: In WWW search engines the weights may be calculated differently
 - use heuristics on where a term occurs in the document (ex, title)
 - notion of hub and authority
 - ...


40

Evaluation

- Suppose you have several retrieval methods. Which one works the best?
 - For us, "best" = effectiveness
 - Other possible measures: ease of use, efficiency, nice interface, etc.
- To evaluate, we need
 - A set of documents
 - A set of gueries
 - A set of relevance query/document judgments
- To compare tow (or more) methods
 - Each method is used to retrieve documents relevant for queries
 - Results are compared using some measures
 - Common measures are based on precision and recall

Precision = number of relevant documents retrieved number of documents retrieved

Recall = number of relevant documents retrieved number of relevant documents in collection

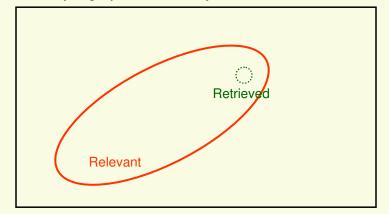
Evaluation: Example of P&R

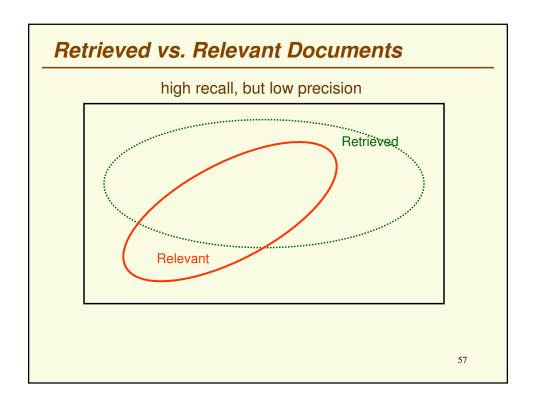
- Relevant: d₃ d₅ d₉ d₂₅ d₃₉ d₄₄ d₅₆ d₇₁ d₁₂₃ d₃₈₉
- system1: d₁₂₃ d₈₄ d₅₆
 - Precision: ??
 - Recall: ??
- system2: d₁₂₃ d₈₄ d₅₆ d₆ d₈ d₉
 - Precision: ??
 - Recall: ??

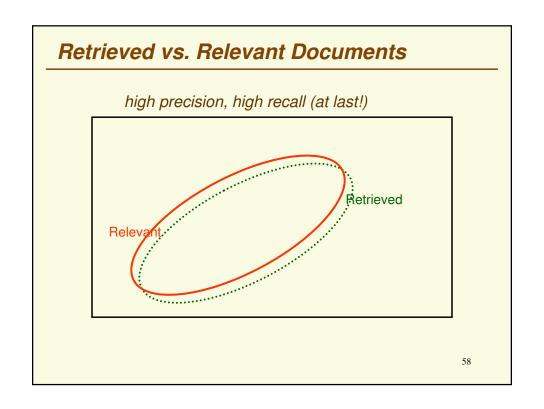
53

Evaluation: Example of P&R

- Relevant: d₃ d₅ d₉ d₂₅ d₃₉ d₄₄ d₅₆ d₇₁ d₁₂₃ d₃₈₉
- system1: $d_{123}\sqrt{d_{84} \times d_{56}}\sqrt{d_{123}}$
 - Precision: 66% (2/3)
 - Recall: 20% (2/10)
- system2: $d_{123}\sqrt{d_{84}} d_{56}\sqrt{d_{6}} d_{8} d_{8} d_{9}\sqrt{d_{6}}$
 - Precision: 50% (3/6)
 - Recall: 30% (3/10)

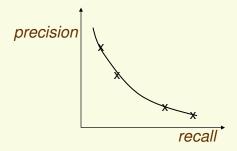

Why Precision and Recall?


 Get as much good stuff (high recall) while at the same time getting as little junk as possible (high precision)


55

Retrieved vs. Relevant Documents

very high precision, very low recall



Precision/Recall Curves

- There is a tradeoff between Precision and Recall
 - Easy to get either high precision or high recall, but not both
- So measure Precision at different levels of Recall
- Note: this is an AVERAGE over MANY queries

59

Precision/Recall Curves

- Difficult to determine which of these two hypothetical results is better:
 - Is blue method performing better than the red one?

Importance of Ranking

- IR systems typically output a ranked list of documents
- Should take "relevance" into account when measuring performance
- The three systems have same precision/recall rates, but the method in the first column is better since it ranks the relevant documents higher

system 1	system 2	system 3
d1 √	d10 ×	d6 ×
d2 √	d9 ×	d1 √
d3 √	d8 ×	d2 √
d4 √	d7 🗙	d10 ×
d5 √	d6 ×	d9 ×
d6 ×	d1 √	d3 √
d7 🗙	d2 √	d5 √
d8 ×	d3 √	d4 √
d9 ×	d4 √	d7 ×
d10 ×	d5 √	d8 ×

61

Cutoff

 Look at precision of the top 5 (or 10, ... etc) ranked documents

	system 1	system 2	system 3
	d1 √	d10 ×	d6 ×
	d2 √	d9 ×	d1 √
	d3 √	d8 ×	d2 √
	d4 √	d7 🗙	d10 ×
	d5 √	d6 ×	d9 ×
	d6 ×	d1 √	d3 √
	d7 ×	d2 √	d5 √
	d8 ×	d3 √	d4 √
	d9 ×	d4 √	d7 🗙
	d10 ×	d5 √	d8 ×
precision at 5	1.0	0.0	0.4
precision at 10	0.5	0.5	0.5

- How to decide on the "cut off" threshold?
 - Threshold 5 is informative in this example, threshold 10 is not informative

Uninterpolated Average Precision

- Instead of using a single "cut off", average precision at many "cut off" points
 - Usually at points where a relevant document is found

for system 3

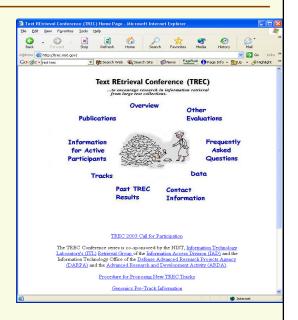
- At cutoff d1: 2 retrieved, 1 relevant, precision ½
- At cutoff d2: 3 retrieved, 2 relevant, precision 2/3

•

- At cutoff d4: 8 retrievd, 5 relevant, precision 5/8
- Average precision 0.5726

	system 1	system 2	system 3
	<u>d1</u> √	d10 ×	d6 ×
	<u>d2</u> √	d9 🗙	<u>d1</u> √ 1/2
	d3 √	d8 ×	<u>d</u> 2 √ 2/3
	<u>d4</u> √	d7 🗙	d10 ×
	<u>d5</u> √	d6 🗙	d9 ×
	d6 🗙	<u>d1</u> √	<u>d3</u> √ 3/6
	d7 🗙	d2 √	<u>d5</u> √ 4/7
	d8 ×	43 √	d4 √ 5/8
	d9 🗙	<u>d4</u> √	d7 🗙
	d10 ×	<u>d</u> 5 √	d8 ×
precision at 5	1.0	0.0	0.4
precision at 10	0.5	0.5	0.5
aver. precision	1.0	0.3544	0.5726

F-Measure


- Sometime only one pair of precision and recall is available
 - e.g., filtering task
- F-Measure

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}}$$

- α > 1: precision is more important
- α < 1: recall is more important
- Usually α = 1

Evaluation: TREC

- Text Retrieval Conference/competition
- Collection: about 3
 Gigabytes > 1 million
 documents
 - Newswire & text news (AP, WSJ,...)
- Queries + relevance judgements
 - Queries devised and judged by annotators
- Participants
 - Various research and commercial group
- Tracks
 - Cross-lingual, filtering, genome, video, web, QA, etc.

IR System Improvements

- Most Queries are short
 - Web queries tend to be 2-3 keywords long
- The two big problems with short queries are:
 - Synonymy: poor recall results from missing documents that contain synonyms of search terms, but not the terms themselves
 - Polysemy/Homonymy: Poor precision results from search terms that have multiple meanings leading to the retrieval of non-relevant documents

Query Expansion

- Find a way to expand a user's query to automatically include relevant terms (that they should have included themselves), in an effort to improve recall
 - Use a dictionary/thesaurus
 - Use relevance feedback

67

Query Expansion

- Example:
 - query: seller of email solutions for cell phones
 - document: [...] Giszmotron is a leading vendor of electronic messaging services for cellular devices [...]
- But effect of polysemy on IR:
 - cell --> a prison room or a unit?
 - --> returning irrelevant documents
 - --> decrease precision
- Effects of synonymy and hyponymy on IR
 - --> missing relevant documents
 - --> decrease recall
- Solution: let's expand the user query with related terms
 - often using a thesaurus to find related terms (synonyms, hyponyms)
 - new terms will have lower weights in the query
 - ex: expanded query: seller vendor phones device ...
 - need to do WSD

Relevance Feedback

- Ask the user to identify a few documents which appear to be related to their information need
- Extract terms from those documents and add them to the original query
- Run the new query and present those results to the user
- Iterate (ask the user to identify relevant documents...extract terms... add them to the query...)
 - Typically converges quickly

69

Blind Feedback

- Assume that first few documents returned are most relevant rather than having users identify them
- Proceed as for relevance feedback
- Tends to improve recall at the expense of precision

Additional IR Issues

- In addition to improved relevance, can improve overall information retrieval with some other factors:
 - Eliminate duplicate documents
 - Provide good context
- For the web:
 - Eliminate multiple documents from one site
 - Clearly identify paid links

7

IR within NLP

- IR needs to process the large volumes of online text
- And (traditionally), NLP methods were not robust enough to work on thousands of real world texts.
- so IR:
 - not based on NLP tools (ex. syntactic/semantic analysis)
 - uses (mostly) simple (shallow) techniques
 - based mostly on word frequencies
- in IR, meaning of documents:
 - is the composition of meaning of individual words
 - ordering & constituency of words play are not taken into account
 - bag of word approach

```
I see what I eat.
I eat what I see.
```

Summary

- Information Retrieval is the process of returning documents from unstructured data collection to meet a user's information need based on a query
- Typical methods are BOW (bag of words) which rely on keyword indexing with little semantic processing
- Results can be improved by adding semantic information (such as thesauri) and by filtering and other post-hoc analysis.