CS4442/9542b: Artificial Intelligence II Prof. Olga Veksler

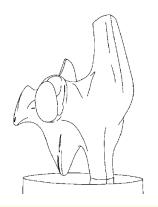
Lecture 13: Computer Vision Edge Detection

Slides are from Steve Seitz (UW), David Jacobs (UMD), D. Lowe (UBC), Hong Man

Outline

- Edge Detection
 - Edge types
 - Image Gradient
 - Canny Edge Detector

Edge detection

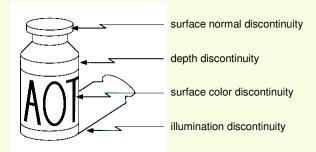


- Convert a 2D image into a set of "prominent" curves
 - What is a "prominent" curve or an edge? No exact definition. Intuitively, it's a place where abrupt changes occur
- Why?
 - Extracts salient features of the scene, useful for may applications
 - More compact representation than pixels

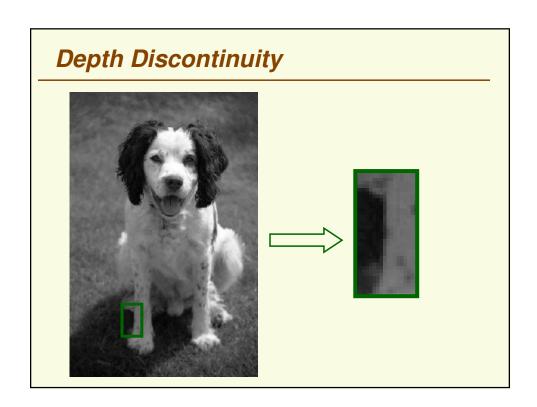
Edge detection

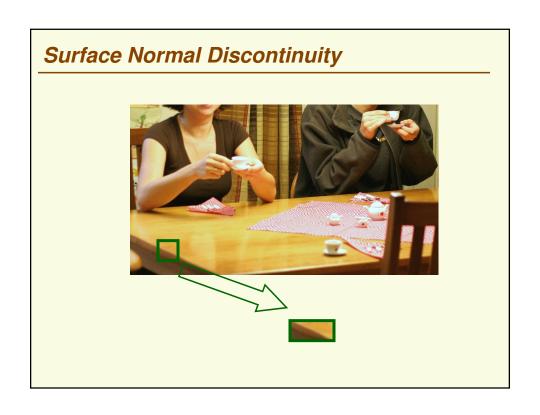
- Artists also do it
 - They do it much better, they have high level knowledge which edges are more perceptually important

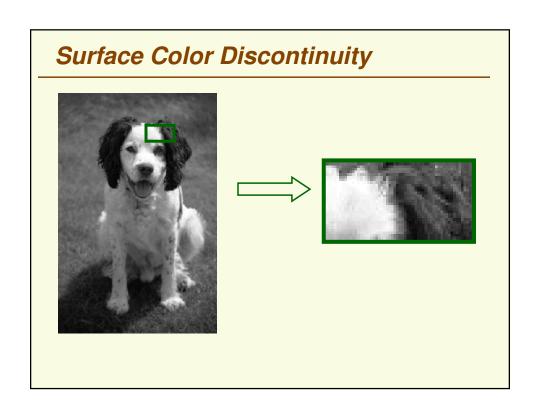
Origin of Edges



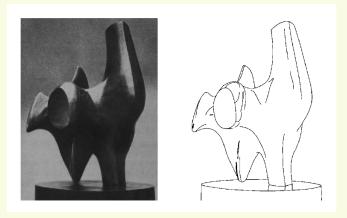
Edges are caused by a variety of factors







Edge detection



How can you tell that a pixel is on an edge?

Image gradient

- The gradient of an image: $\nabla f = \left[rac{\partial f}{\partial x}, rac{\partial f}{\partial y}
 ight]$
 - $\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$ $\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$
- The gradient points in the direction of most rapid increase in intensity
- The gradient direction is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

- gradient direction is perpendicular to edge
- The edge strength is given by the gradient magnitude

The discrete gradient

- How can we differentiate a digital image f(x,y)?
 - take discrete derivative (finite difference)

$$\frac{\partial f(x,y)}{\partial x} = f(x+1,y) - f(x,y)$$

How would you implement this as a convolution?

• Similarly, $\frac{\partial f(x,y)}{\partial y} = f(x,y+1) - f(x,y)$

The discrete gradient

 The discrete gradient simply detects changes between neighboring pixels

$$\frac{\partial f(x,y)}{\partial x} = f(x+1,y) - f(x,y) \qquad \frac{\partial f(x,y)}{\partial y} = f(x,y+1) - f(x,y)$$
change in vertical direction
change in horizontal direction

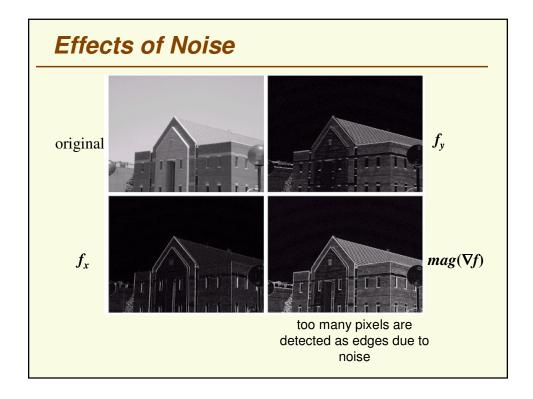
Basic edge detection algorithm:

image
$$f(x,y)$$
 Gradient operator $g(x,y)$ Thresholding $E(x,y)$ $E(x,y)$ $E(x,y)$ $E(x,y)$ $E(x,y)$ $E(x,y)$

The Sobel operator

- Better approximations of the derivatives exist
 - The Sobel operators below are very commonly used

- The standard definition of the Sobel operator omits the 1/8 term
 - doesn't make a difference for edge detection
 - the 1/8 term is needed to get the right gradient value, however



Effects of Noise

- How do we deal with noise?
- We already know, filter the noise out
 - Using Gaussian kernel, for example
- First convolve image with a Gaussian filter
- Then convolve image with an edge detection filter (Sobel, for example)

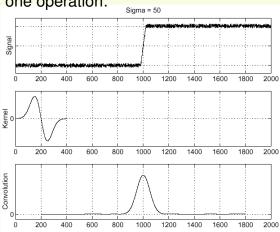
Derivative theorem of convolution

$$\frac{\partial}{\partial x}(H*f) = \left(\frac{\partial}{\partial x}H\right)*f$$

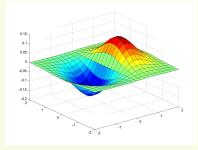
This saves us one operation:

f

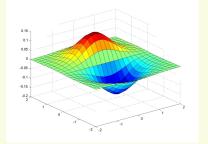
$$\left(\frac{\partial}{\partial x}H\right) * t$$



Derivative of Gaussian



$$rac{\partial}{\partial x}G_{\sigma}$$

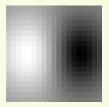


$$rac{\partial}{\partial y}G_{\sigma}$$

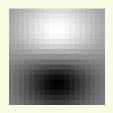
Gradient magnitude is computed from these

Slide credit: Christopher Rasmussen

Derivative of Gaussian



$$rac{\partial}{\partial x}G_{\sigma}$$



$$rac{\partial}{\partial y}G_{\sigma}$$

Bright corresponds to positive values, dark to negative values

Derivative of Gaussian: Example

- Ignoring normalizing constant: $G_{\sigma}(x,y) = e^{\frac{(x^2+y^2)}{2\sigma^2}}$
- Differentiate with respect to x and y

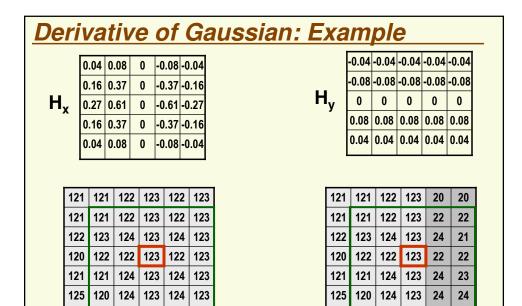
Differentiate with respect to x and y
$$\frac{\partial}{\partial x}G_{\sigma}(x,y) = -\frac{x}{\sigma^2} \cdot e^{\frac{(x^2+y^2)}{2\sigma^2}} \quad \frac{\partial}{\partial y}G_{\sigma}(x,y) = -\frac{y}{\sigma^2} \cdot e^{\frac{(x^2+y^2)}{2\sigma^2}}$$

- Plug some values to get gradient detection masks H_xand H_v
 - for example, let $\sigma = 5$, and let (x,y) be in [-2x2][-2x2] window

(-2,2)	(-1,2)	(0,2)	(1,2)	(2,2)
(-2,1)	(-1,1)	(0,1)	(1,1)	(2,1)
(-2,0)	(-1,0)	(0,0)	(1,0)	(2,0)
(-2,-1)	(-1,-1)	(0,-1)	(1,-1)	(2,-1)
(-2,-2)	(-1,-2)	(0,-2)	(1,-2)	(2,-2)
` ′ ′	l` ′	\	, ,	,

	H _x										
0.04	0.08	0	-0.08	-0.04							
0.16	0.37	0	-0.37	-0.16							
0.27	0.61	0	-0.61	-0.27							
0.16	0.37	0	-0.37	-0.16							
0.04	0.08	0	-0.08	-0.04							

		H_{y}		
-0.04	-0.04	-0.04	-0.04	-0.04
-0.08	-0.08	-0.08	-0.08	-0.08
0	0	0	0	0
0.08	0.08	0.08	0.08	0.08
0.04	0.04	0.04	0.04	0.04



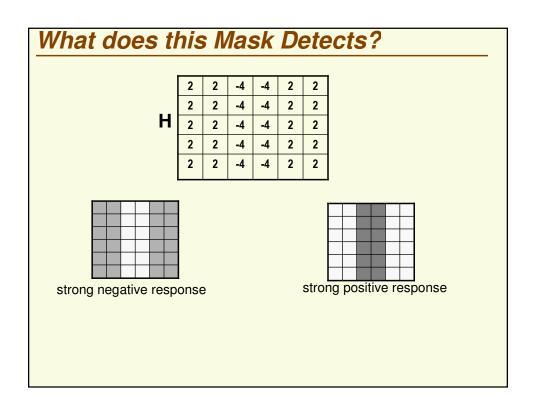
apply H_x to the red image pixel: 217

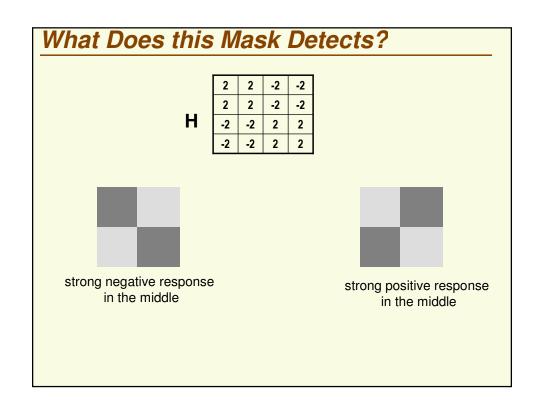
aply H_v to the red image pixel: 0.69

apply H_x to the red image pixel: -0.78

aply H_v to the red image pixel: 0.46

	0.04	0.08	3 0	-0.0	8 -0.04	1								-0.04
	H	0.37	+	+	7 -0.16	-	H _y			0.08	-0.08 0	-0.08 0	-0.08 0	-0.08 0
H _x	\vdash	0.61	+	+	1 -0.27	-				<u> </u>	0.08	_	0.08	
	H	0.37			7 -0.16 8 -0.04	-						0.04		
	0.04	0.00		-0.0	0.0-]								
	121	121	122	123	20	20	1	21	121	122	120	121	125	
	121	121	122	123	22	22	1	21	121	123	122	121	120	
	122	123	124	123	24	21	1	22	122	124	122	124	124	
	120	122	122	123	22	22	1	23	123	123	123	123	123	
	121	121	124	123	24	23	2	20	22	24	22	24	24	
	125	120	124	123	24	24	2	20	22	21	22	23	24	
L					e pix		apply		40.46		مور: ام			I. O



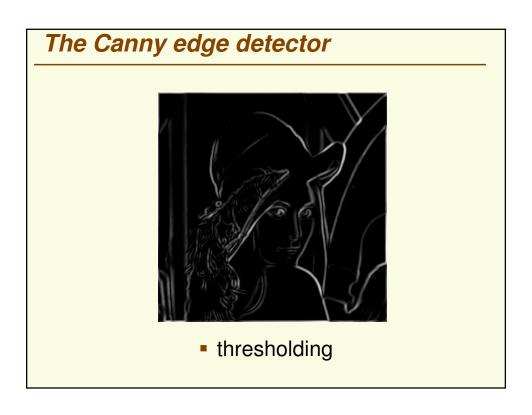


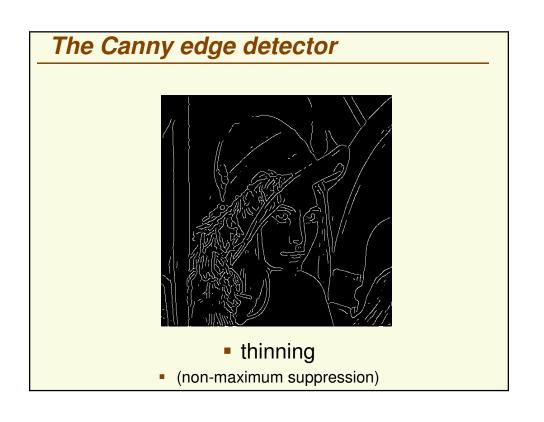
The Canny edge detector

original image (Lena)

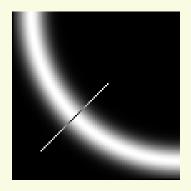
The Canny edge detector

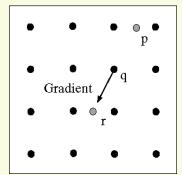
norm of the gradient





Non-maximum suppression

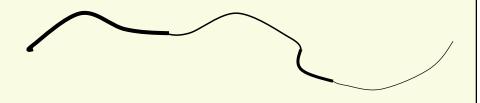




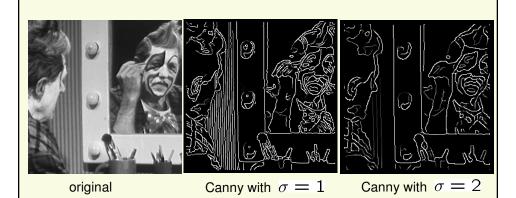
- Check if pixel is local maximum along gradient direction
 - requires checking interpolated pixels p and r

Hysteresis

- Strong Edges reinforce adjacent weak edges
- Check that maximum value of gradient value is sufficiently large
 - drop-outs? use hysteresis
 - use a high threshold to start edge curves and a low threshold to continue them.



Effect of σ (Gaussian kernel spread/size)

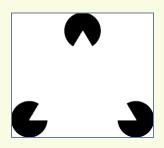


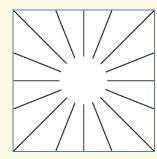
- The choice of σ depends on desired behavior
 - large σ detects large scale edges
 - small σ detects fine features

Why is Canny so Dominant

- Still widely used after 20 years.
- 1. Theory is nice (but end result same).
- 2. Details good (magnitude of gradient).
- 3. Code was distributed.
- 4. Perhaps this is about all you can do with linear filtering.

Illusory Contours





- Triangle and circle floating in front of background
- Not possible to detect the "illusory" contours using local edge detection