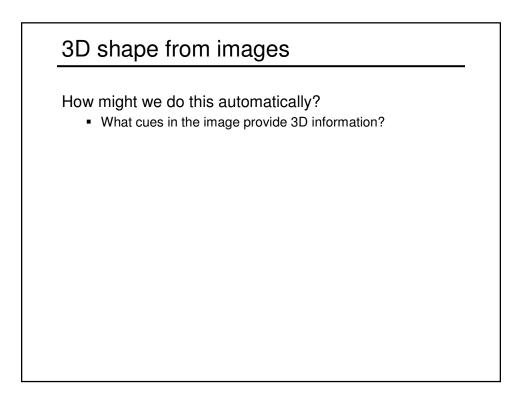
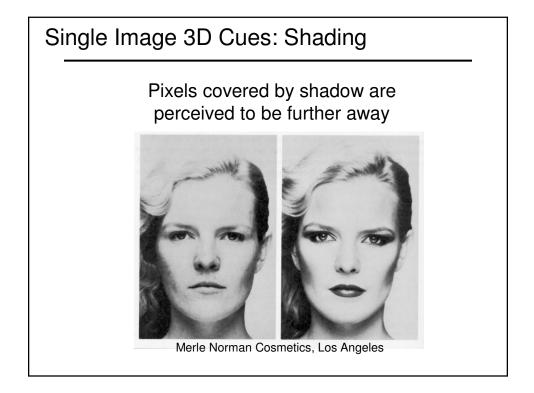
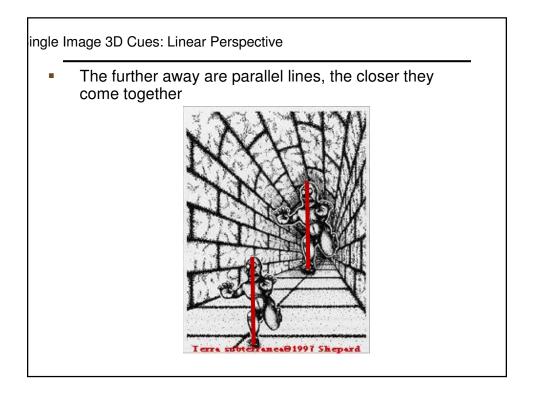
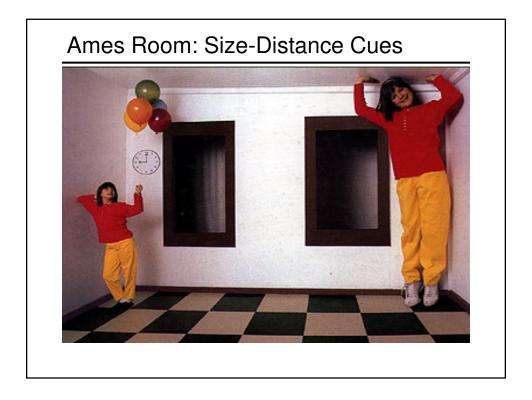
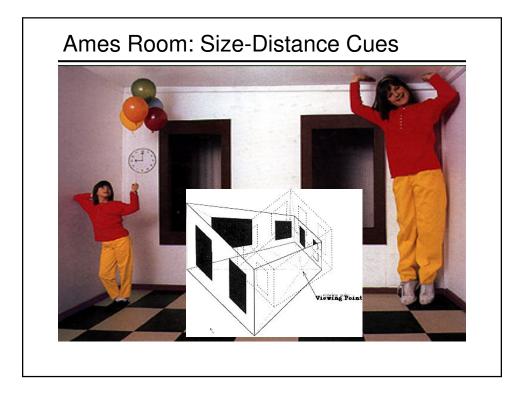

CS4442/9542b: Artificial Intelligence II Prof. Olga Veksler

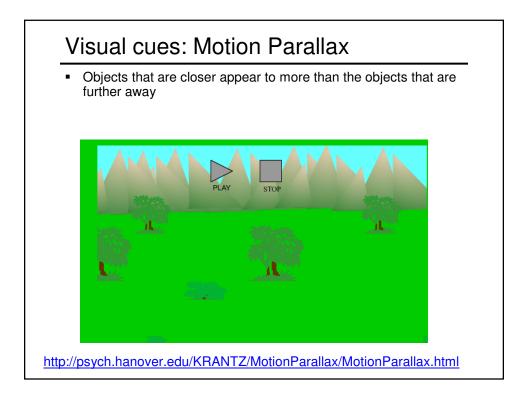

Lecture 14: Computer Vision 3D shape from Images Stereo Reconstruction

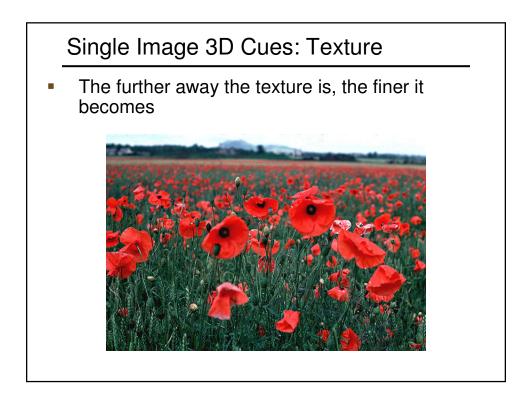

Many Slides are from Steve Seitz (UW), S. Narasimhan

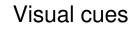

Outline

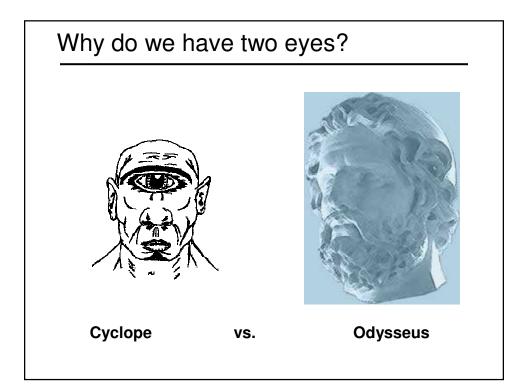

- Cues for 3D shape perception
- Stereo (3D shape from 2 stereo images)
 - Camera calibration and rectification (easier)
 - Stereo Correspondence (harder)

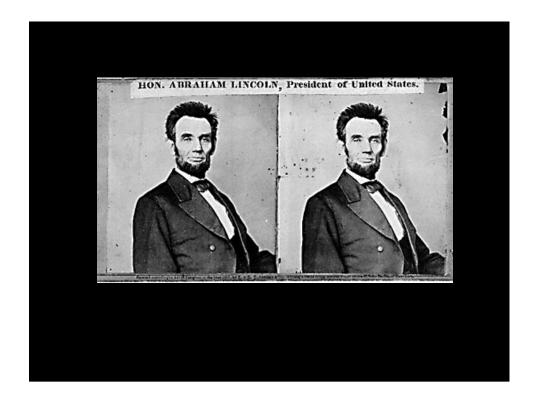


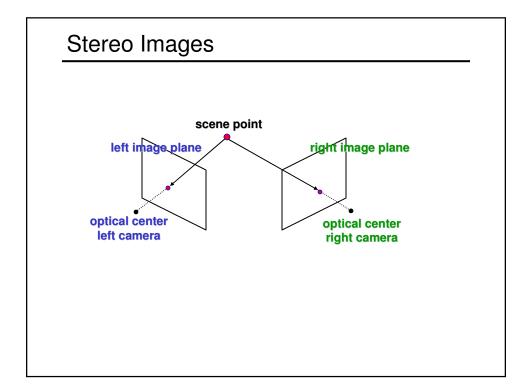


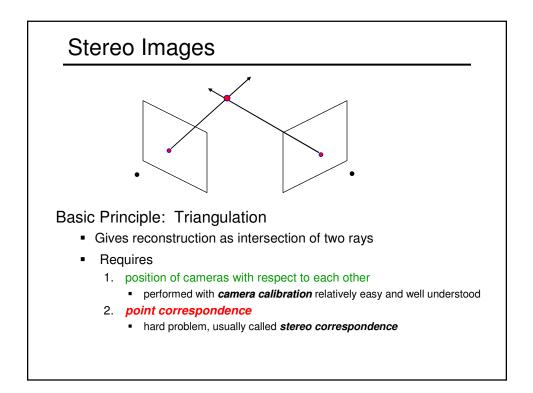


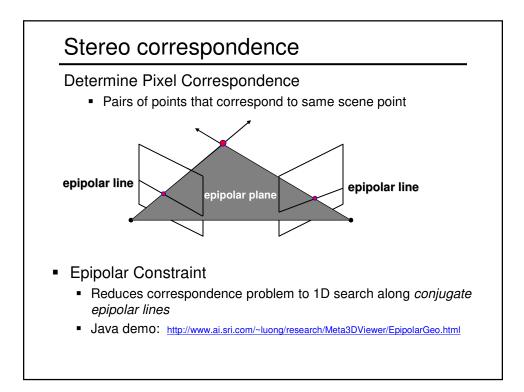


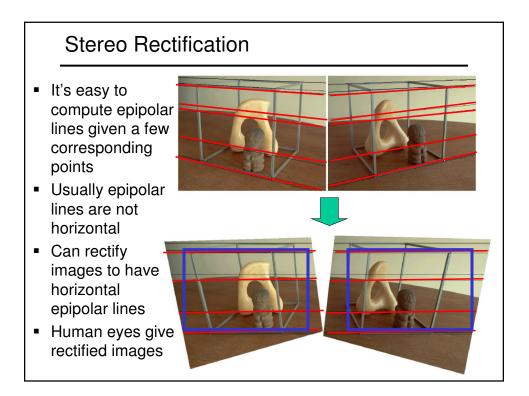


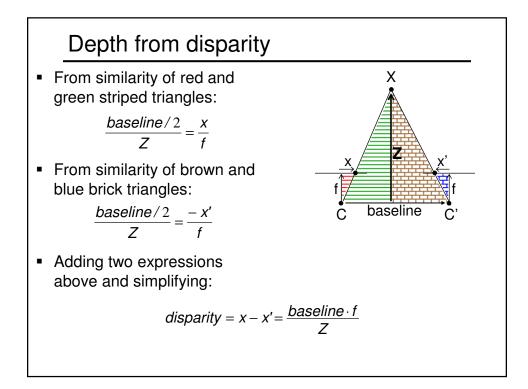




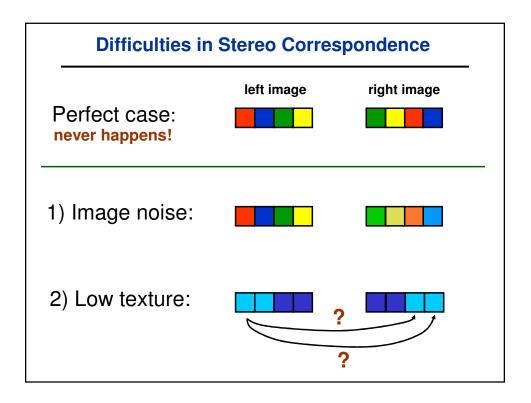


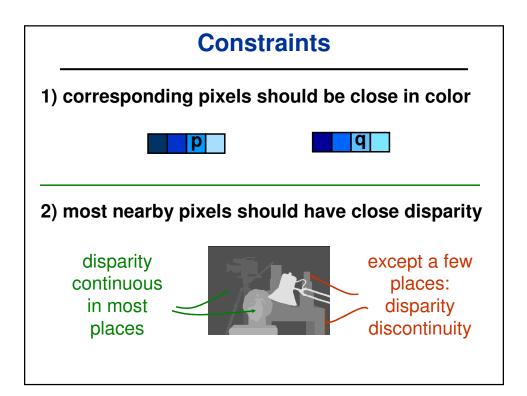

- Shape From X
 - X = shading, texture, motion, ...
 - In this class we'll focus on stereo
 - Depth perception from two stereo images

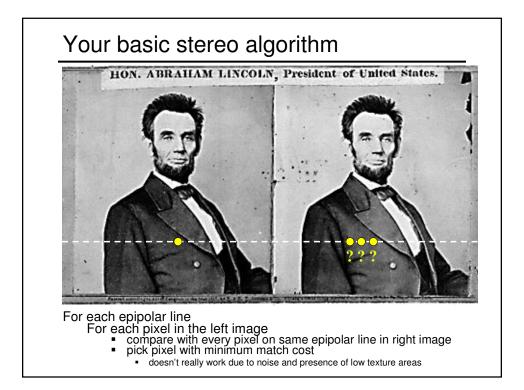


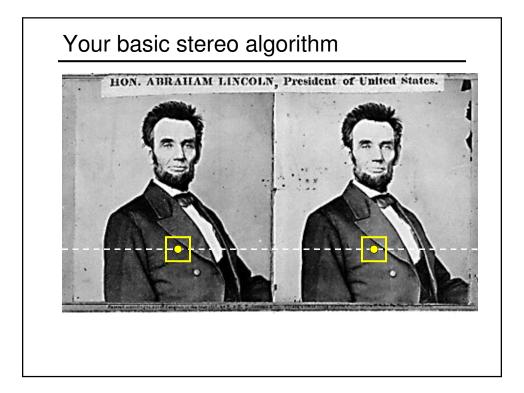


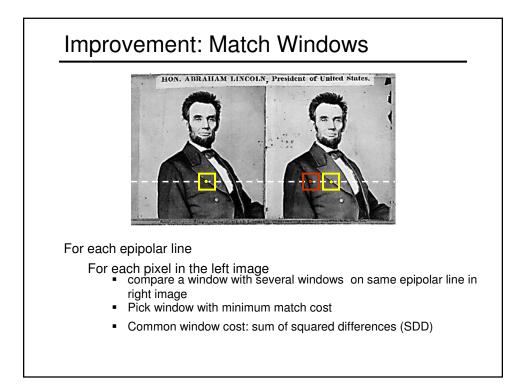
Depth from disparity

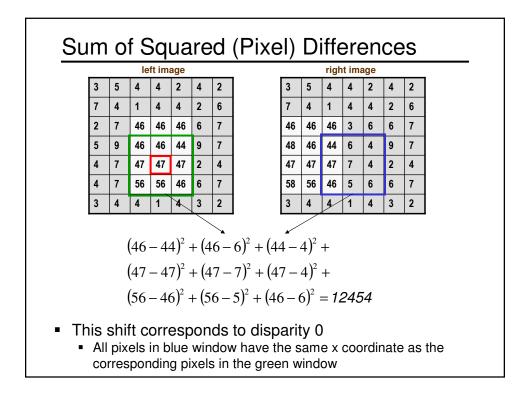

input image (1 of 2)

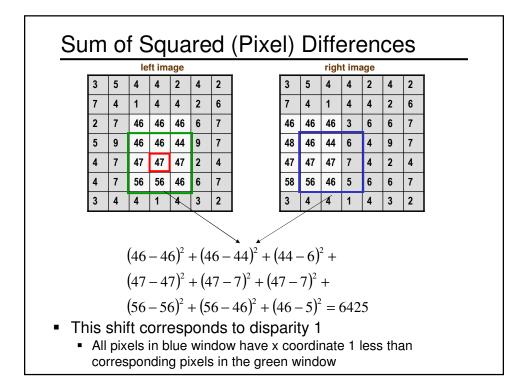

depth map [Szeliski & Kang '95]

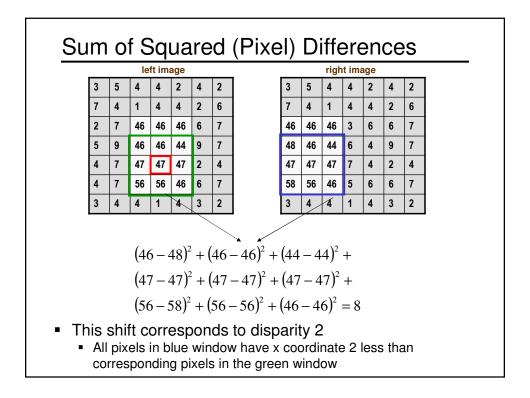


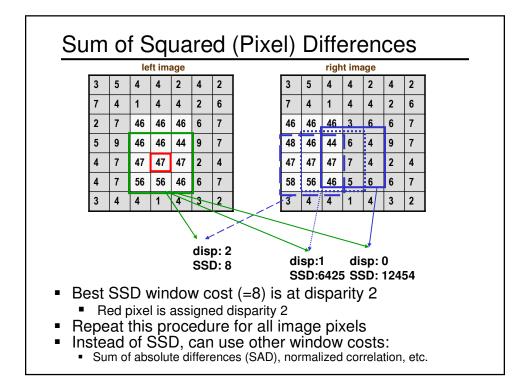

3D rendering

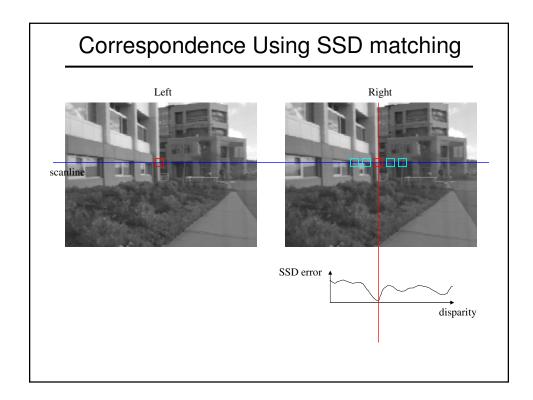

Stereo matching algorithms Rectifying images and figuring out *baseline* between camera and *f* (depth of focus) is relatively easy and well understood Matching pixels on the corresponding epipolar lines lines is a much harder problem Still heavily researched Numerous approaches A good survey and evaluation: http://www.middlebury.edu/stereo/

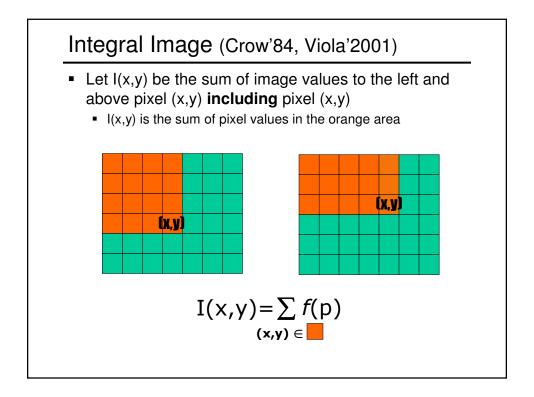


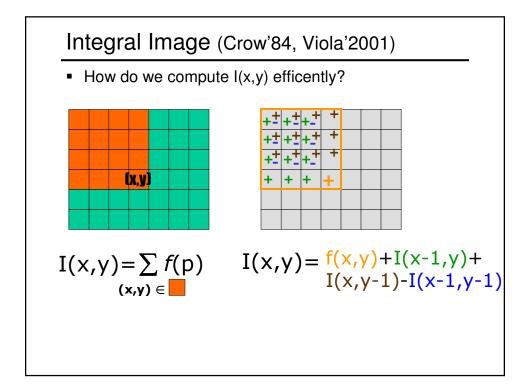


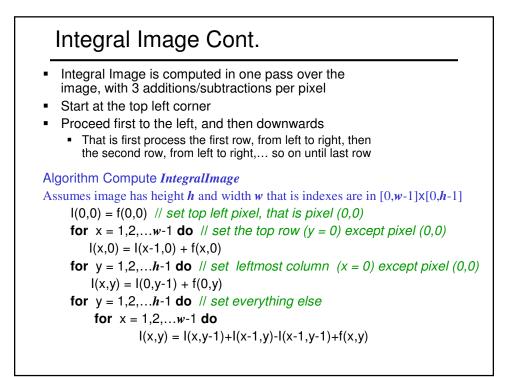


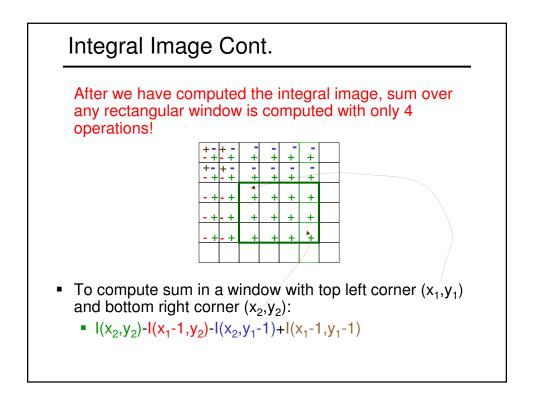


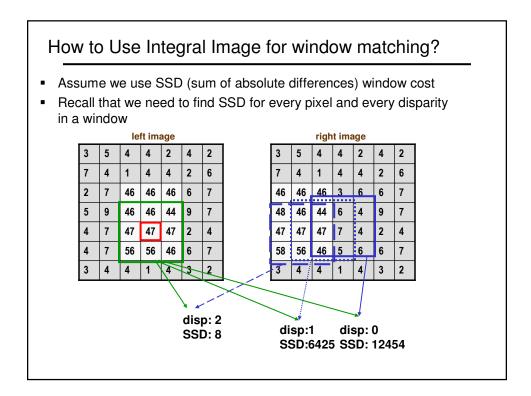

		le	ft im	age		
3	5	4	4	2	4	2
7	4	1	4	4	2	6
2	7	46	46	46	6	7
5	9	46	46	44	9	7
4	7	47	47	47	2	4
4	7	56	56	46	6	7
3	4	4	1	4	3	2
spa an co ind ind	limi mp ow ow ow ma	it d ute arc ano axD	isp th oun d th in	arit e d d it ne s the	y to isp ar sar e rig	o b arii nd c ne

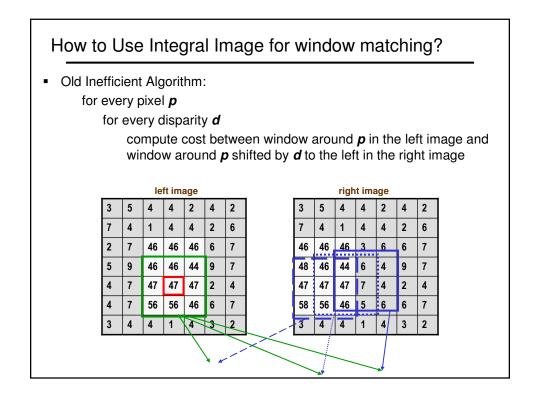


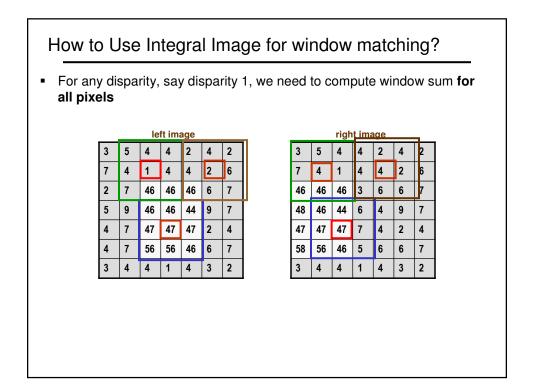


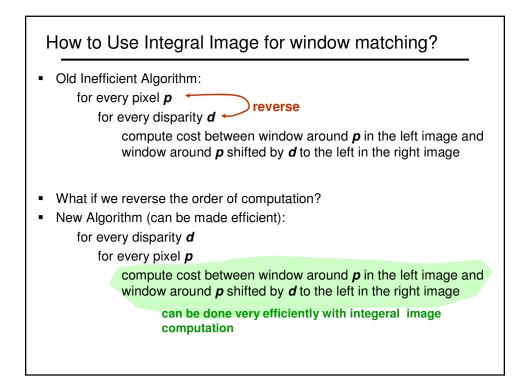


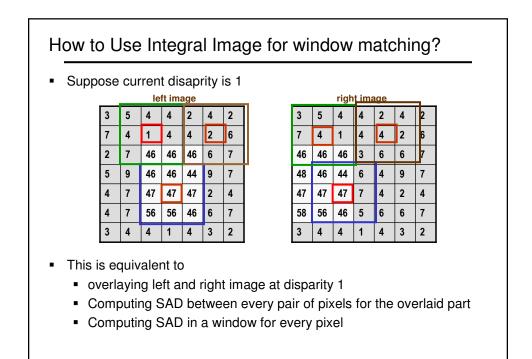


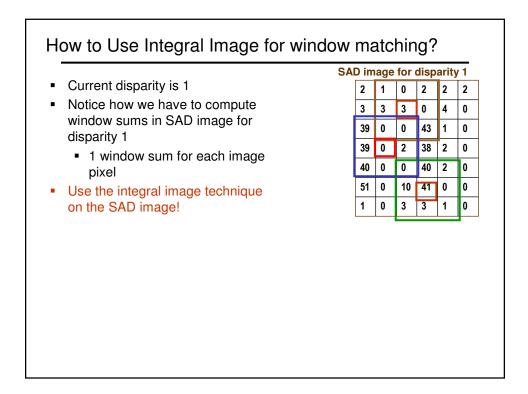


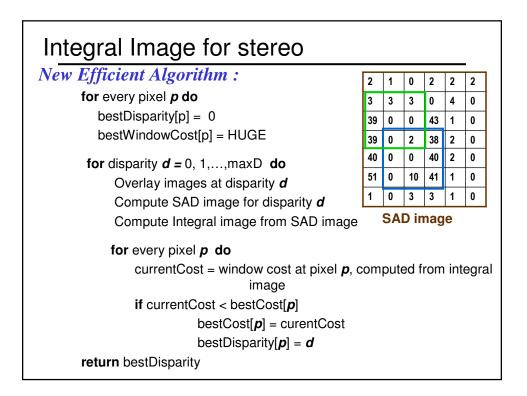


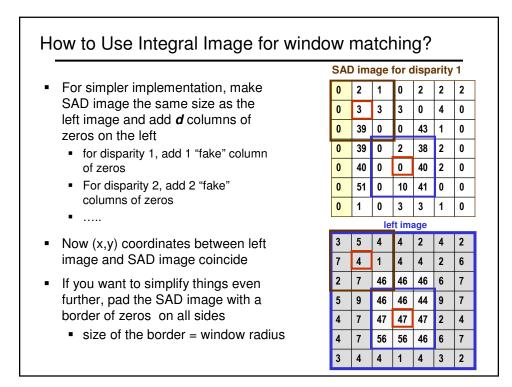

f(0,0)	f(1,0)+l(0,0)	f(2,0)+l(1,0)	f(3,0)+l(2,0)	f(4,0)+l(3,0)
f(0,1)+l(0,0)	f(1,1)+l(0,1)+	f(2,1)+l(1,1)+	f(3,1)+l(2,1)+	f(4,1)+l(3,1)+
	l(1,0)-l(0,0)	l(2,0)-l(1,0)	l(3,0)-l(2,0)	l(4,0)-l(3,0)
f(0,2)+l(0,1)	f(1,2)+l(0,2)+	f(2,2)+l(1,2)+	f(3,2)+I(2,2)+	f(4,2)+l(3,2) [.]
	l(1,1)-l(0,1)	l(2,1)-l(1,1)	I(3,1)-I(2,1)	l(4,1)-l(3,1)

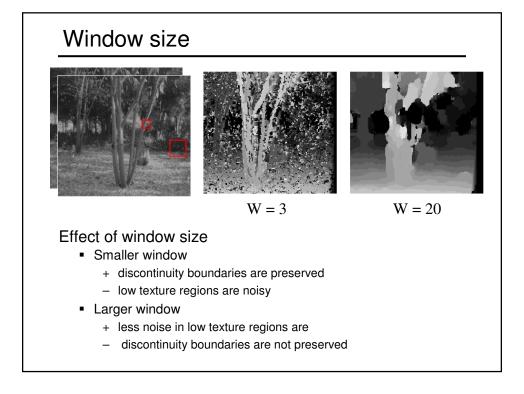


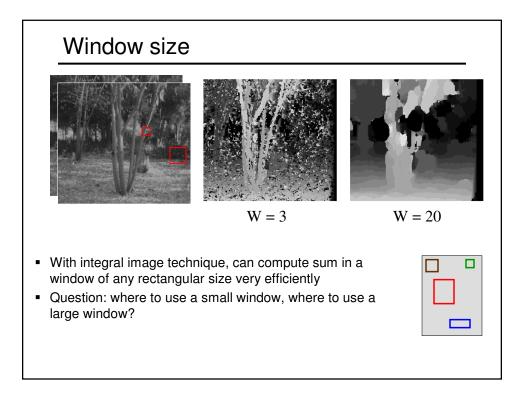


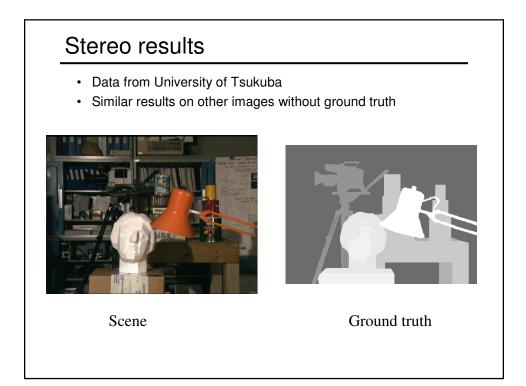


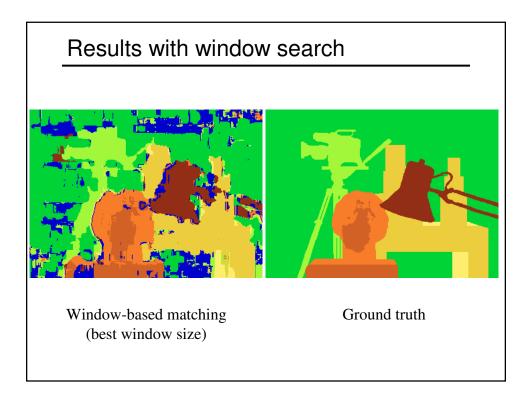

current				lef	t im	age						rig	jht ir	nag	е		
disaprity is 1	3	5		4	4	2	4	2		3	5	4	4	2	2 4	4 2	2
	7	4	. .	1	4	4	2	6		7	4	1	4	4	. 1	2 (3
	2	7		46	46	46	6	7		46	46	46	3	6	; (6 7	7
	5	9		46	46	44	9	7		48	46	44	6	4	. 9	9 7	7
	4	7		47	47	47	2	4		47	47	47	7	4	1	2 4	1
	4	7		56	56	46	6	7		58	56	46	5	6	; (6 7	7
	3	4		4	1	4	3	2		3	4	4	1	4		3 2	2
_			_	_	_	_	_	_		S	AD	ima	ige '	for	disp	arity	y 1
3	3	3	5	4	4	2	2	4	2		2	2	1	0	2	2	2
7	7	7	4	1	4	4		2	6		:	3	3	3	0	4	0
2	2	46	46	46	3 3	6	;	6	7	 Y	:	39	0	0	43	1	0
5	5	48	46	44	1 6	4	Ļ	9	7	1	:	39	0	2	38	2	0
4	L	47	47	47	7	4	Ļ	2	4		4	10	0	0	40	2	0
4	ı I	58	56	46	6 5	6	;	6	7		:	51	0	10	41	0	0
3	2	3	4	4	1	4	1	3	2		Ŀ.	1	0	3	3	1	0

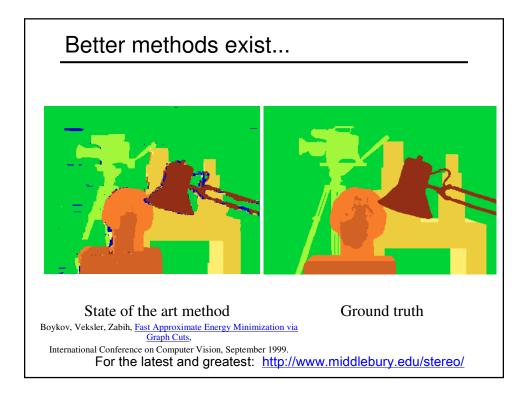

Current				lef	t im	age						rig	ht ir	nag	е		
disparity is 1	3	3	5	4	4	2	4	2	2	3	5	4	4	2	2	4	2
	7	' '	4	1	4	4	2	6	;	7	4	1	4	4	L :	2	6
	2	2	7	46	46	46	6	7	'	46	46	46	3	e	;	6	7
	Ę	5 9	9	46	46	44	9	7	'	48	46	44	6	4	L !	9	7
	4	L I	7	47	47	47	2	4	Ļ	47	47	47	7	4	L :	2	4
	4	1	7	56	56	46	6	7	'	58	56	46	5	e	5	6	7
	3	3	4	4	1	4	3	2	2	3	4	4	1	4	i :	3	2
		_		_	_	_			_	S	AD	ima	ge	for	disp	parit	<u>y 1</u>
	3	3	5	4	4	. 2	2	4	2		Ľ	2	1	0	2	2	2
	7	7	4	1	4	. 4	1	2	6		2	3	3	3	0	4	0
	2	46	46	46	3 3	(6	6	7	 K		39	0	0	43	1	0
	5	48	46	44	4 6		1	9	7	1	:	39	0	2	38	2	0
	4	47	47	47	7 7		1	2	4			40	0	0	40	2	0
	4	58	56	46	6 5	(3	6	7		1	51	0	10	41	0	0
	3	3	4	4	1	4	1	3	2			1	0	3	3	1	0

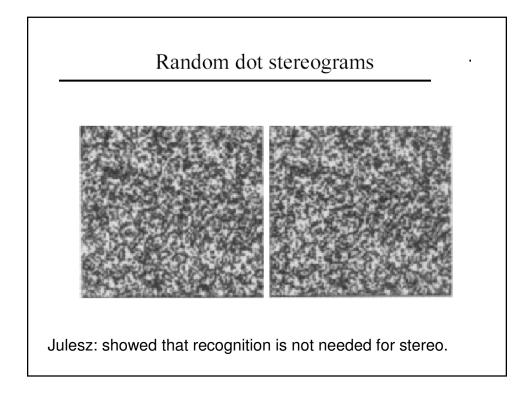

Current				lef	t ima	age						ri	ght i	mag	je			•
disparity is 1	3	; ;	5 4	4	4	2	4	2		3	5	4	4		2	4	2	
	7	' 4	i 1	1	4	4	2	6		7	4	1	4		4	2	6	
	2	2 7	1	46	46	46	6	7		46	46	4	6 3	3	6	6	7	
	5	; ;) 4	46	46	44	9	7		48	46	4	4 6	;	4	9	7	
	4	L 7	7 4	47	47	47	2	4		47	47	4	7 7	7	4	2	4	
	4	1 7	7 !	56	56	46	6	7		58	56	4	65	5	6	6	7	
	3	6 4	1	4	1	4	3	2		3	4	4	1		4	3	2	
		_	_	_	_	_	_			S	AD	im	age	for	dis	par	ity 1	-
	3	3	5	4	4	2	:	4	2			2	1	0	2	2	2 2	
	7	7	4	1	4	4		2	6			3	3	3	0	4	0	
	2	46	46	46	6 3	6	;	6	7	K		39	0	0	43	3 1	0	
	5	48	46	44	6	4	ļ	9	7	1		39	0	2	38	3 2	. 0	
	4	47	47	47	7	4		2	4		ſ	40	0	0	40) 2	. 0	
	4	58	56	46	5 5	6	;	6	7		f	51	0	10	41	1 0	0	٦
	3	3	4	4	1	4		3	2		F	1	0	3	3	1	0	

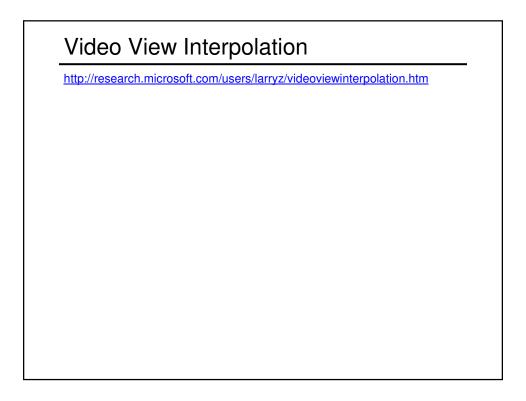

Current				lef	t im	age						ri	ght i	mag	e		
disparity is 1	3	5	; 4	4	4	2	4	2		3	5	4	4	. 1	2	4	2
	7	4	ļ i	1	4	4	2	6		7	4	1	4		4	2	6
	2	7	' 4	46	46	46	6	7		46	46	6 4	63	; (6	6	7
	5	9	1	46	46	44	9	7		48	46	6 4	4 6	; ,	4	9	7
	4	7	, I	47	47	47	2	4		47	47	′ 4	7 7	' '	4	2	4
	4	7	' !	56	56	46	6	7		58	56	i 4	6 5	; (6	6	7
	3	4	4	4	1	4	3	2		3	4	4	1	-	4	3	2
			_	_	_	_	_			S	AD) im	age	for	dis	oari	ty 1
	3	3	5	4	4	2	2	4	2			2	1	0	2	2	2
	7	7	4	1	4	4	•	2	6			3	3	3	0	4	0
	2	46	46	46	5 3	6	;	6	7	 λ		39	0	0	43	1	0
	5	48	46	44	6	4	•	9	7	1		39	0	2	38	2	0
	4	47	47	47	7	4		2	4			40	0	0	40	2	0
	4	58	56	46	5 5	6	;	6	7		F	51	0	10	41	0	0
	3	3	4	4	1	4		3	2		F	1	0	3	3	1	0











Real-time stereo

Nomad robot searches for meteorites in Antartica http://www.frc.ri.cmu.edu/projects/meteorobot/index.html

Used for robot navigation (and other tasks)
Several software-based real-time stereo techniques have been developed (most based on simple window matching)

Stereo reconstruction pipeline

- Steps
 - Calibrate cameras
 - Rectify images
 - Compute disparity
 - Estimate depth

What will cause errors?

- Camera calibration errors
- Poor image resolution
- Occlusions
- Violations of brightness constancy (specular reflections)
- Low-contrast image regions