
1

CS4442/9542b: Artificial Intelligence II

Prof. Olga Veksler

Lecture 3: Machine Learning
k Nearest Neighbors Classifier

Today

kNN classifier -- the simplest classifier on earth

2

� classify an unknown example with the most common
class “around” this example

� “around” means k closest example (or k nearest
“neighbors”)

� “tell me who your neighbors are, and I’ll tell you who you
are”

classify as green

classify as red

k-Nearest Neighbors

k-Nearest Neighbor: Example

� Back to fish sorting

� 2 features (length and lightness)

� Let k = 3

lightness

length
2 sea bass, 1 salmon are
the 3 nearest neighbors,
thus classify as sea bass

3

kNN rule is certainly simple and intuitive, but does it work?

Assume we have an unlimited number of samples

Theoretically, the best possible error rate is the Bayes rate E*

Bayes error rate is the best (smallest) error rate a classifier can have,
for a given problem, but we do not study it in this course

Nearest-neighbor rule leads to an error rate greater than E*

But even for k =1, as n →→→→ ∞∞∞∞, it can be shown that nearest
neighbor rule error rate is smaller than 2E*

As we increase k, the upper bound on the error gets better and
better, that is the error rate (as n →→→→ ∞∞∞∞) for the kNN rule is
smaller than cE*,with smaller c for larger k

If we have a lot of samples, the kNN rule will do very well !

kNN: How Well Does it Work?

1NN: Voronoi Cells

4

• In theory, when the infinite number of samples

is available, the larger the k, the better is

classification (error rate gets closer to the

optimal Bayes error rate)

• But the caveat is that all k neighbors have to

be close to x

– Possible when infinite # samples available

– Impossible in practice since # samples is finite

kNN: How to Choose k?

classify as green

classify as red

� How to choose k?
� “rule of thumb“ is k = √√√√n , where n is the number of

samples
� Interesting theoretical properties

� in practice, k = 1 is often used for efficiency

kNN: How to Choose k?

5

x1

� For k = 1, …,5 sample x is classified correctly as the red class

� For larger k classification of x is wrong (blue class)

� can find a good k through cross-validation, to be studied later

x2

x

kNN: How to Choose k?

k-NN versus 1-NN

6

kNN: Computational Complexity

� Basic kNN algorithm stores all examples

� Suppose we have n examples each of dimension d

� O(d) to compute distance to one example

� O(nd) to find one nearest neighbor

� O(knd) to find k closest examples examples

� Thus complexity is O(knd)

� This is prohibitively expensive for large number of

samples

� But we need large number of samples for kNN to

work well!

remove

Reducing Complexity: Editing 1NN

� If all voronoi neighbors have the same class, a sample is

useless, we can remove it:

� number of samples decreases

� decision boundaries stay the same

7

Reducing Complexity: Partial Distance

� compute partial distances using a subset of

dimensions and eliminating the points with partial

distances greater than the full distance of the

current closest points

� Advantages:
� complexity decreases

� we are guaranteed to find closes neighbor(s)

� Disadvantages:
� complexity may not decrease significantly, how much

complexity decreases depends on our luck and data
layout

kNN: Selection of Distance

� So far we assumed we use Euclidian Distance to find

the nearest neighbor:

� However some features (dimensions) may be much

more discriminative than other features

(dimensions)

() baba)b,a(D
k

2

kk ⋅=−= ∑

� Euclidean distance treats each feature as equally

important

8

kNN: Selection of Distance

� Extreme Example

� feature 1 gives the correct class: 1 or 2

� feature 2 gives irrelevant number from 100 to 200

� Suppose we have to find the class of x=[1 100] and

we have 2 samples [1 150] and [2 110]

(((()))) (((()))) 5015010011)150
1,100

1(D
22 ====−−−−++++−−−−====











(((()))) (((()))) 5.1011010021)110
2,100

1(D
22 ====−−−−++++−−−−====











� x = [1 100] is misclassified!

� The denser the samples, the less of the problem

� But we rarely have samples dense enough

1 1.2 1.4 1.6 1.8 2
100

120

140

160

180

� decision boundaries for blue and green classes are in red

� These boundaries are really bad because

� feature 1 is discriminative, but it’s scale is small

� feature 2 gives no class information but its scale is large

kNN: Extreme Example

9

kNN: Selection of Distance

� Notice the 2 features are on different scales:
� feature 1 takes values between 1 or 2

� feature 2 takes values between 100 to 200

� Need to “normalize” feature values to be on the

same scale

� Two approaches:
1. linearly scale the range of each feature to be, say, in [0,1]

minmax

minold
new

ff

ff
f

−

−
=

kNN: Selection of Distance

� Let’s apply scaling to zero mean, variance 1 to previous

example

2. linearly scale to zero mean variance 1:

� If Z is a random variable of mean m and variance σσσσ2, then

(Z - m)/σσσσ has mean 0 and variance 1

� Thus for each feature f, compute its sample mean and

variance, and let the new feature be

[f - mean(f)]/sqrt[var(f)]

� If C is a matrix with all the samples piled up as rows (that

is ith column of C has the ith feature), then can do this in

matlab for all features simultaneously

Cn=(C-repmat(mean(C),size(C,1),1))*diag(1./sqrt(var(C)))

10

-1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

kNN: Normalized Features

The decision boundary (in red) is very good now!

kNN: Selection of Distance

� However in high dimensions if there are a lot of

irrelevant features, normalization will not help

(((()))) (((()))) (((())))∑∑∑∑∑∑∑∑∑∑∑∑ −−−−++++−−−−====−−−−====
j

2

jj
i

2

ii
k

2

kk bababa)b,a(D

discriminative
feature

noisy
features

� If the number of discriminative features is smaller

than the number of noisy features, Euclidean

distance is dominated by noise

11

kNN: Feature Weighting

� Scale each feature by its importance for

classification

� Can use our prior knowledge about which features

are more important

� Can learn the weights wk from the validation data

� Increase/decrease weights until classification

improves

(((())))∑∑∑∑ −−−−====
k

kkk bawbaD
2

),(

kNN in Matlab












=

45
73
42

1Class

















=

86
107
95
83

2Class





= 7
4x� Want to classify sample

12

kNN Code in Matlab without Loops

numClass1 = size(Class1,1);

numClass2 = size(Class2,1);

totalSamples = numClass1+numClass2;

combinedSamples = [Class1;Class2];

trueClass = [zeros(numClass1,1)+1;zeros(numClass2,1)+2;];

testMatrix = repmat(newSample,totalSamples,1);

absDiff = abs(combinedSamples-testMatrix);

absDiff = absDiff.^2;

dist = sum(absDiff,2);

[Y,I] = sort(dist);

neighborsInd = I(1:k);

neighbors = trueClass(neighborsInd);

class1=find(neighbors == 1);

class2=find(neighbors == 2);

joint = [size(class1,1);size(class2,1)];

[value class] = max(joint);





= 7
4x

3k =












=

45
73
42

1Class

















=

86
107
95
83

2Class

kNN Code in Matlab

numClass1 = size(Class1,1);

numClass2 = size(Class2,1);

totalSamples = numClass1+numClass2;

combinedSamples = [Class1;Class2];

trueClass = [zeros(numClass1,1)+1;zeros(numClass2,1)+2;];












=

45
73
42

1Class

















=

86
107
95
83

2Class





= 7
4x

numClass1 = 3

numClass2 = 4

totalSamples = 7























=

86
107
95
83
45
73
42

mplescombinedSa





















=

2
2
2
2
1
1
1

trueClass

13

testMatrix = repmat(newSample,totalSamples,1);

absDiff = abs(combinedSamples-testMatrix);

absDiff = absDiff.^2;

dist = sum(absDiff,2);





= 7
4x





















=

74
74
74
74
74
74
74

testMatrix























=

86
107
95
83
45
73
42

mplescombinedSa























=

12
33
21
11
31
01
32

absDiff























=

14
99
41
11
91
01
94

absDiff























=

5
18
5
2

10
1

13

dist





















=

2
2
2
2
1
1
1

trueClass

kNN Code in Matlab

[Y,I] = sort(dist);

neighborsInd = I(1:k);

neighbors = trueClass(neighborsInd);























=

5
18
5
2

10
1

13

dist























=

18
13
10
5
5
2
1

Y





















=

6
1
3
7
5
4
2

I












=

5
4
2

ndneighborsI
3k =











=

2
2
1

neighbors





















=

2
2
2
2
1
1
1

trueClass

kNN Code in Matlab

14

class1=find(neighbors == 1);

class2=find(neighbors == 2);

joint = [size(class1,1);size(class2,1)];

[value class]=max(joint);












=

2
2
1

neighbors
[]11class =





=
3
22class





=
2
1intjo

2class =

kNN Code in Matlab












=

2
2
1

neighbors

kNN Code in Matlab

15

Video

http://videolectures.net/aaai07_bosch_knnc/

kNN Summary

Advantages

Can be applied to the data from any distribution

for example, data does not have to be separable with a linear boundary

Very simple and intuitive

Good classification if the number of samples is large enough

Disadvantages

Choosing best k may be difficult

Test stage is computationally expensive

No training stage (in the “vanilla” version), all the work is done during
the test stage. This is actually the opposite of what we want ideally:
usually we can afford training step to take a long time, but test step
we want to be very fast.

Need large number of samples for accuracy

