CS442/542b: Artificial Intelligence Il
Prof. Olga Veksler

Lecture 4: Machine Learning
Linear Classifier

Outline

Linear Classification or Linear Discriminant
Functions

= |ntroduction

= 2classes

= Multiple classes

= Optimization with gradient descent

= Perceptron Criterion Function

= Batch perceptron rule

= Single sample perceptron rule

Minimum Squared Error (MSE) rule

= Pseudoinverse

= Gradient descent (Widrow-Hoff Procedure)

Discriminant Function

Consider 2 class case, and let’s denote
them
= class 1
= class -1

Want to build f(X,W) to give correct class of
sample X

Let f(X,W) = sign(g(X,W))
= 1if g(X,W) is positive
= -1if g(X,W) is negative

a(X,W) is called the discriminant function

Linear Discriminant Functions: Basic Idea

7]

lightness

o sUOWIE:
sseq

lightness

' length ' length

bad boundary good boundary

= Have samples from 2 classes x;, X5 ,..., X,
= Assume 2 classes can be classified by a linear
discriminant function g(X,W) with some unknown
parameters W
= Fit the “best” g(X,W) to data by optimizing over
parameters W
= What is best g(X,W)?
. (sjir?plest idea: minimize classification error on training
ala

LDF: Introduction

= Discriminant functions can be more general than
linear

= For now, we will study linear discriminant functions
= Simple model (should try simpler models first)
= Analytically tractable

= Linear Discriminant functions are optimal for
certain type of data

= Gaussian distributions with equal covariance (don’t
worry if you don’t know what a Gaussian is)

= May not be optimal for other data distributions, but
they are very simple to use

LDF: 2 Classes

= A discriminant function is linear if it can be written as
g(x) = wix + w,
= wis called the weight vector and w,, called bias or threshold

g(x)<0 = xeclass 2

\l x? | 9{1 g(x)>0 = xeclass 1
°® m N g(x)=0 = either class

R,

gx)<0 ;\\\decision boundary g(x) = 0

LDF: 2 Classes

= Decision boundary g(x) = wix + w,=0 is a hyperplane

= set of vectors x which for some scalars a,..., oy
satisfy ap +a,x(W+...+ ax@ =0

= A hyperplane is
= a pointin 1D
= alinein 2D
= a plane in 3D

LDF: 2 Classes

g(x) = wix + w,

= w determines orientation of the decision hyperplane
= W, determines location of the decision surface

x?)
\ DX

LDF: 2 Classes

Dias univ

input i

FIGURE 5.1. A simple linear classifier having d input unils, each corresponding Lo the
values of the components of an input vector. Each inpul feature value x; is multiplied
byy its corresponding weight wy; the effective input at the output unit is the sum all these
products, 3 wox. We show ineach unit its effective input-output function. Thus each of
the d input units is linear, emitting exactly the value of ils corresponding feature value.
The single bias unit unit always emits the constant value 1.0. The single output unit
emits a +1 if wx + wy = 0ora -1 otherwise, From: Richard O, Duda, Peter E. Hart,
and David G. Stork, Fattern Classification. Copyright @ 2001 by John Wiley & Sons,
Inc.

LDF: Many Classes

= Suppose we have m classes
Define m linear discriminant functions

gl(x)=wltx+ WiO i=1,...,m

= Given Xx, assign class ¢; if
g:(x) 2 g;(x) Vj#i

Such classifier is called a linear machine

A linear machine divides the feature space into ¢
decision regions, with g;(x) being the largest
discriminant if x is in the region R;

LDF: Many Classes

= Decision regions for a linear machine are convex
= In particular, decision regions must be spatially contiguous

LDF: Many Classes

= Thus applicability of linear machine to mostly limited
to unimodal distributions
= Most data is concentrated around one point in space

= Example:

= need non-contiguous decision regions
= thus linear machine will fail

LDF: Augmented feature vector

= Linear discriminant function: g(x)=w'x+w,

= Can rewrite it: g(x)=[w, w'] [H =a'y=g(y)
e

new weight new feature
vector a vector y

= yis called the augmented feature vector
= Added a dummy dimension to get a completely
equivalent new homogeneous problem

old problem new problem

g(x)=w'x+w, gy)=a'y

1
X,
Xq

LDF: Augmented feature vector

= Feature augmenting is done for simpler notation

= From now on we always assume that we have

augmented feature vectors
= Given samples xj,..., X,, convert them to
augmented samples y,,..., ¥, by adding yi —[
a new dimension of value 1

y(2) 9{2 9{
ay <0 4N\ 9 >0
2y
. e,
gy =0

_' y(1)

LDF: Training Error

= For the rest of the lecture, assume we have 2 classes
= Samples y,,..., ¥, some inclass 1, some in class 2

Use these samples to determine weights a in the
discriminant function g(y)=a'y

What should be our criterion for determining a?

= For now, suppose we want to minimize the training error
(that is the number of misclassifed samples y;,..., ¥,,)

a(y;)>0=y, classified c,
g(y;)<0=y, classified c,

Recall that

a(y;)>0 Vy,ec,
a(y;)<0 Vy,ec,

Thus training error is 0 if {

LDF: Problem “Normalization”

t
= Thus training error is 0 if {at yi>0Vyec
ay,<0 vy,ec,

= Equivalently, training error is 0 if

a'y,>0 Vy,; e c,
at(_.Vi)>0 Vy;ec,

= This suggest problem “normalization”:
1. Replace all examples from class ¢, by their negative
Yi—=>-Yi Vy,ec,
2. Seek weight vector a s.t.
ay,>0 vy,

= |If such aexists, it is called a separating or solution vector
= Original samples xj,..., X, can indeed be separated by a
line then

LDF: Problem “Normalization”

before normalization

y(2)

0
y

Seek a hyperplane that
separates patterns from
different categories

after “normalization’

y(2)

E

o y®
[|
Seek hyperplane that

puts normalized

patterns on the same

(positive) side

LDF: Solution Region

= Find weight vector as;,t. for all samples yy,..., ¥,
a'y, =Y ay">0
k=0

= In general, there are many such solutions a

LDF: Solution Region

= Solution region for a: set of all possible solutions
= defined in terms of normal a to the separating hyperplane

y(2)

Optimization

= Need to minimize a function of many variables
J(x)=J(x,,..y X,

= We know how to minimize J(x)
= Take partial derivatives and set them to zero

9 gradient
ox, Jx) (/

3 : =VJ(x)=0
E J(x)

= However solving analytically is not always easy
= Would you like to solve this system of nonlinear equations?
sin(x? + x3)+eX =0
{cos(xf +x)+ log(x? Ji=0
= Sometimes it is not even possible to write down an analytical
expression for the derivative, we will see an example later today

10

Optimization: Gradient Descent

= Gradient VJ(x) points in direction of steepest increase of
J(x), and -VJ(x) indirection of steepest decrease

one dimension two dimensions

_aJ |
dx (a) 200

aJ
“ox® ‘ﬁﬁ%
a a

Optimization: Gradient Descent

J(x) ;WWﬂ

® e ® ®
x(1) x2 x3) x(k)

Gradient Descent for minimizing any function J(x)
set k=1 and x(") to some initial guess for the weight vector
while 7% vJ(x®¥)[> e

choose learning rate n®
xtk+t)=x® — 780 v y(x) (update rule)
k=k+1

Optimization: Gradient Descent

= Gradient descent is guaranteed to find only a local
minimum
J(x)

¢ @ >®

-
X x2 x3 x(k) global minimum

= Nevertheless gradient descent is very popular
because it is simple and applicable to any function

Optimization: Gradient Descent

= Main issue: how to set parameter n (learning rate)
= If pis too small, need too many iterations

J(x)

X
J(x)
= If pis too large may
overshoot the minimum
and possibly never find it
(if we keep overshooting) | - e X
) x@

12

LDF: Criterion Function

= Find weight vector a §.t. for all samples y,,..., ¥,
a'y,=Y ay">0
k=0

= Need criterion function J(a) which is minimized when
ais a solution vector

= Let Yy, be the set of examples misclassified by a
Y, (a)={sample y, s.t. a'y, <0}
= First natural choice: number of misclassified examples
J(a)=|Y,(a)
J(a)

= piecewise constant, gradient :
descent is useless -

LDF: Perceptron Criterion Function

= Better choice: Perceptron criterion function

Jy(a)= Y (-a'y)

yeYu

y

= |f yis misclassified, a'y <0
= Thus J,(a)=0

= J,(a) is -||al| times sum of
distances of misclassified
examples to decision boundary

= J,(a) is piecewise linear Ja)

and thus suitable for
gradient descent

13

LDF: Perceptron Batch Rule
Jy(@)= Y (-a'y)

yeYy
Gradient of J,(a) is Vd,(a)= >.(-y)
yeYy
= Y, are samples misclassified by a®
= ltis not possible to solve VdJ,(a)=0 analytically
because of Yy,
Update rule for gradient descent: xtk+7)= xk)—p (k) v 4(x)

Thus gradient decent batch update rule for Jy(a) is:
a(k+1) — a(k) + ﬂ(k) Zy

yeYuy
= |t is called batch rule because it is based on all
misclassified examples

LDF: Perceptron Single Sample Rule

= Thus gradient decent single sample rule for J,(a) is:
alk+) = g 4 py,

= note that y,, is one sample misclassified by a®
= must have a consistent way of visiting samples

= Geometric Interpretation:
= yy misclassified by a®
(@)y,<0 --

= yu is on the wrong side of
decision hyperplane

= adding iy, to a moves new
decision hyperplane in the right
direction with respect to yy,

Yum
%%

14

LDF: Perceptron Single Sample Rule

a® gy

k+1) _

al

S
"5«5 7

Yk o
nis too large, previously nis too small, y, is still
correctly classified sample misclassified

Y, is now misclassified

LDF: Perceptron Example

features grade
name good tall? sleeps in | chews
attendance? class? gum?

Jane yes (1) |yes(1)| no(-1) | no(-1)
Steve yes (1) |yes(1)| yes (1) | yes(1)
Mary no (-1) no(-1)| no(-1) | yes(1)
Peter yes (1) no(-1) | no(-1) | yes (1)

>TiMm>

= class 1: students who get grade A
= class 2: students who get grade F

LDF Example: Augment feature vector

features grade
name | extra good tall? sleeps in| chews
attendance? class? gum?
Jane 1 yes (1) yes (1) | no(-1) | no (-1) A
Steve | 1 yes (1) yes (1) | yes (1) | yes (1) F
Mary 1 no (-1) no (-1) | no (-1) | yes (1) F
Peter | 1 yes (1) no (-1) | no (-1) | yes (1) A

= convert samples Xx;,..., X, to augmented samples
Y-, Y, by adding a new dimension of value 1

LDF: Perform “Normalization”

features grade
name | extra good tall? sleeps in| chews
attendance? class? gum?
Jane 1 yes (1) yes (1) | no(-1) | no (-1) A
Steve | -1 yes (-1) | yes (-1) | yes (-1) | yes (-1) F
Mary | -1 no (1) no (1) | no (1) |yes(-1) F
Peter | 1 yes (1) no (-1) | no(-1) | yes (1) A

= Replace all examples from class ¢, by their negative

= Seek weight vector a s.t.

Yi—=>-Yi

a'y,>0

Vyiec,

vy,

I

16

LDF: Use Single Sample Rule

features grade

name | extra good tall? sleeps in| chews
attendance? class? gum?

Jane 1 yes (1) yes (1) | no(-1) | no (-1)

Steve | -1 yes (-1) | yes (-1) | yes (-1) | yes (-1)

Mary | -1 no (1) no (1) | no(1) |yes(-1)

> TMimi>

Peter | 1 yes (1) no (-1) | no (-1) | yes (1)

4
= Sample is misclassified if ~ a'y; = ay{* <0
k=0

= gradient descent single sample rule: a®*+") = a4 z®y

= Set fixed learning rate to 7K=1: g =g 4y

LDF: Gradient decent Example

= set equal initial weights a(?=[0.25, 0.25, 0.25, 0.25]

= visit all samples sequentially, modifying the weights
for after finding a misclassified example

name aty misclassified?
Jane 0.25*1+0.25*1+0.25*1+0.25%(-1)+0.257(-1) >0 no
Steve | 0.25%(-1)+0.25%(-1)+0.25(-1)+0.25%(-1)+0.25%(-1)<0 yes

= new weights
a®=a"+y, =[0.25 0.25 0.25 0.25 0.25]+
+[-1 -1 -1 -1 -1]=
=[-0.75 -0.75 -0.75 —0.75 —0.75]

17

LDF: Gradient decent Example

a® =[-0.75 -0.75 —0.75 -0.75 —0.75]

name aty misclassified?

Mary | -0.75%(-1)-0.75*1-0.75 *1 -0.75 *1 -0.75%(-1) <0 yes

= new weights
a®=a%+y,=[-0.75 -0.75 -0.75 -0.75 —0.75]+
+-1 1 11 -1]=
=[-1.75 0.25 0.25 0.25 —1.75]

LDF: Gradient decent Example

a® =[-1.75 0.25 0.25 0.25 —1.75]

name aty misclassified?

Peter | -1.75 *1 +0.25* 1+0.25™ (-1) +0.25 *(-1)-1.75"1 <0 yes

= new weights
aY=a%4+y, =[-1.75 0.25 0.25 0.25 -1.75]+
+f1 1 -1 -1 1]=
=[-0.75 1.25 -0.75 —0.75 —0.75]

18

LDF: Gradient decent Example

a® =[-0.75 1.25 -0.75 -0.75 —0.75]

name aty misclassified?
Jane -0.75 *1 +1.25*1 -0.75%1 -0.75 *(-1) -0.75 *(-1)+0 no
Steve | -0.75%(-1)+1.25%(-1) -0.75*(-1) -0.75%(-1)-0.75%(-1)>0 no
Mary -0.75 *(-1)+1.25*1-0.75*1 -0.75 *1 —0.75*(-1) >0 no
Peter | -0.75 *1+ 1.25%1-0.75* (-1)-0.75* (-1) -0.75 *1 >0 no

= Thus the discriminant function is
g(y)=-0.75*y© +1.25* y _0.75* y®@ _0.75* y® _0.75* y@

= Converting back to the original features x:
g(x)=1.25*x"_0.75* x® -0.75* x¥ -0.75* x*) - 0.75

LDF: Gradient decent Example

= Converting back to the original features x:
1.25* x-0.75* x® -0.75* x®) -0.75 * x¥) > 0.75 = grade A
1.25* xM_-0.75* x® -0.75* x® - 0.75* x'¥) < 0.75 = grade F

/ / \ \

good tall sleeps in class chews gum
attendance

= This is just one possible solution vector

= |f we started with weights a(9=[0,0.5, 0.5, 0, 0],
solution would be [-1,1.5, -0.5, -1, -1]
1.5*x-0.5*x® _ x¥ _ x5 1= grade A
1.5*xM-0.5*x@ - x®) _ x4 < 1= grade F

= |In this solution, being tall is the least important feature

19

LDF: Nonseparable Example

= Suppose we have 2 features
and samples are:
= Class 1: [2,1], [4,3], [3,5]
= Class 2:[1,3] and [5,6]
= These samples are not
separable by a line
= Still would like to get approximate separation by a

line, good choice is shown in green

= some samples may be “noisy”, and it’s ok if they are on
the wrong side of the line

= Get ¥, ¥», Y3, ¥4 by adding extra feature and

“normalizing” 4 1 1 _q —1
= 2 = 4 3= 3 4= - 5= —5
GHESHES IREIENE

o N\ m @ & @ w

=)

1 2 3 4 5

LDF: Nonseparable Example

= Let’s apply Perceptron single :
sample algorithm i

- . o [|
= initial equal weights a” =[1 1 1]
* thisis line x(W+x2+1=0 i ‘&p [|

= fixed learning rate n=1 \(

a(k+1) — a(k) + Yy EREE N 2 3 4 5

i efd] g o]

= yah=[1 11 [121]>0 ¥
= ya®=[1 11 [143]'>0 ¥
= ytbah=[111]135]'>0 ¥

20

LDF: Nonseparable Example

a = [1 1 1] gtk = gk) 4 Yu z - [
1 1 1 -1 -1)
y1=|:$:| y2=|:g:| y3=|:g:| y4=|:__;:| y5=[:g:| : . .
J \“:\\ |
= ytal=[1 1 1][-1-1-3]'=-5<0 =7~ lW(Z)
a?=a"+y,=[111]+[-1-1-3]=[00-2]
= y,a?=[00-2]"[-1-5-6]=12>0 ¥
= yt,a@=[00-2][1 21]t<0
a¥=a®+y,=[00-2]+[121]=[12-1]
LDF: Nonseparable Example
a9=[12-1 a*"=a%+y, : L ¢
1 1 1 -1 -1)
rolf el i) el e A
w u
M
] F w2

= ybad=[1 43 [12-1]t=6>0 ¥ + o + v s +
= yl,a®=[135P[12-1]>0 ¥
= yt,ad=[-1-1-3][12-1]t=0

a¥=a9 4y, =[12-1]+[-1-1-3]=[0 1-4]

LDF: Nonseparable Example

a%=[01-4] a*=a"+y, :
N A L 1 I = P
_V1— 1 yz— 3 _Vg— 5 y4— __3 _V5— _6 . ‘ .
o w®

o
N

= y,ad=[143"[12-1]t=6>0

= yl;ad=[1 35][12-1]'>0 ¥

« yt,ad=[-1-1-3]*[12-1]t=0
aV=a® 4y, =[12-1+[-1-1-3]=[0 1 -4]

LDF: Nonseparable Example

= we can continue this forever
= there is no solution vector a satisfying for all i
5

a'y, =Y ay" >0
k=0
= need to stop but at a good point:

= solutions at iterations
900 through 915.
Some are good
some are not.

= How do we stop at a
good solution?

- - T -

22

LDF: Convergence of Perceptron rules

= |If classes are linearly separable, and use fixed
learning rate, that is for some constant ¢, n®=c

» both single sample and batch perceptron rules converge to
a correct solution (could be any a in the solution space)
= |f classes are not linearly separable:
= algorithm does not stop, it keeps looking for solution which
does not exist

= by choosing appropriate learning rate, can always ensure
convergence: 7% >0 as k — o

w_n"

k
= for inverse linear learning rate convergence in the linearly
separable case can also be proven

= no guarantee that we stopped at a good point, but there are
good reasons to choose inverse linear learning rate

= for example inverse linear learning rate: 7

LDF: Perceptron Rule and Gradient decent

= Linearly separable data
= perceptron rule with gradient decent works well
= Linearly non-separable data
= need to stop perceptron rule algorithm at a good point, this

maybe tricky
Batch Rule Single Sample Rule
= Smoother gradient = easier to analyze
because all samples are
used = Concentrates more than

necessary on any isolated
“noisy” training examples

23

LDF: Minimum Squared-Error Procedures

= |dea: convert to easier and better understood problem

a'y; > 0 for all samples y;
solve system of linear inequalities

d

a'y; = b; for all samples y;
solve system of linear equations

= MSE procedure
= Choose positive constants b,, b,,..., b,
= try to find weight vector a s.t. aly; = b; for all samples y;

= If we can find weight vector a such that a'y; = b, for all
samples y;, then ais a solution because b;'s are positive

= consider all the samples (not just the misclassified ones)

LDF: MSE Margins

%
S //Q//
g(y) = 0 2> Vi
_' 2 27
7 \o

= Since we want a'y; = b;, we expect sample y;to be at distance
b, from the separating hyperplane (normalized by ||a||)

= Thus by, b,,..., b, give relative expected distances or
“margins” of samples from the hyperplane

= Should make b; small if sample i is expected to be near
separating hyperplane, and make b; larger otherwise

= In the absence of any additional information, there are good
reasons to set b;= b,=...=b, =1

24

LDF: MSE Matrix Notation

at.V1_= b1

= Need to solve n equations
a'y,=b,

= Using matrix notation:

T [

Yg ya© oo yg ao b2
: : d=|

: : a'd :

y© yo oy b,
Y a b

= Thus need to solve a linear system Ya=b

LDF: Exact Solution is Rare

= Thus need to solve a linear system Ya=b
= Yis an nby (d +7) matrix

= Exact solution can be found only if Y'is nonsingular
and square, in which case the inverse Y-7exists
= a=Y"b
= (number of samples) = (number of features + 1)
= almost never happens In practice
= in this case, guaranteed to find the separating hyperplane

25

LDF: Approximate Solution

= Typically Y is overdetermined, that is it has more
rows (examples) than columns (features)
= |f it has more features than examples, should reduce

dimensionality
gk

= Need Ya = b, but no exact solution exists for an
overdetermined system of equation
= More equations than unknowns

= Find an approximate solution a, thatis Ya= b

= Note that approximate solution a does not necessarily
give the separating hyperplane in the separable case

= But hyperplane corresponding to a may still be a good
solution, especially if there is no separating hyperplane

LDF: MSE Criterion Function

= Minimum squared error approach: find a which
minimizes the length of the error vector e

b
R -

Ya
= Thus minimize the minimum squared error criterion
function: s
J,(a)=|va-bt =3 (a'y,-bf
i=1

= Unlike the perceptron criterion function, we can
optimize the minimum squared error criterion
function analytically by setting the gradient to 0

26

LDF: Optimizing J4a)

J,(a)= HYa— bH2 = Zn:(atyi - bi)2

i=1
= Let’'s compute the gradient:

3.

% | gy od,

VJs(a)= a:ls = da =;£(a .Vi_bi)2
da,

- - 3 t i t
—;2(3 yi bi)da(a yl bl)
=22(atyl_bl)yl

i=1
=2Y'(Ya-b)

LDF: Pseudo Inverse Solution

vJ,.(a)=2Y'(Ya-b)

= Setting the gradient to O:
2Y!(Ya-b)=0 = Y'Ya=Y'b

= Matrix Y'Y is square (it has d +1 rows and columns)

and it is often non-singular

= If Y'Y is non-singular, its inverse exists and we can

solve for a uniquely:
a=(Y'y)'vip

pseudo inverse of Y
(yvy v)y =(vy)'(viy)=1

= |n matlab, simply a=Y\b

27

LDF: Minimum Squared-Error Procedures
= Only guaranteed the separating hyperplane if Ya > 0

a'y,
= that is if all elements of vector Ya=! :] are positive

t
= We have Ya=b ayn
b, + ¢, '
= Thatis Ya= b : where € may be negative
n+£n

= If g,..., g are small relative to by,..., b,, then each element
of Yais positive, and a gives a separating hyperplane
= |f approximation is not good, & may be large and negative,
for some i, thus b; + & will be negative and a is not a
separating hyperplane
= Thus in linearly separable case, least squares solution
a does not necessarily give separating hyperplane

= But it will give a “reasonable” hyperplane

LDF: Minimum Squared-Error Procedures

= We are free to choose b. May be tempted to make b
large as a way to insure Ya=b>0

= Does not work
= Let Bbe a scalar, let's try fb instead of b

= if @a*is a least squares solution to Ya = b, then for any
scalar B, least squares solutionto Ya= b is pa*

arg min|Ya— gb|” = argmin p°|Y(a/ B)- b’
= argmin|Y(a/g)-b|’ = pa*
= thus if for some ith element of Ya is less than 0, that is
yia < 0, then y!; (Ba) < 0,

= Relative difference between components of b matters,
but not the size of each individual component

28

LDF: How to choose b in MSE Procedure?

= So far we assumed that constants b,, b,,..., b,are
positive but otherwise arbitrary
= Good choiceis b,;= b,=...=b,=1.

= Interesting theoretical properties that we are not going to
look at

LDF: Example

Class 1: (6 9), (57) |
Class 2: (5 9), (0 4) " .

Set vectors y,, ¥», Y3, Y4 DY :
adding extra feature and T .

-1 0 1 2 3 4 5 6

“normalizing”
6| vio=|5| vo=|5| y.=| 0
.V1—9 }’2—7 ys; = "9 .V4—_4

Matrix Yis then Y=

n
NN~ -
QLI
K©ON©

29

LDF: Example

1 10
* Choose b=|]) -
1 []
* In matlab, a=Y\bsolvesthe ~ « =
least squares problem %
2.7
a= 1.0 % 0 2 4 g
-0.9

= Note ais an approximation to Ya = b, since no

exact solution exists 0.4 1
va=|13|.|1

0.6 1
1.1 1

= This solution does give a separating hyperplane
since Ya> 0

LDF: Example

Class 1: (6 9), (57)

Class 2: (5 9), (0 10)

The last sample is very far
compared to others from the
separating hyperplane Te s e s

e

9
7
9
0

1

i _| 1 5

Matrix Y= _; _%
-1

30

LDF: Example

1

» Choose b-=|!
1

= |[n matlab, a=Y\b solves the
least squares problem

7 ([]

3.2
a= 0.2 5% 0 2 4 6

-04
= Note ais an approximation to Ya = b, since no

exact solution exists g.g 1
. 1
Ya=|_0.04|%|1

1.16 1

= This solution does not give a separating
hyperplane since aly; < 0

LDF: Example

= MSE pays to much attention to isolated “noisy”
examples (such examples are called outliers)

MSE solution
outlier .
desired solution

= No problems with convergence though, and
solution it gives ranges from reasonable to good

31

LDF: Example

= we know that 4t point is far far from 1
separating hyperplane

= |n practice look at points which are

furthest from the decision boundary

0.2

| o9
Ya=|_p 04
(1.76)

pfe % o W om om @

1
= Set b, larger for such points: b=|: ;] 0 2 4 6
10
* In Matlab, solve a=Y\b 11
a={ 1.7
-0.9 0.9] [1
= Note ais an approximation to Ya = b, since Ya= (1Jg # ;
10.0 10

This solution does give the separating hyperplane since Ya > 0

LDF: Gradient Descent for MSE solution
J,(a)=|Ya-b|

= May wish to find MSE solution by gradient descent:

1. Computing the inverse of Y'Y may be too costly

2. Y'Y may be close to singular if samples are highly
correlated (rows of Y are almost linear
combinations of each other)
= computing the inverse of Y'Y is not numerically stable

= In the beginning of the lecture, computed the

gradient:
vJ (a)=2Y'(Ya-b)

32

LDF: Widrow-Hoff Procedure

vJ, (a)=2Y'(Ya-b)

= Thus the update rule for gradient descent:
a = g _ pWy!(ya® _ p)
= If p®=5"/k weight vector ak converges to the MSE
solution a, that is Y¥(Ya-b)=0
= Widrow-Hoff procedure reduces storage
requirements by considering single samples
sequentially:

a(k+1)

=a® — Wy (yia® - b)

LDF: MSE for Multiple Classes

= Suppose we have m classes
Define m linear discriminant functions

gl(x)=wltx+ W,'o i=1,...,m

= Given Xx, assign class ¢; if
g:(x) 2 g;(x) Vj#i

Such classifier is called a linear machine

A linear machine divides the feature space into ¢
decision regions, with g;(x) being the largest
discriminant if x is in the region R;

33

LDF: Many Classes

LDF: MSE for Multiple Classes

= We still use augmented feature vectors yy,..., ¥,
= but do not multiply by -1
Define m linear discriminant functions

gi(y)za;y i=15"-5m
= Given y, assign class ¢; if
ajy>ay Vjzi

For each class i, makes sense to seek weight
vector a;, s.t.

ay=1 Vy € class i
ay=0 Vy ¢ class i

If we find such a,,..., a,, the training error will be 0

34

LDF: MSE for Multiple Classes

= For each class i, find weight vector a;, s.t.
ay=1 Vy € class i
ay=0 Vy ¢ class i

We can solve for each a; independently

Let n; be the number of samples in class i

Let Y; be matrix whose rows are samples from
class I, so it has d +1 columns and n; rows

Let’s pile all samples in nby d +1 matrix Y:

Y. sample from class1
Y1 sample from class1
o ;

Y= :
sample from class m
Ym sample from classm

LDF: MSE for Multiple Classes

= Let b; be a column vector of length n which is 0
everywhere except rows corresponding to samples

from class i, where it is 7. g1
1 rows corresponding
b, = 1 to samples from class i
0,
= We need to solve: Ya, =b, 07
sample from class1 Ly :
sample from class1 | | 2 1
: D =
sample from classm| | '© 1
sample from class m = :
0

35

LDF: MSE for Multiple Classes

= We need to solve Ya; = b;
= Usually no exact solution since Y is overdetermined
= Use least squares to minimize norm of the error
vector || Ya; - b; ||
= LSE solution with pseudoinverse:
a =(Y'yY)'v'p,

= Thus we need to solve m LSE problems, one for
each class

= Can write these m LSE problems in one matrix

LDF: MSE for Multiple Classes

= Let’s pile all b; as columns in n by ¢ matrix B
B=[b, - b,]

= Let’s pile all a; as columns in d +71 by m matrix A

n <

A:[a1 am] =

weights a,
weights a,
weights a,,

= m LSE problems can be represented i

sample from class1
sample from class1
sample from class?2
sample from class3
sample from class3
sample from class3

Y

5
cooaoco <
“aa000

>

I

W

weights for c3
|
=YY Y g

weights for c1
weights for c2

>
W

36

LDF: MSE for Multiple Classes

= Qur objective function is:
J(A)=Y |Va,-b)’
i=1

= J(A) is minimized with the use of pseudoinverse

A=(Y'y)'yB

LDF: Summary

= Perceptron procedures
= find a separating hyperplane in the linearly separable case,
= do not converge in the non-separable case

= can force convergence by using a decreasing learning rate,
but are not guaranteed a reasonable stopping point

= MSE procedures

= converge in separable and not separable case

= may not find separating hyperplane if classes are linearly
separable

= use pseudoinverse if Y'Y is not singular and not too large

= use gradient descent (Widrow-Hoff procedure) otherwise

37

