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CS442/542b: Artificial Intelligence II
Prof. Olga Veksler

Lecture 4: Machine Learning

Linear Classifier

Outline

� Linear Classification or Linear Discriminant
Functions
� Introduction

� 2 classes

� Multiple classes

� Optimization with gradient descent

� Perceptron Criterion Function
� Batch perceptron rule

� Single sample perceptron rule

� Minimum Squared Error (MSE) rule
� Pseudoinverse

� Gradient descent (Widrow-Hoff Procedure)
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Discriminant Function

� Consider 2 class case, and let’s denote 

them

� class    1

� class   -1

� Want to build f(X,W) to give correct class of 

sample X

� Let   f(X,W) = sign(g(X,W))

� 1 if g(X,W) is positive

� -1 if g(X,W) is negative

� g(X,W) is called the discriminant function

Linear Discriminant Functions: Basic Idea
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� Have samples from 2 classes x1, x2 ,…, xn

� Assume 2 classes can be classified by a linear 
discriminant function g(X,W) with some unknown 
parameters W

� Fit the “best” g(X,W) to data by optimizing over 
parameters W

� What is best g(X,W)?
� simplest idea: minimize classification error on training 

data
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LDF: Introduction

� Discriminant functions can be more general than 
linear

� For now, we will study linear discriminant functions

� Simple model (should try simpler models first)

� Analytically tractable

� Linear Discriminant functions are optimal for 
certain type of data

� Gaussian distributions with equal covariance (don’t 

worry if you don’t know what a Gaussian is) 

� May not be optimal for other data distributions, but 
they are very simple to use

g(x) < 0

2ℜℜℜℜ
g(x) > 0

1ℜℜℜℜ

LDF: 2 Classes

� A discriminant function is linear if it can be written as

g(x) = wtx + w0

� w is called the weight vector and w0 called bias or threshold

x(1)

x(2)

decision boundary g(x) = 0

(((( ))))
(((( ))))
(((( )))) classeitherxg

classxxg
classxxg

⇒⇒⇒⇒====
∈∈∈∈⇒⇒⇒⇒<<<<
∈∈∈∈⇒⇒⇒⇒>>>>
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LDF: 2 Classes

� Decision boundary g(x) = wtx + w0=0 is a hyperplane

� set of vectors x which  for some scalars αααα0,…, ααααd 

satisfy  αααα0 +αααα1x
(1)+…+ ααααdx(d) = 0

� A hyperplane is

� a point in 1D

� a line in 2D

� a plane in 3D

LDF: 2 Classes

g(x) = wtx + w0

x(1)

x(2)

g(x) > 0

g(x) < 0 g(x) = 0

w

w 0
/||

w
||

x

g(x
) /

||w
||

� w determines orientation of the decision hyperplane
� w0 determines location of the decision surface
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LDF: 2 Classes

m1,...,i         )( 0 ====++++==== i
t
ii wxwxg

LDF:  Many Classes

� Suppose we have m classes

� Define m linear discriminant functions 

� Given x, assign class ci if 

ij         )()( ≠≠≠≠∀∀∀∀≥≥≥≥ xgxg ji

� Such classifier is called a  linear machine

� A linear machine divides the feature space into c 
decision regions, with gi(x) being the largest 
discriminant if x is in the region Ri
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LDF:  Many Classes

� Decision regions for a linear machine are convex

� In particular, decision regions must be spatially contiguous

LDF: Many Classes

� Thus  applicability of linear machine to mostly limited 
to unimodal distributions

� Most data is concentrated around one point in space

� Example:

� need non-contiguous decision regions

� thus linear machine will fail
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LDF: Augmented feature vector

0)( wxwxg t ++++====� Linear discriminant function:

� Can rewrite it: [[[[ ]]]] (((( ))))ygyaxwwxg tt ========



==== 1)( 0

new weight 
vector a

new feature 
vector y

� y is called the augmented feature vector

� Added a dummy dimension to get a completely 
equivalent new homogeneous problem

0)( wxwxg t ++++====















dx

x
�
1

old problem

yayg t====)(

















dx

x
�
1

1

new problem

LDF: Augmented feature vector

� Feature augmenting is done for simpler notation

� From now on we always assume that we have 
augmented feature vectors
� Given samples x1,…, xn convert them to 

augmented samples y1,…, yn by adding                  
a new dimension of value 1 





====

i
i xy 1

a

g(y) > 0
1ℜℜℜℜ

g(y) < 0
2ℜℜℜℜ

y

g(y) / ||a||

(((( ))))2y

)1(y
g(y) = 0
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LDF: Training Error

� Samples y1,…, yn some  in class 1, some in class 2

� For the rest of the lecture, assume we have 2 classes

� Use these samples to determine weights  a in the 
discriminant function yayg t====)(

� What should be our criterion for determining a?
� For now, suppose we want to minimize the training error 

(that is the  number of misclassifed samples y1,…, yn )

� Recall that 10)( cclassifiedyyg ii ⇒⇒⇒⇒>>>>

20)( cclassifiedyyg ii ⇒⇒⇒⇒<<<<

� Thus training error is 0 if 




∈∈∈∈∀∀∀∀<<<<
∈∈∈∈∀∀∀∀>>>>

2

1

0)(
0)(

cyyg
cyyg

ii

ii

LDF: Problem “Normalization”

� Thus training error is 0 if 

� This suggest problem “normalization”:
1. Replace all examples from class c2 by their negative 

2cyyy iii ∈∈∈∈∀∀∀∀−−−−→→→→

2. Seek weight vector a s.t. 

ii
t yya ∀∀∀∀>>>> 0





∈∈∈∈∀∀∀∀<<<<

∈∈∈∈∀∀∀∀>>>>

2

1

0

0

cyya

cyya

ii
t

ii
t

� Equivalently,  training error is 0 if 

(((( ))))



∈∈∈∈∀∀∀∀>>>>−−−−

∈∈∈∈∀∀∀∀>>>>

2ii
t

1ii
t

cy0ya

cy0ya

� If such a exists, it is called a separating or solution vector

� Original samples x1,…, xn can indeed be separated by a 

line then
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LDF: Problem “Normalization”

(((( ))))2y

)1(y

before normalization after “normalization”

(((( ))))2y

)1(y

Seek a hyperplane that 

separates patterns from 

different categories

Seek hyperplane that 

puts normalized

patterns on the same 

(positive) side 

LDF:  Solution Region

� Find weight vector a s.t. for all samples y1,…, yn

0
0

)( >>>>==== ∑∑∑∑
====

d

k

k
iki

t yaya

� In general, there are many such solutions a

a

a

best a

(((( ))))2y

)1(y
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LDF:  Solution Region

� Solution region for a: set of all possible solutions
� defined in terms of normal a to the separating hyperplane

(((( ))))2y

)1(y

a

solution region

Optimization

� Need to minimize a function of many variables

(((( )))) (((( ))))dxxJxJ ,...,1====

� We know how to minimize J(x)

� Take partial derivatives and set them to zero

(((( ))))

(((( ))))
(((( )))) 0

1

====∇∇∇∇====





















∂∂∂∂

∂∂∂∂

∂∂∂∂

∂∂∂∂

xJ

xJ
x

xJ
x

d

�

� However solving  analytically is not always easy
� Would you like to solve this system of nonlinear equations?

gradient

(((( ))))
(((( )))) (((( ))))





====++++++++

====++++++++

0xlogxxcos

0exxsin
2
4

5

2
4

x33
2

2
1

x3
2

2
1

� Sometimes it is not even possible to write down an analytical 

expression for the derivative, we will see an example later today
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Optimization: Gradient Descent

� Gradient              points in direction of steepest increase of  

J(x), and                   in direction of  steepest decrease

(((( ))))xJ∇∇∇∇

a

(((( ))))a
dx

dJ−−−−J(x)

x

one dimension two dimensions

(((( ))))aJ∇∇∇∇−−−−

a

a

(((( ))))a
dx

dJ−−−−

a

(((( ))))a
dx

dJ−−−−

(((( ))))xJ∇∇∇∇−−−−

Optimization: Gradient Descent

x((((1)

J(x)

x

x((((2)

s((((1)

(((( ))))(((( ))))2xJ∇∇∇∇−−−−

(((( )))))1(xJ∇∇∇∇−−−−

x((((3) x((((k)

(((( ))))(((( )))) 0xJ k ====∇∇∇∇s ((((2)

Gradient Descent for minimizing any function J(x)

set k = 1  and x(1) to some initial guess for the weight vector

while
(((( )))) (((( ))))(((( )))) εεεεηηηη >>>>∇∇∇∇ kk xJ

x(k+1)= x(k) – η η η η (k)                                                        (update rule)(((( ))))xJ∇∇∇∇

choose learning rate ηηηη(k)

k = k + 1
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Optimization: Gradient Descent

� Gradient descent is guaranteed to find only a local 
minimum
J(x)

x

global minimum

� Nevertheless gradient descent is very popular 
because it is simple and applicable to any function

x((((1) x((((2) x((((3) x((((k)

Optimization: Gradient Descent

� Main issue: how to set parameter ηηηη (learning rate )

� If ηηηη is too small, need too many iterations

� If ηηηη is too large may 
overshoot the minimum 
and possibly never find it  
(if we keep overshooting)

J(x)

x

x((((1) x((((2)

J(x)

x
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LDF:  Criterion Function

� Find weight vector a s.t. for all samples y1,…, yn

0
0

)( >>>>==== ∑∑∑∑
====

d

k

k

iki

t yaya

� Need criterion function J(a) which is minimized when 
a is a solution vector

� First natural choice: number of misclassified examples

(((( )))) (((( ))))aYaJ M====

� Let YM be the set of examples misclassified by a

(((( )))) {{{{ }}}}0ya.t.sysampleaY i
t

iM <<<<====

� piecewise constant, gradient 

descent is useless

a

J(a)

LDF:  Perceptron Criterion Function

� Better choice: Perceptron criterion function

(((( )))) (((( ))))∑∑∑∑
∈∈∈∈

−−−−====
MYy

t
p yaaJ

� Jp(a) is -||a|| times sum of 
distances of misclassified 
examples to decision boundary

a

a
ty

/ ||a
||

y
� If y is misclassified, 0≤≤≤≤yat

� Thus (((( )))) 0≥≥≥≥aJp

a

J(a)� Jp(a) is piecewise linear 
and thus suitable for 
gradient descent
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LDF:  Perceptron Batch Rule

� Gradient of Jp(a) is (((( )))) (((( ))))∑∑∑∑
∈∈∈∈

−−−−====∇∇∇∇
MYy

p yaJ

� Thus gradient decent batch update rule for Jp(a) is:

(((( )))) (((( )))) (((( )))) ∑∑∑∑
∈∈∈∈

++++ ++++====
MYy

kkk yaa ηηηη1

� It is called batch rule because  it is based on all 
misclassified examples

� YM are samples misclassified by a(k)

� It is not possible to solve                      analytically 

because of  YM

(((( )))) 0aJp ====∇∇∇∇

(((( )))) (((( ))))∑∑∑∑
∈∈∈∈

−−−−====
MYy

t
p yaaJ

(((( ))))xJ∇∇∇∇� Update rule for gradient descent: x(k+1)= x(k)–η η η η (k)

LDF:  Perceptron Single Sample Rule

� Thus gradient decent single sample rule for Jp(a) is:
(((( )))) (((( )))) (((( ))))

M
kkk yaa ηηηη++++====++++1

� note that yM is one sample misclassified by a(k)

� Geometric Interpretation:

� must have a consistent way of visiting samples

� yM misclassified by a(k)

(((( ))))(((( )))) 0≤≤≤≤M

tk ya yM

a (k)
a

(k
+

1
)� yM is on the wrong side of 

decision hyperplane

� adding ηηηηyM to a moves new 
decision hyperplane in the right 
direction with respect to yM

ηηηηyM
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LDF:  Perceptron Single Sample Rule

(((( )))) (((( )))) (((( ))))
M

kkk yaa ηηηη++++====++++1

yMa (k)
a

(k
+

1
)

yk

η η η η is too large, previously 
correctly classified sample  
yk is now misclassified

a
(k

+
1
)

yMa (k)
yk

η η η η is too small, yM is still 
misclassified

LDF:  Perceptron Example

yes (1)

yes (1)

yes (1)

no (-1)

chews 

gum?

gradefeatures

no (-1)

no (-1)

yes (1)

no (-1)

sleeps in 

class?

Ano (-1)yes (1)Peter

Fno (-1)no (-1)Mary

Fyes (1)yes (1)Steve

A yes (1)yes (1)Jane

tall?good 

attendance?

name

� class 1: students who get grade A

� class 2: students who get grade F
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LDF Example: Augment feature vector

1

1

1

1

extra

yes (1)

yes (1)

yes (1)

no (-1)

chews 

gum?

gradefeatures

no (-1)

no (-1)

yes (1)

no (-1)

sleeps in 

class?

Ano (-1)yes (1)Peter

Fno (-1)no (-1)Mary

Fyes (1)yes (1)Steve

A yes (1)yes (1)Jane

tall?good 

attendance?

name

� convert samples x1,…, xn to augmented samples 
y1,…, yn by adding  a new dimension of value 1 

LDF:  Perform “Normalization”

� Replace all examples from class c2 by their negative 

2cyyy iii ∈∈∈∈∀∀∀∀−−−−→→→→

� Seek weight vector a s.t. ii
t yya ∀∀∀∀>>>> 0

1

-1

-1

1

extra

yes (1)

yes (-1)

yes (-1)

no (-1)

chews 

gum?

gradefeatures

no (-1)

no (1)

yes (-1)

no (-1)

sleeps in 

class?

Ano (-1)yes (1)Peter

Fno (1)no (1)Mary

Fyes (-1)yes (-1)Steve

A yes (1)yes (1)Jane

tall?good 

attendance?

name
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LDF:  Use Single Sample Rule

� Sample is misclassified if 0
4

0

)( <<<<==== ∑∑∑∑
====k

k
iki

t yaya

� gradient descent  single sample rule: (((( )))) (((( )))) (((( ))))
M

kk1k yaa ηηηη++++====++++

(((( )))) (((( ))))
M

kk yaa ++++====++++1� Set fixed learning rate to ηηηη(k)= 1:

1

-1

-1

1

extra

yes (1)

yes (-1)

yes (-1)

no (-1)

chews 

gum?

gradefeatures

no (-1)

no (1)

yes (-1)

no (-1)

sleeps in 

class?

Ano (-1)yes (1)Peter

Fno (1)no (1)Mary

Fyes (-1)yes (-1)Steve

A yes (1)yes (1)Jane

tall?good 

attendance?

name

LDF: Gradient decent  Example

� set equal initial weights a(1)=[0.25, 0.25, 0.25, 0.25]

yes0.25*(-1)+0.25*(-1)+0.25*(-1)+0.25*(-1)+0.25*(-1)<0Steve

no0.25*1+0.25*1+0.25*1+0.25*(-1)+0.25*(-1) >0Jane

misclassified?atyname

� visit all samples sequentially, modifying the weights 
for after finding a misclassified example

� new weights
(((( )))) (((( )))) [[[[ ]]]]++++====++++==== 25.025.025.025.025.012

Myaa

[[[[ ]]]] ====−−−−−−−−−−−−−−−−−−−−++++ 11111

[[[[ ]]]]75.075.075.075.075.0 −−−−−−−−−−−−−−−−−−−−====
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LDF:  Gradient decent  Example

yes-0.75*(-1)-0.75*1 -0.75 *1 -0.75 *1 -0.75*(-1) <0Mary

misclassified?atyname

� new weights
(((( )))) (((( )))) [[[[ ]]]]++++−−−−−−−−−−−−−−−−−−−−====++++==== 75.075.075.075.075.023

Myaa

[[[[ ]]]] ====−−−−−−−−++++ 11111

[[[[ ]]]]75.125.025.025.075.1 −−−−−−−−====

(((( )))) [[[[ ]]]]75.075.075.075.075.02 −−−−−−−−−−−−−−−−−−−−====a

LDF:  Gradient decent Example

yes-1.75 *1 +0.25* 1+0.25* (-1) +0.25 *(-1)-1.75*1 <0Peter

misclassified?atyname

� new weights
(((( )))) (((( )))) [[[[ ]]]]++++−−−−−−−−====++++==== 75.125.025.025.075.134

Myaa

[[[[ ]]]] ====−−−−−−−−++++ 11111

[[[[ ]]]]75.075.075.025.175.0 −−−−−−−−−−−−−−−−====

(((( )))) [[[[ ]]]]75.125.025.025.075.13 −−−−−−−−====a
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LDF:  Gradient decent Example

no-0.75 *1+ 1.25*1-0.75* (-1)-0.75* (-1) -0.75 *1 >0Peter

no-0.75 *(-1)+1.25*1-0.75*1 -0.75 *1 –0.75*(-1) >0Mary

no-0.75*(-1)+1.25*(-1) -0.75*(-1) -0.75*(-1)-0.75*(-1)>0Steve

no-0.75 *1 +1.25*1  -0.75*1 -0.75 *(-1) -0.75 *(-1)+0Jane

misclassified?atyname

(((( )))) [[[[ ]]]]75.075.075.025.175.04 −−−−−−−−−−−−−−−−====a

� Thus the discriminant function is 
(((( )))) (((( )))) (((( )))) (((( )))) (((( )))) (((( ))))43210 *75.0*75.0*75.0*25.1*75.0 yyyyyyg −−−−−−−−−−−−++++−−−−====

� Converting back to the original features x: 
(((( )))) (((( )))) (((( )))) (((( )))) (((( )))) 75.0*75.0*75.0*75.0*25.1 4321 −−−−−−−−−−−−−−−−==== xxxxxg

LDF:  Gradient decent Example

� Converting back to the original features x: 
(((( )))) (((( )))) (((( )))) (((( )))) Agradexxxx ⇒⇒⇒⇒>>>>−−−−−−−−−−−− 75.0*75.0*75.0*75.0*25.1 4321

(((( )))) (((( )))) (((( )))) (((( )))) Fgradexxxx ⇒⇒⇒⇒<<<<−−−−−−−−−−−− 75.0*75.0*75.0*75.0*25.1 4321

good 

attendance

tall sleeps in class chews gum

� This is just one possible solution vector 

� If we started with weights a(1)=[0,0.5, 0.5, 0, 0], 
solution would be [-1,1.5, -0.5, -1, -1]

� In this solution, being tall is the least important feature

(((( )))) (((( )))) (((( )))) (((( )))) Agrade1xxx*5.0x*5.1 4321 ⇒⇒⇒⇒>>>>−−−−−−−−−−−−
(((( )))) (((( )))) (((( )))) (((( )))) Fgrade1xxx*5.0x*5.1 4321 ⇒⇒⇒⇒<<<<−−−−−−−−−−−−
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LDF:  Nonseparable Example

� Suppose we have 2 features 
and samples are: 

� Class 1:  [2,1], [4,3], [3,5]

� Class 2: [1,3] and [5,6]

� These samples are not 
separable by a line

� Still would like to get approximate separation by a 
line, good choice is shown in green
� some samples may be “noisy”, and it’s ok if they are on 

the wrong side of the line

� Get  y1, y2 , y3 , y4 by adding extra feature and 
“normalizing”












====

1
2
1

y1












====

3
4
1

y2











====

5
3
1

y 3













−−−−
−−−−
−−−−

====
6
5
1

y5













−−−−
−−−−
−−−−

====
3
1
1

y 4

LDF:  Nonseparable Example

� Let’s apply Perceptron single 
sample algorithm 

� initial equal weights (((( )))) [[[[ ]]]]111a 1 ====

� fixed learning rate  ηηηη = 1












====

1
2
1

y1












====

3
4
1

y2











====

5
3
1

y 3













−−−−
−−−−
−−−−

====
6
5
1

y5













−−−−
−−−−
−−−−

====
3
1
1

y 4

� yt
1a

(1) = [1 1 1]*[1 2 1]t > 0     b

� this is  line  x(1)+x(2)+1=0

� yt
2a

(1) = [1 1 1]*[1 4 3]t > 0     b

� yt
3a

(1) = [1 1 1]*[1 3 5]t > 0     b

(((( )))) (((( ))))
M

kk yaa ++++====++++1

w
(1

)
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LDF:  Nonseparable Example

(((( )))) [[[[ ]]]]111a 1 ====












====

1
2
1

y1












====

3
4
1

y2











====

5
3
1

y 3













−−−−
−−−−
−−−−

====
6
5
1

y5













−−−−
−−−−
−−−−

====
3
1
1

y 4

� yt
4a

(1)=[1 1 1]*[-1 -1 -3]t = -5< 0

(((( )))) (((( ))))
M

kk yaa ++++====++++1

(((( )))) (((( )))) [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]200311111yaa M
12 −−−−====−−−−−−−−−−−−++++====++++====

w
(1

)

w(2)

� yt
5 a

(2)=[0 0 -2]*[-1 -5 -6]t = 12 > 0     b

� yt
1 a

(2)=[0 0 -2]*[1 2 1]t  < 0
(((( )))) (((( )))) [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]121121200yaa M

23 −−−−====++++−−−−====++++====

LDF:  Nonseparable Example

(((( )))) [[[[ ]]]]121a 3 −−−−====












====

1
2
1

y1












====

3
4
1

y2











====

5
3
1

y 3













−−−−
−−−−
−−−−

====
6
5
1

y5













−−−−
−−−−
−−−−

====
3
1
1

y 4

(((( )))) (((( ))))
M

kk yaa ++++====++++1

w(2)

� yt
2 a

(3)=[1 4 3]*[1 2 -1]t =6 > 0 b

(((( )))) (((( )))) [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]410311121yaa M
34 −−−−====−−−−−−−−−−−−++++−−−−====++++====

w
(3

)

� yt
3 a

(3)=[1 3 5]*[1 2 -1]t > 0 b

� yt
4 a

(3)=[-1 -1 -3]*[1 2 -1]t = 0
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LDF:  Nonseparable Example

(((( )))) [[[[ ]]]]410a 4 −−−−====












====

1
2
1

y1












====

3
4
1

y2











====

5
3
1

y 3













−−−−
−−−−
−−−−

====
6
5
1

y5













−−−−
−−−−
−−−−

====
3
1
1

y 4

(((( )))) (((( ))))
M

kk yaa ++++====++++1

� yt
2 a

(3)=[1 4 3]*[1 2 -1]t =6 > 0 b

(((( )))) (((( )))) [[[[ ]]]] [[[[ ]]]] [[[[ ]]]]410311121yaa M
34 −−−−====−−−−−−−−−−−−++++−−−−====++++====

w
(3

)

� yt
3 a

(3)=[1 3 5]*[1 2 -1]t > 0 b

� yt
4 a

(3)=[-1 -1 -3]*[1 2 -1]t = 0

w(4)

LDF:  Nonseparable Example

� we can continue this forever

� there is no solution vector a satisfying for all i

0yaya
5

0k

)k(
iki

t >>>>==== ∑∑∑∑
====

� need to stop but at a good point:

� solutions at iterations 
900 through 915.  
Some are good 

some are not.

� How do we stop at a 

good solution?
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LDF:  Convergence of Perceptron rules

� If classes are linearly separable, and use fixed 

learning rate, that is for some constant c,  ηηηη((((k) ) ) ) =c  

� both single sample and batch perceptron rules converge to 

a correct solution (could be any a in the solution space)

� If classes are not linearly separable:

� algorithm does not stop, it keeps looking for solution which 

does not exist

� by choosing appropriate learning rate, can always ensure 
convergence:

(((( )))) ∞∞∞∞→→→→→→→→ kask 0ηηηη

� for example inverse linear learning rate: 
(((( ))))

(((( ))))

k

k
1ηηηη

ηηηη ====

� for inverse linear learning rate convergence in the linearly 

separable case can also be proven 

� no guarantee that we stopped at a good point, but there are 

good reasons to choose inverse linear learning rate

LDF:  Perceptron Rule and Gradient decent

� Linearly separable data

� perceptron rule with gradient decent works well

� Linearly non-separable data

� need to stop perceptron rule algorithm at a good point, this 

maybe tricky

� Smoother gradient 

because all samples are 
used 

Single Sample RuleBatch Rule

� easier to analyze

� Concentrates more than 

necessary on any isolated 
“noisy” training examples
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LDF:  Minimum Squared-Error Procedures

� MSE procedure

� Choose positive constants b1, b2,…, bn

� try to find weight vector a s.t. atyi = bi for all samples yi

� If we can find weight vector a such that atyi = bi for all 

samples yi , then a is a solution because bi’s are positive

� consider all the samples (not just the misclassified ones)

� Idea: convert to easier and better understood  problem

atyi > 0 for all samples yi

solve system of linear inequalities

atyi = bi for all samples yi

solve system of linear equations

a

yi

a ty
i / ||a||

g(y) = 0

LDF:  MSE Margins

� Since we want atyi = bi, we expect sample yi to be at distance  

bi from the separating hyperplane (normalized by ||a||)

� Thus b1, b2,…, bn give relative expected distances or 

“margins” of samples from the hyperplane

� Should make bi small if sample i is expected to be near 

separating hyperplane, and make bi larger otherwise

� In the absence of any additional information, there are good 
reasons to set b1 = b2 =… = bn = 1

yk

a ty
k / ||a||
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LDF:  MSE Matrix Notation

� Need to solve n equations

� Using matrix notation:

(((( )))) (((( )))) (((( ))))

(((( )))) (((( )))) (((( ))))

(((( )))) (((( )))) (((( )))) 

















====





































n
dd

nnn

d

d

b

b
b

a

a
a

yyy

yyy

yyy

�
�

�

�

��

��

�

�

2

1

1

0

10

2

1

2

0

2

1

1

1

0

1

Y a b

� Thus need to solve a linear system Ya = b

nn
t

t

bya

bya

====

====
�

11

LDF:  Exact Solution is Rare

� Y is an n by (d +1) matrix

� a = Y-1b

� Exact solution can be found only if Y is nonsingular 
and square, in which case the inverse Y-1 exists

� Thus need to solve a linear system Ya = b

� (number of samples) = (number of features + 1)
� almost never happens in practice
� in this case, guaranteed to find the separating hyperplane

a

1y

2y
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LDF:  Approximate Solution

� Need Ya = b, but no exact solution exists for an 
overdetermined system of equation

� More equations than unknowns

� Typically Y is overdetermined, that is it has more 
rows (examples) than columns (features)
� If it has more features than examples, should reduce 

dimensionality

Y ba =

� Find an approximate solution a, that is bYa ≈≈≈≈

� Note that approximate solution a does not necessarily 
give the separating hyperplane in the separable case

� But hyperplane corresponding to a may still be a good 
solution, especially if there is no separating hyperplane

LDF:  MSE Criterion Function

� Minimum squared error approach: find a which 
minimizes the length of the error vector e

bYae −−−−====

Ya

b

e

� Thus  minimize the minimum squared error criterion 
function: 

(((( )))) 2
bYaaJs −−−−====

� Unlike the perceptron criterion function, we can 
optimize the minimum squared error criterion 
function analytically by setting the gradient to 0

(((( ))))∑∑∑∑
====

−−−−====
n

i
ii

t bya
1

2
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LDF:  Optimizing Js(a)

� Let’s compute the gradient:

(((( )))) 2
bYaaJs −−−−==== (((( ))))∑∑∑∑

====

−−−−====
n

i
ii

t bya
1

2

da

dJs====(((( ))))





















∂∂∂∂

∂∂∂∂

∂∂∂∂

∂∂∂∂

====∇∇∇∇

d

s

s

s

a

J

a

J

aJ �
0

(((( ))))2

1

ii
t

n

i

bya
da

d
−−−−==== ∑∑∑∑

====

(((( )))) (((( ))))ii
t

n

i

ii
t bya

da

d
bya −−−−−−−−==== ∑∑∑∑

====1

2

(((( ))))∑∑∑∑
====

−−−−====
n

i

iii
t ybya

1

2

(((( ))))bYaY t −−−−==== 2

LDF:  Pseudo Inverse Solution

� Setting the gradient to 0:

(((( )))) (((( ))))bYaYaJ t
s −−−−====∇∇∇∇ 2

(((( )))) bYYaYbYaY ttt ====⇒⇒⇒⇒====−−−− 02

� Matrix YtY is square (it has d +1 rows and columns) 
and it is often non-singular

� If YtY is non-singular, its inverse exists and we can 
solve for a uniquely:

(((( )))) bYYYa tt 1−−−−
====

pseudo inverse of Y

(((( ))))(((( )))) (((( )))) (((( )))) IYYYYYYYY tttt ========
−−−−−−−− 11

� In matlab, simply  a=Y\b
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LDF:  Minimum Squared-Error Procedures

� Thus in linearly separable case, least squares solution 
a does not necessarily give separating hyperplane

� Only guaranteed the separating hyperplane if  Ya > 0 














====

n
t

1
t

ya

ya
Ya �� that is if all elements of vector                      are positive

� If  εεεε1,…, εεεεn are small relative to b1,…, bn ,   then each element 
of Ya is positive, and a gives a separating hyperplane

� That is                          where εεεε may be negative 














++++

++++
====

nnb

b
Ya

εεεε

εεεε
�

11

� We have bYa ≈≈≈≈

� If approximation is not good, εεεεi may be large and negative, 
for some i, thus bi + εεεεi will be negative and a is not a 
separating hyperplane

� But it  will give a “reasonable” hyperplane

LDF:  Minimum Squared-Error Procedures

2

a

bYaminarg ββββ−−−− (((( )))) 22

a

b/aYminarg −−−−==== ββββββββ

*aββββ====

� thus if for some i th element of Ya is less than 0, that is        

yt
ia < 0, then yt

i (ββββa) < 0, 

� Relative difference between components of b matters, 
but not the size of each individual component

� We are free to choose b. May be tempted to make b
large as a way to insure 0bYa >>>>≈≈≈≈

� Does not work

� Let β β β β be a scalar, let’s try  ββββb instead of b

� if a* is a least squares solution to Ya = b, then for any 

scalar  ββββ,  least squares solution to Ya = ββββb  is  ββββa*

(((( )))) 2

a

b/aYminarg −−−−==== ββββ



29

LDF:  How to choose b in MSE Procedure?

� So far we assumed that  constants b1, b2,…, bn are 
positive but otherwise arbitrary

� Good choice is  b1 = b2 =…= bn = 1. 

� Interesting theoretical properties that we are not going to 

look at

LDF:  Example

� Class 1: (6 9), (5 7)

� Class 2: (5 9), (0 4)

� Matrix Y is then

















−−−−−−−−
−−−−−−−−−−−−

====

401
951
751
961

Y

� Set vectors y1, y2 , y3 , y4 by 
adding extra feature and 
“normalizing”












====

9
6
1

y1












====

7
5
1

y2













−−−−
−−−−
−−−−

====
9
5
1

y 3













−−−−

−−−−
====

4
0
1

y 4
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LDF:  Example

� Choose

















====

1
1
1
1

b

� In matlab, a=Y\b solves the 
least squares problem













−−−−
====

9.0
0.1
7.2

a

� Note a is an approximation to Ya = b, since no 
exact solution exists

















≠≠≠≠

















====

1
1
1
1

1.1
6.0
3.1
4.0

Ya

� This solution does give a separating hyperplane
since Ya > 0

LDF:  Example

� Class 1: (6 9), (5 7)

� Class 2: (5 9), (0 10)

� Matrix

















−−−−−−−−
−−−−−−−−−−−−

====

1001
951
751
961

Y

� The last sample is very far 
compared to others from the 
separating hyperplane












====

9
6
1

y1












====

7
5
1

y2













−−−−
−−−−
−−−−

====
9
5
1

y 3













−−−−

−−−−
====

10
0
1

y 4



31

LDF:  Example

� Choose

















====

1
1
1
1

b

� In matlab, a=Y\b solves the 
least squares problem













−−−−
====

4.0
2.0
2.3

a

� Note a is an approximation to Ya = b, since no 
exact solution exists

















≠≠≠≠

















−−−−
====

1
1
1
1

16.1
04.0

9.0
2.0

Ya

� This solution does not give a separating 
hyperplane since aty3 < 0

LDF:  Example

� MSE pays to much attention to isolated “noisy”
examples (such examples are called outliers)

outlier

desired solution

MSE solution

� No problems with convergence though, and 
solution it gives ranges from reasonable to good
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LDF:  Example

� we know that 4th point is far  far from 

separating hyperplane
� In practice look at points which are 

furthest from the decision boundary

� In Matlab, solve  a=Y\b













−−−−

−−−−
====

9.0
7.1
1.1

a

� Note a is an approximation to Ya = b, since

















≠≠≠≠

















====

10
1
1
1

0.10
8.0
0.1
9.0

Ya

� This solution does give the separating hyperplane since Ya > 0

new
 s

olu
tio

n

old solution

















====

10
1
1
1

b� Set bi larger for such points:

















−=

16.1
04.0

9.0
2.0

Ya

LDF:  Gradient Descent for MSE solution

2. YtY may be close to singular if samples are highly 
correlated (rows of Y are almost linear 
combinations of each other)
� computing the inverse of YtY is not numerically stable

� May wish to find MSE solution by gradient descent:

1. Computing the inverse of YtY may be too costly

(((( )))) 2
bYaaJs −−−−====

� In the beginning of the lecture,  computed the 
gradient:

(((( )))) (((( ))))bYaYaJ t
s −−−−====∇∇∇∇ 2
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LDF:  Widrow-Hoff Procedure

� Thus the update rule for gradient descent:
(((( )))) (((( )))) (((( )))) (((( ))))(((( ))))bYaYaa ktkkk −−−−−−−−====++++ ηηηη1

� If                       weight vector a(k) converges to the MSE 

solution a, that is Yt(Ya-b)=0

(((( )))) (((( )))) kk /1ηηηηηηηη ====

(((( )))) (((( ))))bYaYaJ t
s −−−−====∇∇∇∇ 2

� Widrow-Hoff procedure reduces storage 
requirements by considering single samples 
sequentially:

(((( )))) (((( )))) (((( )))) (((( ))))(((( ))))i
kt

ii
kkk bayyaa −−−−−−−−====++++ ηηηη1

m1,...,i         )( 0 ====++++==== i
t
ii wxwxg

� Suppose we have m classes

� Define m linear discriminant functions 

� Given x, assign class ci if 

ij         )()( ≠≠≠≠∀∀∀∀≥≥≥≥ xgxg ji

� Such classifier is called a  linear machine

� A linear machine divides the feature space into c 
decision regions, with gi(x) being the largest 
discriminant if x is in the region Ri

LDF:  MSE for Multiple Classes
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LDF:  Many Classes

m1,...,i         )( ======== yayg t
ii

� We still use augmented feature vectors y1,…, yn

� but do not multiply by -1

� Define m linear discriminant functions 

� Given y, assign class ci if 

ij        y ≠≠≠≠∀∀∀∀≥≥≥≥ t
j

t
i aya

� For each class i, makes sense to seek weight 
vector ai, s.t. 

LDF:  MSE for Multiple Classes





∉∉∉∉∀∀∀∀====

∈∈∈∈∀∀∀∀====

iclassy        0

iclassy        1

ya

ya
t
i

t
i

� If we find such  a1,…, am the training error will be 0
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� For each class i, find weight vector ai, s.t. 

LDF:  MSE for Multiple Classes





∉∉∉∉∀∀∀∀====

∈∈∈∈∀∀∀∀====

iclassy        0

iclassy        1

ya

ya
t
i

t
i

� We can solve for each ai independently

� Let ni be the number of samples in class i

� Let Yi be matrix whose rows are samples from 

class i, so it has d +1 columns and ni rows

















====

mY

Y
Y

Y
�
2

1

� Let’s pile all samples in n by d +1 matrix Y:



















====

mclassfromsample
mclassfromsample

classfromsample
classfromsample

�

1
1

� Let bi be a column vector of length n which is 0
everywhere except rows corresponding to samples 
from class i, where it is 1:

LDF:  MSE for Multiple Classes























====

0

1

1

0

bi

�

�

�

rows corresponding 
to samples from class i

� We need to solve: ii bYa ====



















mclassfromsample
mclassfromsample

1classfromsample
1classfromsample

�

w
e
i g

h
ts

 a
i











































====

0

1

1

0

�

�

�
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LDF:  MSE for Multiple Classes

� We need to solve Yai = bi

� Usually no exact solution since Y is overdetermined

� Use least squares to minimize norm of the error 

vector || Yai - bi ||

� LSE solution with pseudoinverse:

(((( )))) i
t1t

i bYYYa
−−−−

====

� Thus we need to solve m LSE problems, one for 
each class

� Can write these m LSE problems in one matrix

LDF:  MSE for Multiple Classes

[[[[ ]]]]n1 bbB �====

� Let’s pile all bi as columns in n by c matrix B

� Let’s pile all ai as columns in d +1 by m matrix A

[[[[ ]]]]maaA �1====





















====

w
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h
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w
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h
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w
e
i g

h
ts

 a
m

� m LSE problems can be represented in YA = B:
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LDF:  MSE for Multiple Classes

(((( )))) ∑∑∑∑
====

−−−−====
m

1i

2

ii bYaAJ

� Our objective function is:

� J(A) is minimized with the use of pseudoinverse

(((( )))) YBYYA t 1−−−−
====

LDF:  Summary

� Perceptron procedures 
� find a separating hyperplane in the linearly separable case,
� do not converge in the non-separable case
� can force convergence  by using a decreasing learning rate, 

but are not guaranteed a reasonable stopping point

� MSE procedures 

� converge in separable and not separable case 

� may not find separating hyperplane if classes are linearly 
separable

� use pseudoinverse if YtY is not singular and not too large
� use gradient descent (Widrow-Hoff procedure) otherwise


