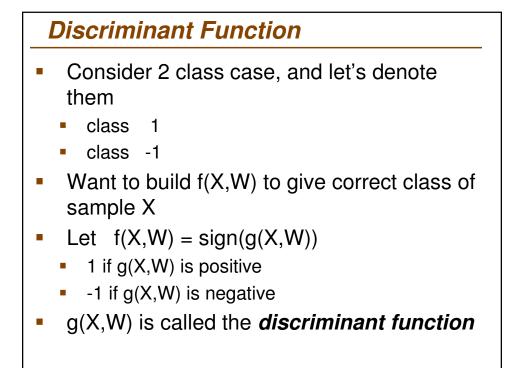
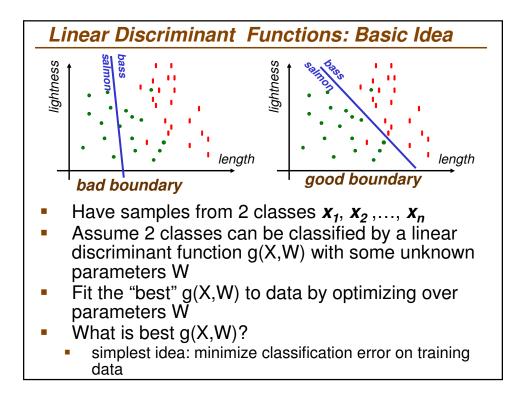
CS442/542b: Artificial Intelligence II Prof. Olga Veksler

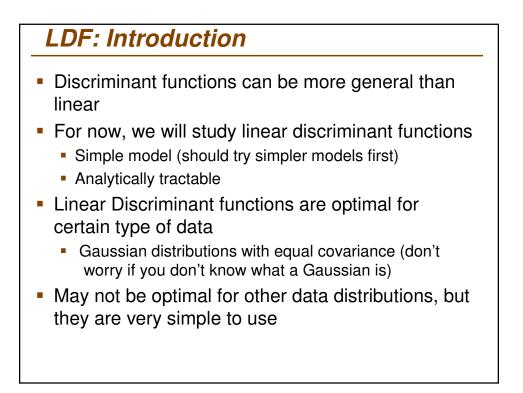
Lecture 4: Machine Learning Linear Classifier

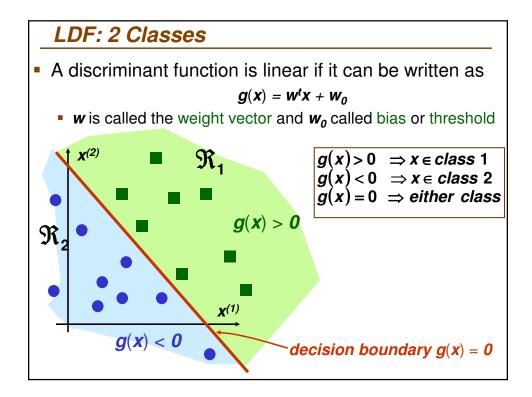
Outline

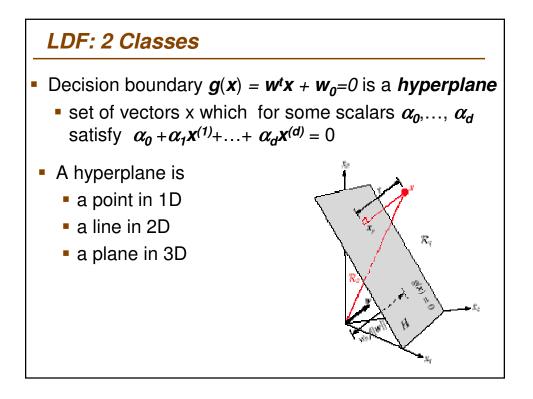
- Linear Classification or Linear Discriminant Functions
 - Introduction
 - 2 classes
 - Multiple classes
 - Optimization with gradient descent
 - Perceptron Criterion Function
 - Batch perceptron rule
 - Single sample perceptron rule
 - Minimum Squared Error (MSE) rule
 - Pseudoinverse
 - Gradient descent (Widrow-Hoff Procedure)

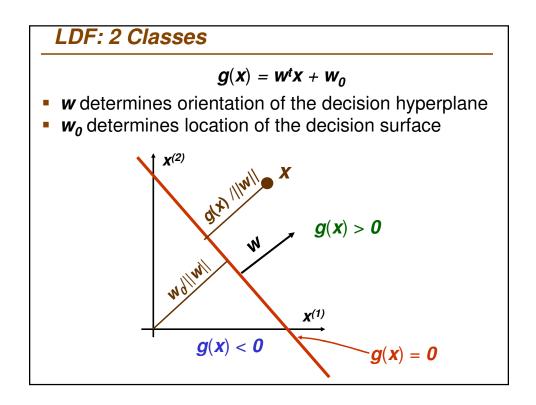


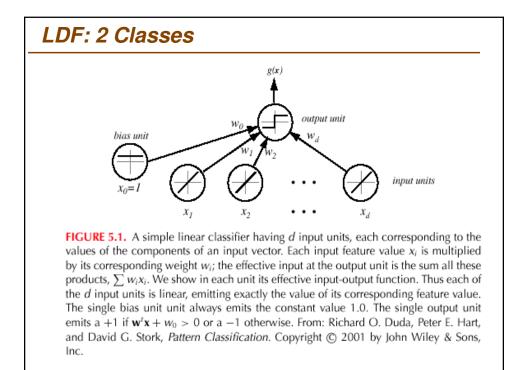


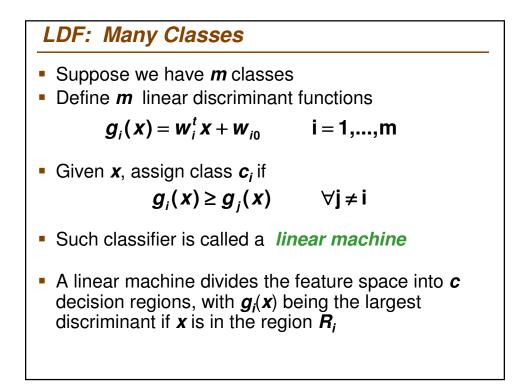


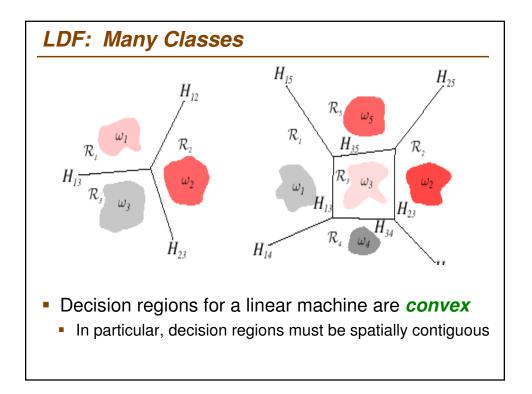


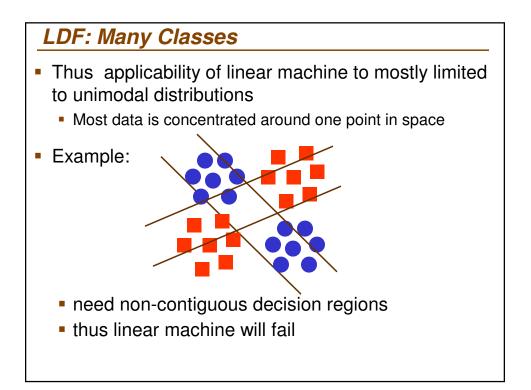


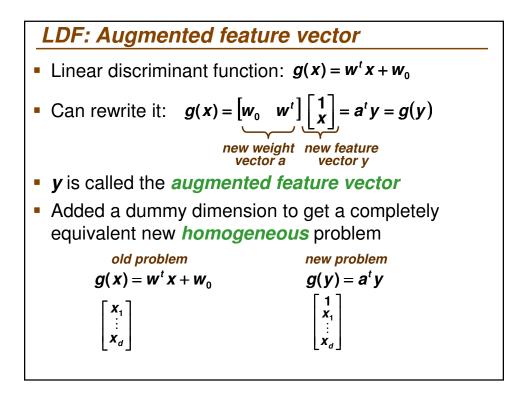


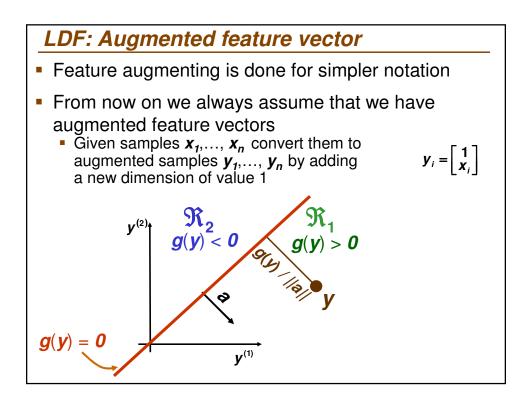


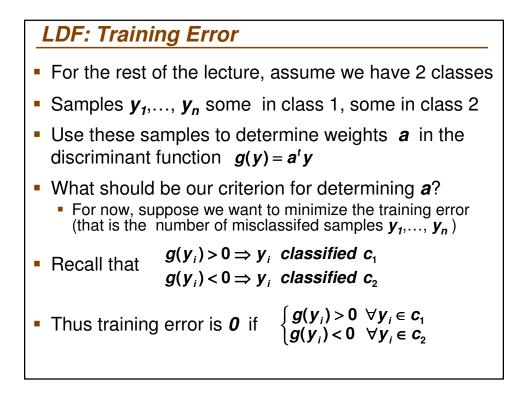


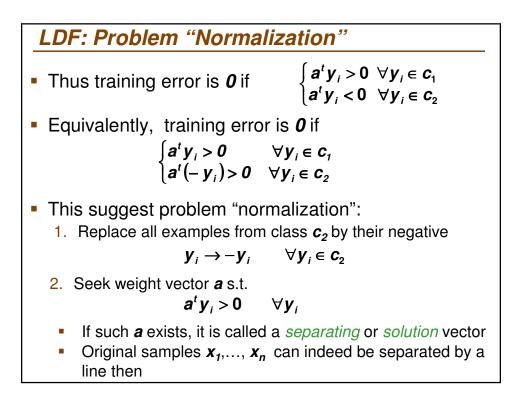


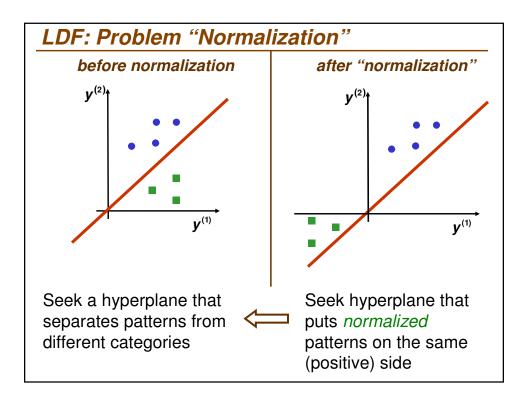


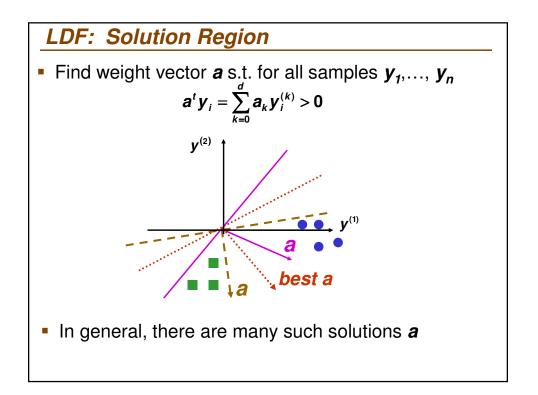


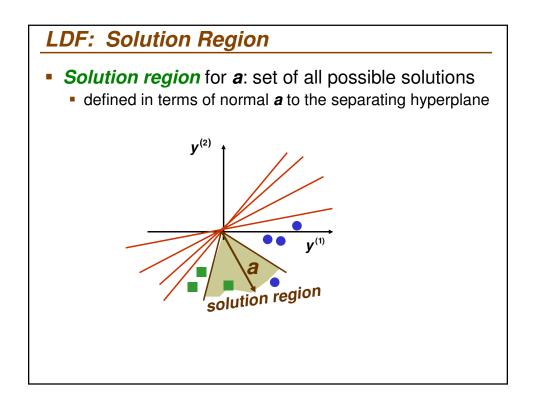


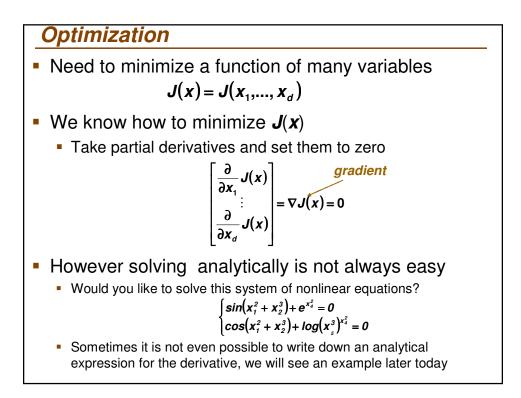


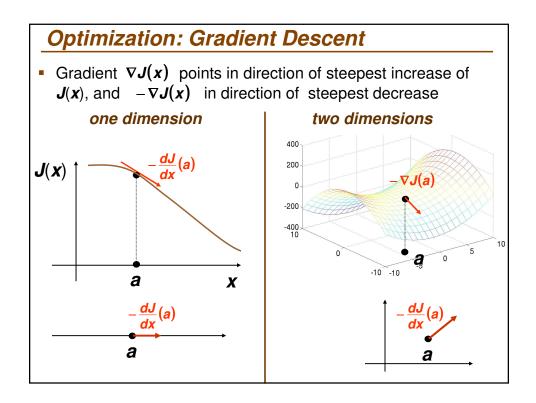


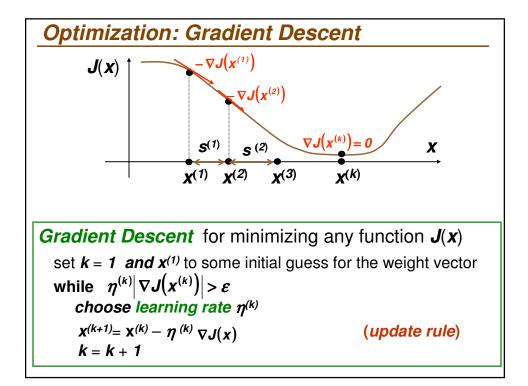


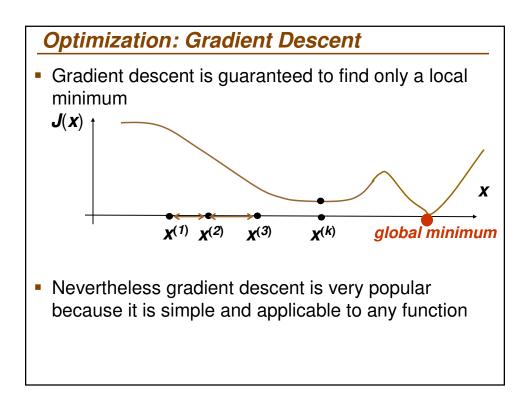


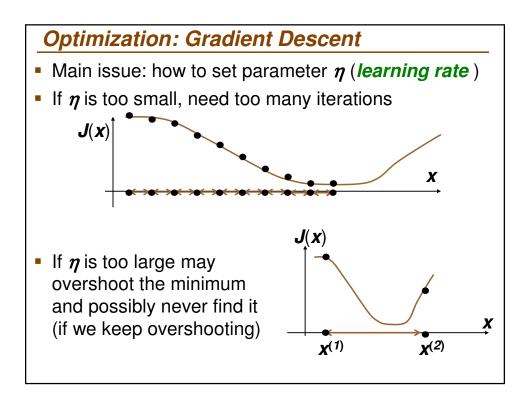


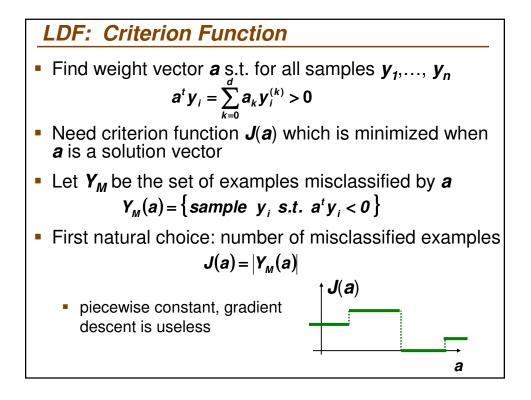


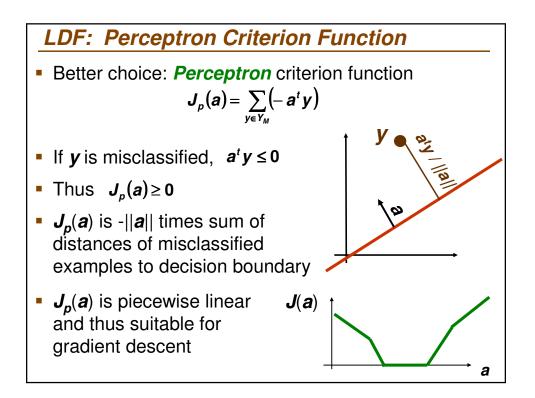


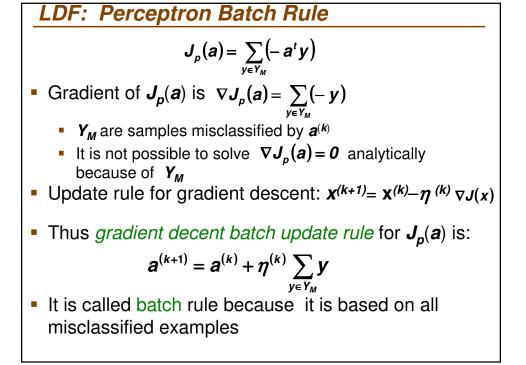


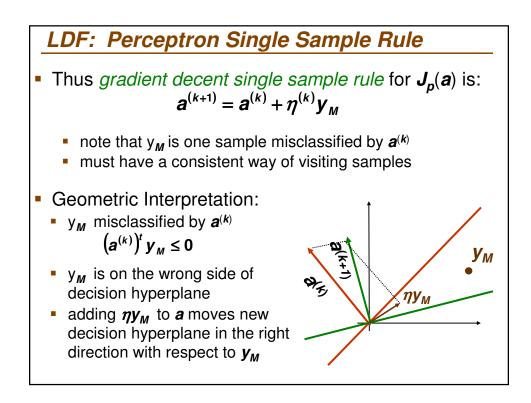


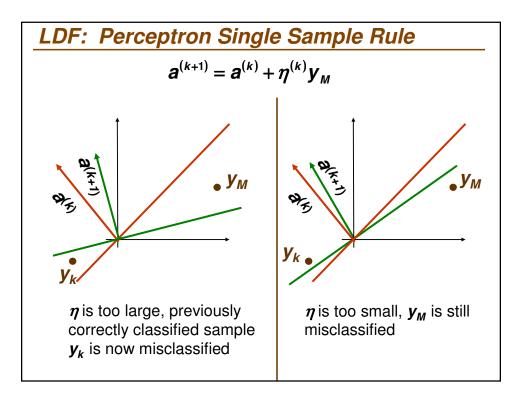












		features				
name	good attendance?	tall?	sleeps in class?	chews gum?		
Jane	yes (1)	yes (1)	no (-1)	no (-1)	Α	
Steve	yes (1)	yes (1)	yes (1)	yes (1)	F	
Mary	no (-1)	no (-1)	no (-1)	yes (1)	F	
Peter	yes (1)	no (-1)	no (-1)	yes (1)	Α	

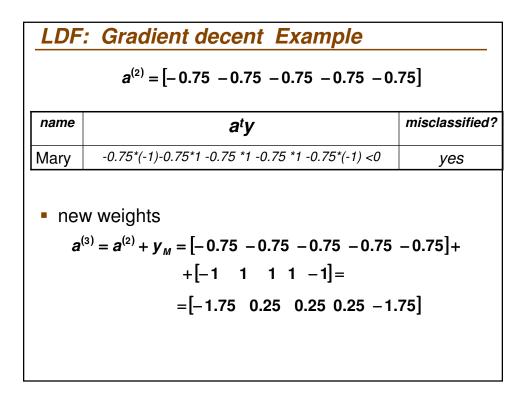
- class 1: students who get grade A
- *class 2*: students who get grade *F*

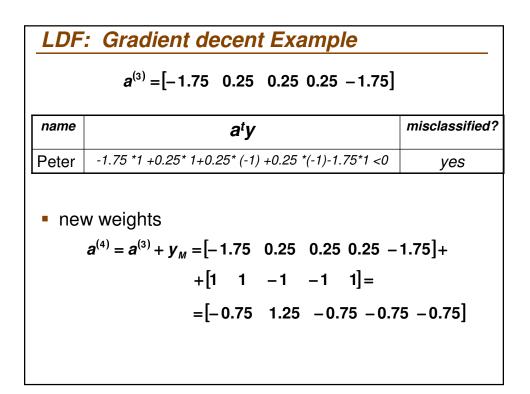
			features			grade
name e	extra	good attendance?	tall?	sleeps in class?	chews gum?	
Jane	1	yes (1)	yes (1)	no (-1)	no (-1)	Α
Steve	1	yes (1)	yes (1)	yes (1)	yes (1)	F
Mary	1	no (-1)	no (-1)	no (-1)	yes (1)	F
Peter	1	yes (1)	no (-1)	no (-1)	yes (1)	A

LDF: Perform "Normalization"						
	features					grade
name	extra	good attendance?	tall?	sleeps in class?	chews gum?	
Jane	1	yes (1)	yes (1)	no (-1)	no (-1)	Α
Steve	-1	yes (-1)	yes (-1)	yes (-1)	yes (-1)	F
Mary	-1	no (1)	no (1)	no (1)	yes (-1)	F
Peter	1	yes (1)	no (-1)	no (-1)	yes (1)	A
 Replace all examples from class c₂ by their negative y_i → -y_i ∀y_i ∈ c₂ Seek weight vector a s.t. a^ty_i > 0 ∀y_i 						

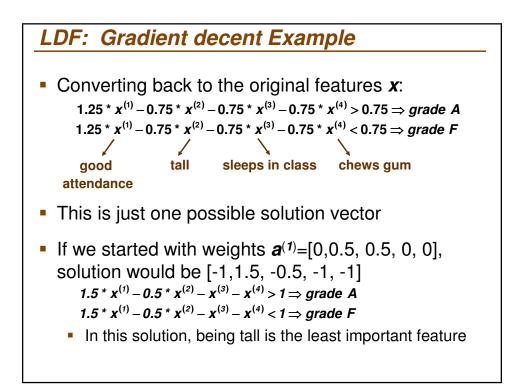
	features gra					grade
name	extra	good attendance?	tall?	sleeps in class?	chews gum?	
Jane	1	yes (1)	yes (1)	no (-1)	no (-1)	Α
Steve	-1	yes (-1)	yes (-1)	yes (-1)	yes (-1)	F
Mary	-1	no (1)	no (1)	no (1)	yes (-1)	F
Peter	1	yes (1)	no (-1)	no (-1)	yes (1)	Α
gradi	ent de	misclassifie escent sing earning rate	le sample	e rule: a	$a^{(k+1)} = a^{(k)}$	

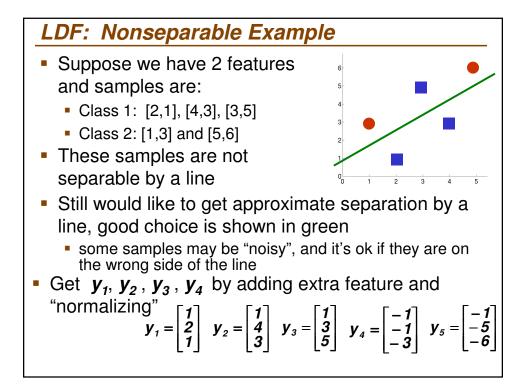
 <i>LDF: Gradient decent Example</i> set equal initial weights <i>a</i>⁽¹⁾=[0.25, 0.25, 0.25, 0.25] visit all samples sequentially, modifying the weights for after finding a misclassified example 					
name	a ^t y	misclassified?			
Jane	0.25*1+0.25*1+0.25*1+0.25*(-1)+0.25*(-1)>0	no			
Steve	0.25*(-1)+0.25*(-1)+0.25*(-1)+0.25*(-1)+0.25*(-1)<0	yes			
	• new weights $a^{(2)} = a^{(1)} + y_M = [0.25 \ 0.25 \ 0.25 \ 0.25 \ 0.25 \ 0.25] + \\ + [-1 \ -1 \ -1 \ -1 \ -1] = \\ = [-0.75 \ -0.75 \ -0.75 \ -0.75 \ -0.75]$				

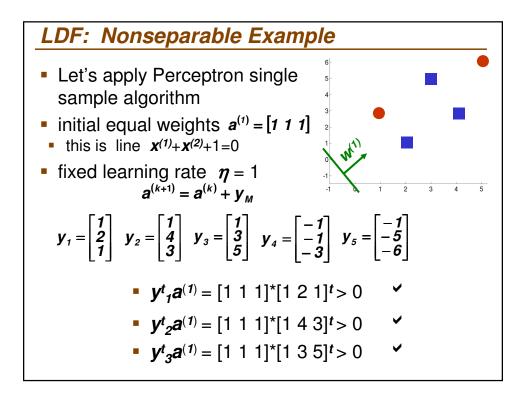




LDF: Gradient decent Example					
$a^{(4)} = [-0.75 \ 1.25 \ -0.75 \ -0.75 \ -0.75]$					
name	a ^t y	misclassified?			
Jane	-0.75 *1 +1.25*1 -0.75*1 -0.75 *(-1) -0.75 *(-1)+0	no			
Steve	-0.75*(-1)+1.25*(-1) -0.75*(-1) -0.75*(-1)-0.75*(-1)>0	no			
Mary	-0.75 *(-1)+1.25*1-0.75*1 -0.75 *1 -0.75*(-1) >0	no			
Peter	-0.75 *1+ 1.25*1-0.75* (-1)-0.75* (-1) -0.75 *1 >0	no			
9	Thus the discriminant function is $g(y) = -0.75 * y^{(0)} + 1.25 * y^{(1)} - 0.75 * y^{(2)} - 0.75 * y^{(3)}$ converting back to the original features x $g(x) = 1.25 * x^{(1)} - 0.75 * x^{(2)} - 0.75 * x^{(3)} - 0.75 * x^{(4)}$				







LDF: Nonseparable Example

$$a^{(1)} = \begin{bmatrix} 1 \ 1 \ 1 \end{bmatrix} a^{(k+1)} = a^{(k)} + y_M$$

$$y_1 = \begin{bmatrix} \frac{1}{2} \\ 1 \end{bmatrix} y_2 = \begin{bmatrix} \frac{1}{4} \\ 3 \end{bmatrix} y_3 = \begin{bmatrix} \frac{1}{3} \\ 5 \end{bmatrix} y_4 = \begin{bmatrix} -\frac{1}{-1} \\ -\frac{1}{-3} \end{bmatrix} y_5 = \begin{bmatrix} -\frac{1}{-5} \\ -\frac{5}{-6} \end{bmatrix}$$

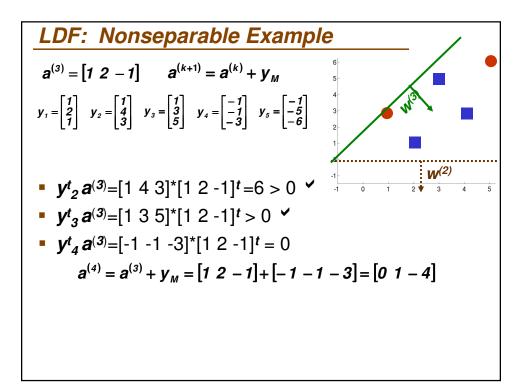
$$y^t_4 a^{(1)} = \begin{bmatrix} 1 \ 1 \ 1 \end{bmatrix}^* \begin{bmatrix} -1 \ -1 \ -3 \end{bmatrix}^t = -5 < 0$$

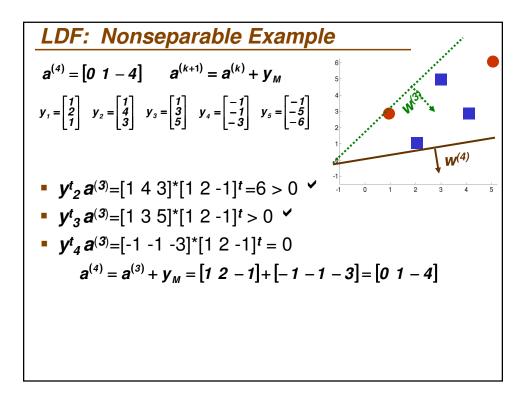
$$a^{(2)} = a^{(1)} + y_M = \begin{bmatrix} 1 \ 1 \ 1 \end{bmatrix} + \begin{bmatrix} -1 \ -1 \ -3 \end{bmatrix} = \begin{bmatrix} 0 \ 0 \ -2 \end{bmatrix}$$

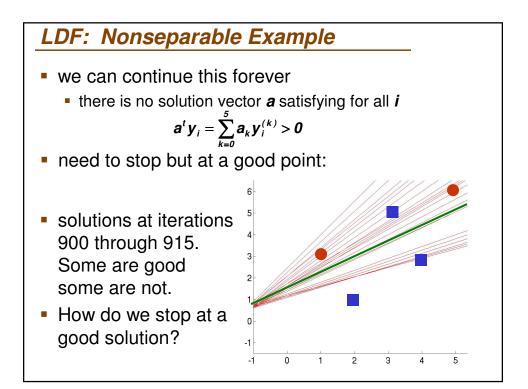
$$y^t_5 a^{(2)} = \begin{bmatrix} 0 \ 0 \ -2 \end{bmatrix}^* \begin{bmatrix} -1 \ -5 \ -6 \end{bmatrix}^t = 12 > 0$$

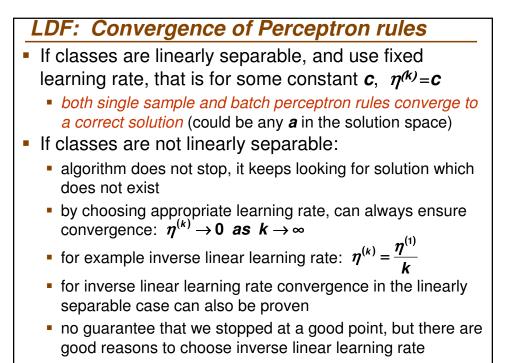
$$y^t_1 a^{(2)} = \begin{bmatrix} 0 \ 0 \ -2 \end{bmatrix}^* \begin{bmatrix} 1 \ 2 \ 1 \end{bmatrix}^t < 0$$

$$a^{(3)} = a^{(2)} + y_M = \begin{bmatrix} 0 \ 0 \ -2 \end{bmatrix} + \begin{bmatrix} 1 \ 2 \ 1 \end{bmatrix} = \begin{bmatrix} 1 \ 2 \ -1 \end{bmatrix}$$

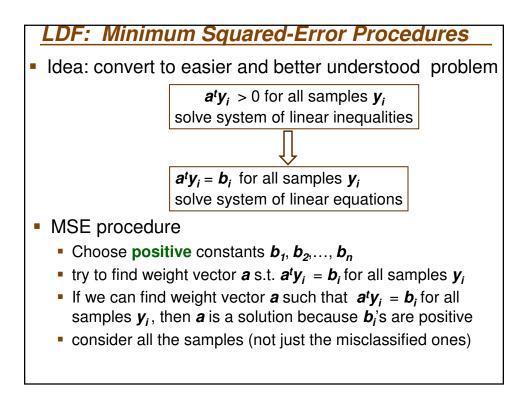


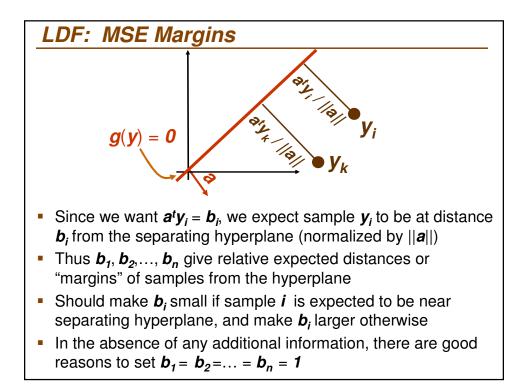


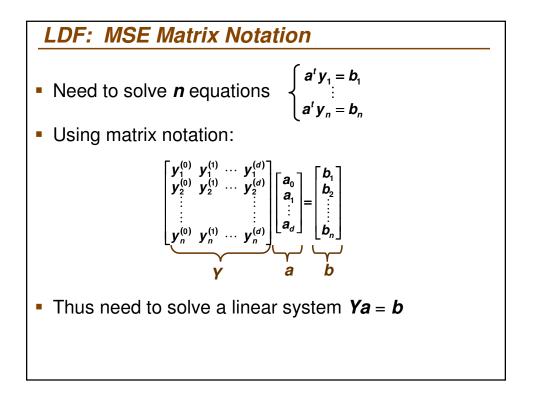


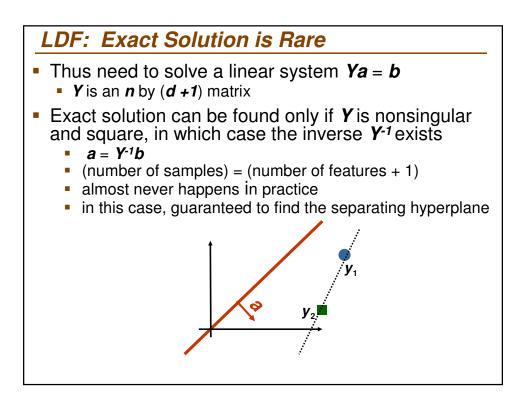


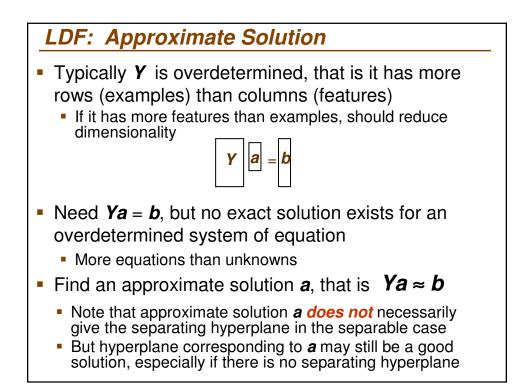
LDF: Perceptron Rul	e and Gradient decent
 Linearly separable data perceptron rule with grad Linearly non-separable need to stop perceptron maybe tricky 	lient decent works well
Batch Rule	Single Sample Rule
 Smoother gradient because all samples are 	 easier to analyze
used	 Concentrates more than necessary on any isolated "noisy" training examples

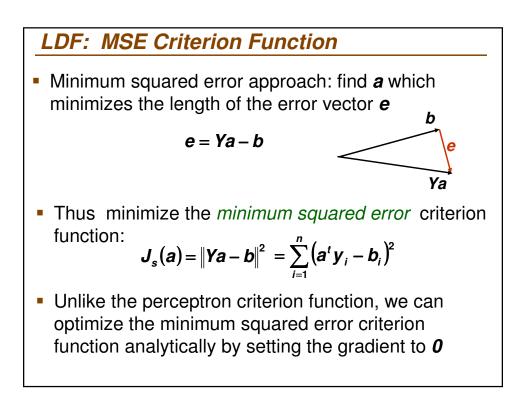












LDF: Optimizing
$$J_s(a)$$

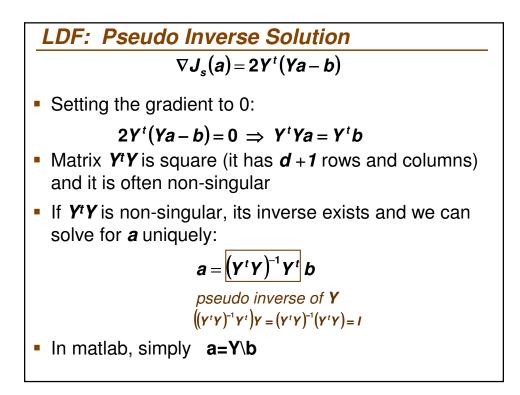
$$J_s(a) = ||Ya - b||^2 = \sum_{i=1}^n (a^t y_i - b_i)^2$$
• Let's compute the gradient:

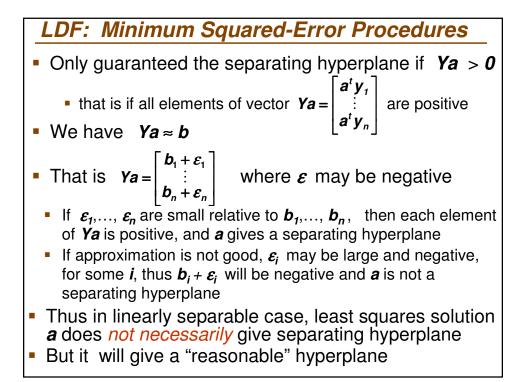
$$\nabla J_s(a) = \begin{bmatrix} \frac{\partial J_s}{\partial a_0} \\ \vdots \\ \frac{\partial J_s}{\partial a_d} \end{bmatrix} = \frac{dJ_s}{da} = \sum_{i=1}^n \frac{d}{da} (a^t y_i - b_i)^2$$

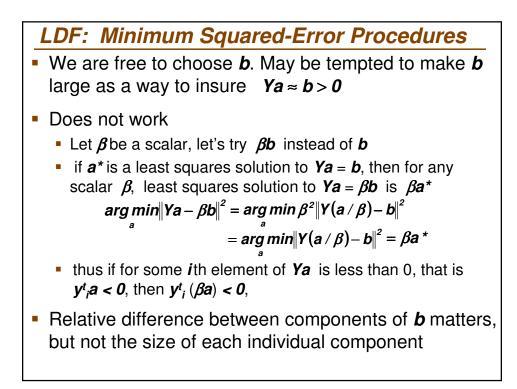
$$= \sum_{i=1}^n 2(a^t y_i - b_i) \frac{d}{da} (a^t y_i - b_i)$$

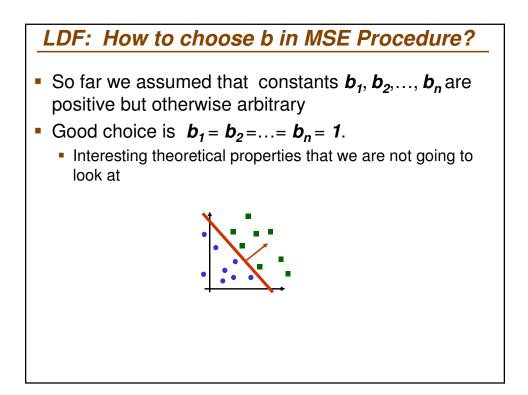
$$= \sum_{i=1}^n 2(a^t y_i - b_i) y_i$$

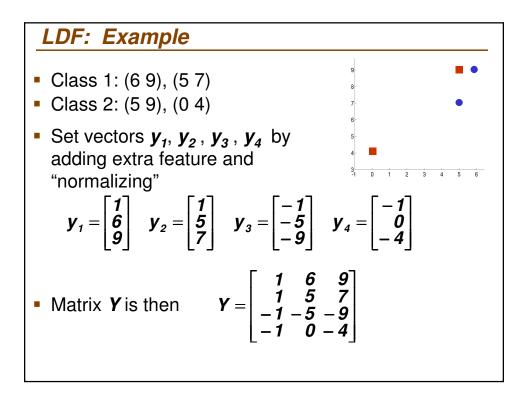
$$= 2Y^t (Ya - b)$$

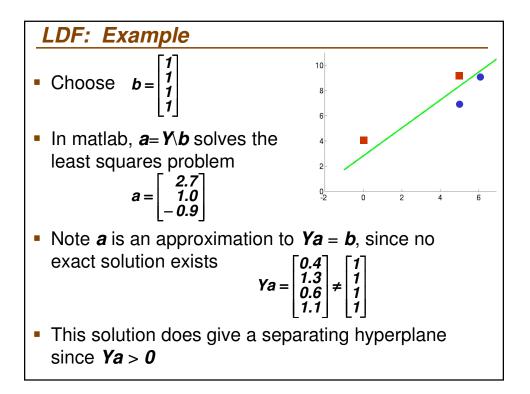


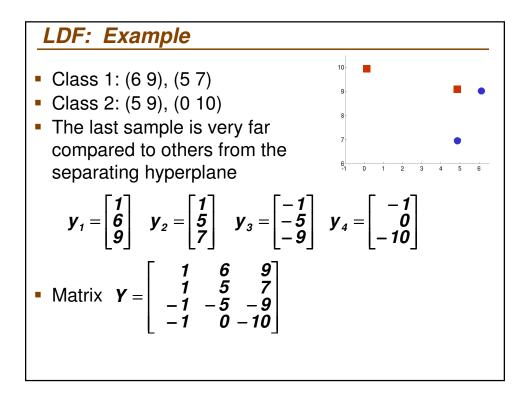




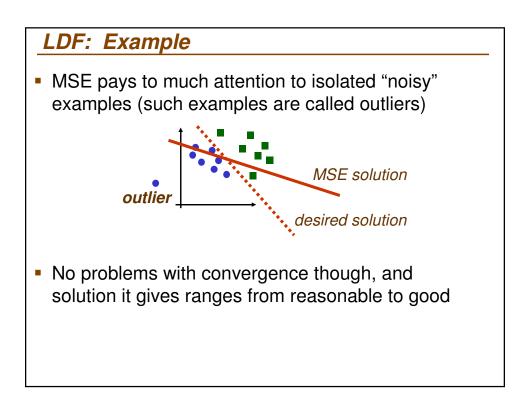


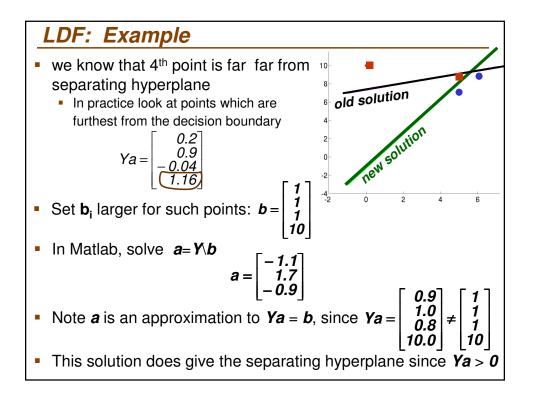


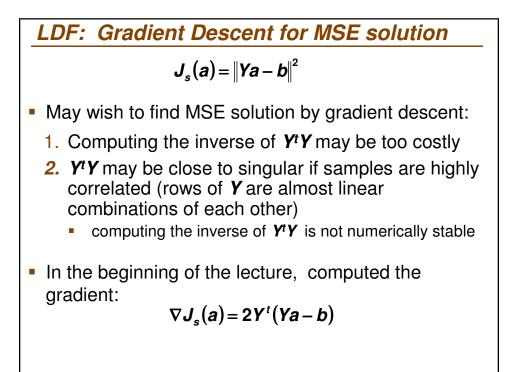












LDF: Widrow-Hoff Procedure

 $\nabla J_s(a) = 2Y^t(Ya - b)$

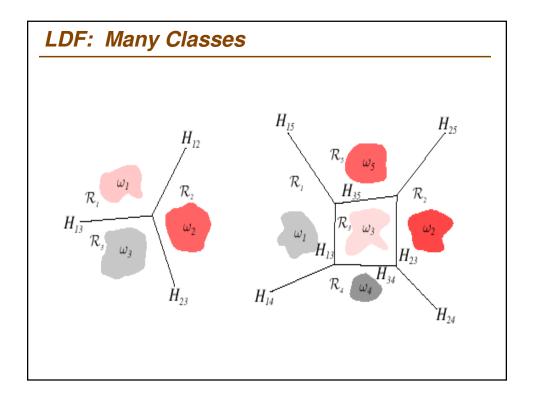
• Thus the update rule for gradient descent: $a_{(k+1)} = a_{(k)} \cdots a_{(k)} v_{k} (v_{k} - v_{k})$

$$\mathbf{a}^{(n+1)} = \mathbf{a}^{(n)} - \boldsymbol{\eta}^{(n)} \mathbf{Y}^{(n)} (\mathbf{Y} \mathbf{a}^{(n)} - \mathbf{D})$$

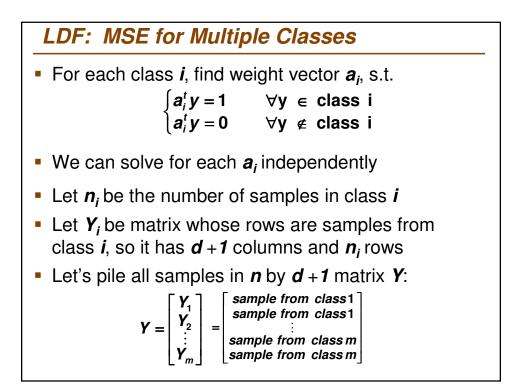
- If η^(k) = η⁽¹⁾ / k weight vector a^(k) converges to the MSE solution a, that is Y^t(Ya-b)=0
- Widrow-Hoff procedure reduces storage requirements by considering single samples sequentially:

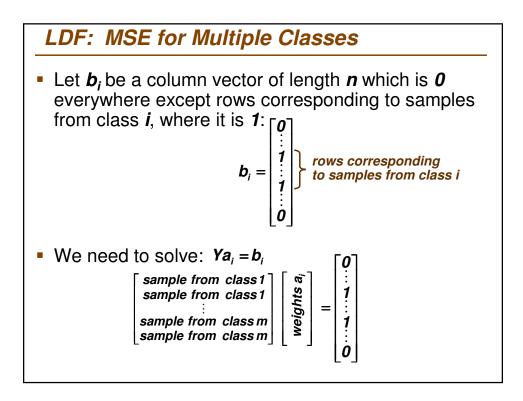
$$a^{(k+1)} = a^{(k)} - \eta^{(k)} y_i (y_i^t a^{(k)} - b_i)$$

LDF: MSE for Multiple Classes
 Suppose we have <i>m</i> classes Define <i>m</i> linear discriminant functions
$g_i(x) = w_i^t x + w_{i0}$ $i = 1,,m$
 Given x, assign class c_i if g_i(x) ≥ g_j(x) ∀j ≠ i
 Such classifier is called a <i>linear machine</i>
 A linear machine divides the feature space into <i>c</i> decision regions, with <i>g_i(x)</i> being the largest discriminant if <i>x</i> is in the region <i>R_i</i>



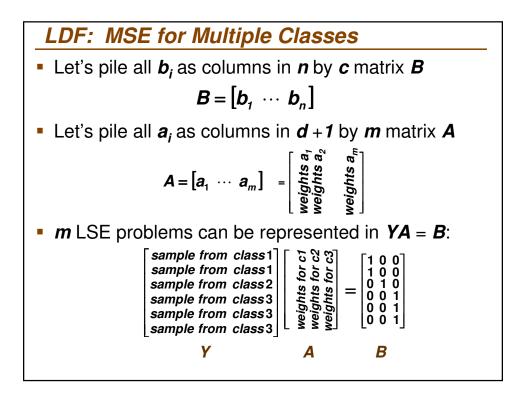
LDF: MSE for Multiple Classes					
We still use augmented feature vectors y ₁ ,, y _n					
but do not multiply by -1					
 Define <i>m</i> linear discriminant functions 					
$g_i(y) = a_i^t y$ i = 1,,m					
 Given y, assign class c_i if 					
$\boldsymbol{a}_i^t \boldsymbol{y} \geq \boldsymbol{a}_j^t \boldsymbol{y} \qquad \forall \mathbf{j} \neq \mathbf{i}$					
 For each class <i>i</i>, makes sense to seek weight vector <i>a_i</i>, s.t. 					
$\int a_i^t y = 1 \qquad \forall y \in \text{ class } i$					
$\begin{cases} a_i^t y = 1 & \forall y \in \text{class i} \\ a_i^t y = 0 & \forall y \notin \text{class i} \end{cases}$					
If we find such a ₁ ,, a _m the training error will be 0					





LDF: MSE for Multiple Classes

- We need to solve Ya_i = b_i
- Usually no exact solution since **Y** is overdetermined
- Use least squares to minimize norm of the error vector || Ya_i - b_i ||
- LSE solution with pseudoinverse: $a_i = (Y^t Y)^{-1} Y^t b_i$
- Thus we need to solve *m* LSE problems, one for each class
- Can write these *m* LSE problems in one matrix



Our objective function is:

$$\boldsymbol{J}(\boldsymbol{A}) = \sum_{i=1}^{m} \|\boldsymbol{Y}\boldsymbol{a}_{i} - \boldsymbol{b}_{i}\|^{2}$$

• J(A) is minimized with the use of pseudoinverse

 $\boldsymbol{A} = \left(\boldsymbol{Y}^{t}\boldsymbol{Y}\right)^{-1}\boldsymbol{Y}\boldsymbol{B}$

LDF: Summary Perceptron procedures find a separating hyperplane in the linearly separable case, do not converge in the non-separable case can force convergence by using a decreasing learning rate, but are not guaranteed a reasonable stopping point MSE procedures converge in separable and not separable case may not find separating hyperplane if classes are linearly separable use pseudoinverse if Y'Y is not singular and not too large use gradient descent (Widrow-Hoff procedure) otherwise