CS442/542b: Artificial Intelligence II Prof. Olga Veksler

Lecture 8 NLP: Introduction

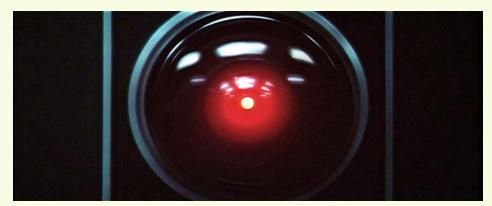
Many slides from: M. Hearst (Berkeley), D. Klein (Berkeley), C. Manning (Stanford), L. Lee (Cornell), R. Barzilay (MIT), L. Venkata Subramaniam, Leila Kosseim (Concordia)

Outline

- Introduction to Natural Language Processing (NLP)
 - What is NLP
 - Applications of NLP
 - Why NLP is hard
 - Brief history of NLP
- Linguistic Essentials


Natural Language Processing

- Computers would be a lot more useful if they could handle our email, do our library research, talk to us, etc ...
- But computers are fazed by natural human language
 - Or at least their programmers are, most avoid the language problem by using mice, menus, drop boxes
- How can we tell computers about language?
 - or help them learn it as kids do?
- Can machines understand human language?
 - Define 'understand'
 - Understanding is the ultimate goal. However, one doesn't need to fully understand to be useful.
- NLP is also known as Computational Linguistics (CL), Human Language Technology (HLT), Natural Language Engineering (NLE)


A few applications of NLP

- Modest
 - Spelling correction
 - text categorization
- Ambitious:
 - Better search engines
 - Information extraction
 - Speech recognition
 - Speech synthesis
 - Question answering
 - Machine translation
 - Language Teaching/Learning

We've past the year 2001, but we are not close to realizing the dream (or nightmare ...)

Dave Bowman: "Open the pod bay doors, HAL"

HAL 9000: "I'm sorry Dave. I'm afraid I can't do that."

Still can't do that

Brief NLP History

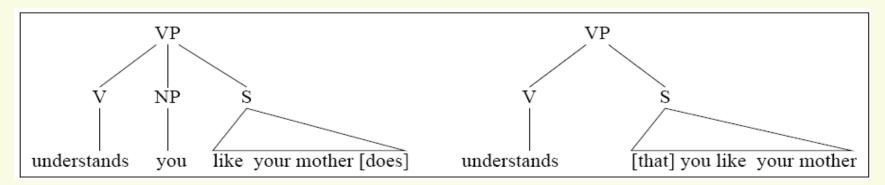
- 1950's, empirical approach:
 - data-driven, co-occurrences in language are important sources of information: "You shall know a word by the company it keeps", J. Firth, 1957
 - First speech systems (Davis et al. Bell labs)
 - Text authorship (Hamilton vs. Madison), solved based on patterns of word occurrences in 1941 by F. Mosteller and F. Williams
 - Machine translation: toy system, basically wordsubstitution, on machines less powerful than pocket calculators
 - Little understanding of natural language syntax and semantics
 - Problem soon appeared intractable: can't store enough data on computers

Brief NLP History

- 1960's and 1970's
 - Data-driven approach falls out of favor
 - Belief that language should be analyzed at a much deeper level than surface statistics
 - N. Chomsky:
 - 1. "Colorless green ideas sleep furiously"
 - 2. "Furiously sleep ideas green colorless"
 - Neither (1) nor (2) will never occur. Yet (1) is grammatical, while (2) is not. Therefore (1) should have higher probability of occurrence than (2)
 - However, since neither (1) nor (2) will ever occur, they will both be assigned the same probability of 0
 - The criticism is that the data driven approach will always lack suffer from the lack of data, and therefore doomed to failure
 - Knowledge-based (rule based) approach becomes dominant, human expert encodes relevant information in computer-usable form
 - Development of linguistic
 - Complex language models, parsing, CF grammars
 - Applications in toy domains

Brief NLP History

- Drawbacks of knowledge-based (rule-based) approach:
 - Rules are often too strict to characterize people's use of language (people tend to stretch and bend rules in order to meet their communicative needs.)
 - Need expert people to develop rules (knowledge acquisition bottleneck)
- 1980's: the empirical revolution
 - In part motivated by success in speech recognition
 - Based on learning from lots of data
 - Corpus-based (data-driven) methods become central
 - Sophisticated machine learning algorithms are developed to learn from the data
 - Linguistics (the rules) is still used
 - Deep analysis often traded for robust and simple approximations


Why is NLP difficult?

- Key problem: language is ambiguous at all levels
 - Semantic (word meaning)
 - Syntactic (sentence structure)
 - Acoustic (parsing of speech signal)
- To resolve these ambiguities we often need to use complex knowledge about the world
- Other difficulties
 - Language only reflects the surface of meaning
 - humor, sarcasm, "between the lines" meaning
 - Language presupposes communication between people
 - Persuading, insulting, amusing them
 - Lots of subtleties

Syntactic (Sentence Structure) Ambiguity

"At last, a computer that understands you like your mother"-1985 advertisement from a company claimed to program computer to understand human language

- At least three different interpretations:
 - The computer understands you as well as your mother understands you
 - 2. The computer understands that you like your mother
 - 3. The computer understands you as well as it understands your mother
- Humans would rule out the last two interpretation from their knowledge of the world: we know that the advertisement is trying to convince us of something

different sentence structure leads to different interpretations

Semantic (Word Meaning) Ambiguity

"At last, a computer that understands you like your mother"

- Word "mother" has several meanings:
 - "a female parent"
 - "a cask or vat used in vinegar-making"

Acoustic Ambiguity

"At last, a computer that understands you like your mother"

- For speech recognition:
 - "a computer that understands you like your mother"
 - a computer that understands your lie cured mother

More Ambiguity

"At last, a computer that understands you like your mother"

- Even if we interpret this as "The computer understands you as well as your mother understands you" does that mean it understands you "well" or "not so well"
 - sarcasm

Another Example Syntactic Ambiguity

- How about simpler sentences?
- Even simple sentences are highly ambiguous
- "Get the cat with the gloves"

Headline Ambiguity

- Iraqi Head Seeks Arms
- Ban on Nude Dancing on Governor's Desk
- Juvenile Court to Try Shooting Defendant
- Teacher Strikes Idle Kids
- Kids Make Nutritious Snacks
- British Left Waffles on Falkland Islands
- Red Tape Holds Up New Bridges
- Bush Wins on Budget, but More Lies Ahead
- Hospitals are Sued by 7 Foot Doctors
- Stolen Painting Found by Tree
- Local HS Dropouts Cut in Half

Why is NLP difficult? Language subtleties

- Adjective order and placement
 - A big black dog
 - A big black scary dog
 - A big scary dog
 - A scary big dog
 - ★ A black big dog
- Antonyms
 - Which sizes go together?
 - Big and little
 - Big and small
 - Large and small
 - ★ Large and little
- Adjective choice
 - powerful tea
 - strong tea

Example Problem

Grammar checker example:

```
Which word to use? <principal> <principle>
```

- Solution: look at which words surround each use:
 - I am in my third year as the principal of Anamosa High School.
 - School-principal transfers caused some upset.
 - This is a simple formulation of the quantum mechanical uncertainty principle.

Using Very, Very Large Corpora

- Keep track of which words are the neighbors of each spelling in well-edited text, e.g.:
 - Principal: "high school"
 - Principle: "rule"
- At grammar-check time, choose the spelling best predicted by the surrounding words.
- Surprising results:
 - Log-linear improvement even to a billion words!
 - Getting more data is better than fine-tuning algorithms!

The Effects of LARGE Datasets

From Banko & Brill '01

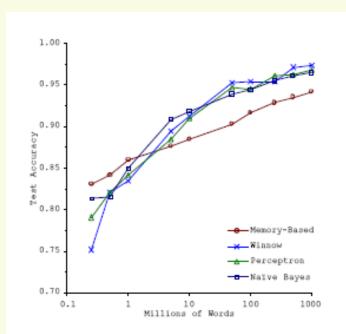


Figure 1. Learning Curves for Confusion Set Disambiguation

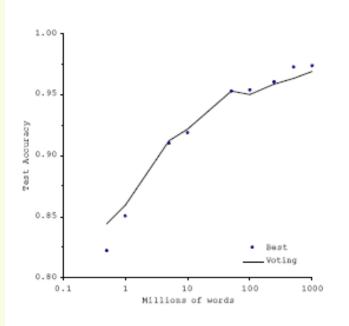


Figure 3. Voting Among Classifiers

- Parts of speech
- Morphology
- Syntax
- Semantics
- Pragmatics

Parts of Speech

- 3 most important:
 - Noun (objects like "cat")
 - verb (action like "go")
 - Adjective (noun property, like "black")

Other parts

- pronoun (refer to person or thing, "he", "she", etc)
- Adverbs (modify verbs, like "often")
- Preposition (express spatial relationship,"in", "over")
- Particle (bond with verbs,"gave in")
- determiners (a, the, this, that)
- Conjunctions("and", "or")
- Subordinating conjunction ("that", "if", "before")

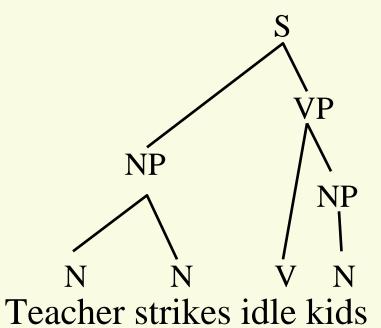
Morphology:

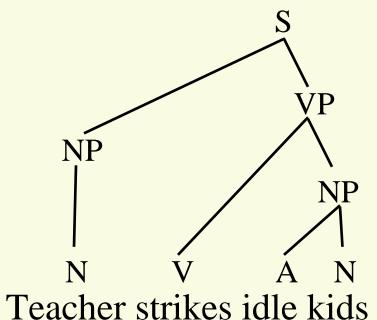
- what words (or subwords) are we dealing with?
- structures and patterns in words
- analyzes how words are formed from minimal units of meaning, or morphemes, e.g., dogs= dog+s.

Example:

- Input: The fearsome cats attacked the foolish dog
- Output: The fear-some cat-s attack-ed the fool-ish dog

Why not just Use a Dictionary?


- How many words are there in a language?
 - English: OED 400K entries
 - Turkish: 600x10⁶ forms
 - Finnish: 10⁷ forms
- New words are being invented all the time
 - e-mail
 - IM


Syntax:

- What phrases are we dealing with? Which words modify one another?
- Sentences have structures and are made up of constituents.
- The constituents are phrases.
- A phrase consists of a head and modifiers.
- The category of the head determines the category of the phrase
 - e.g., a phrase headed by a noun is a noun phrase

Parsing

Analyze the structure of a sentence

- Semantics: the meaning of a word or phrase within a sentence
 - Meaning of words
 - Meaning of sentences
- Pragmatics: structures and patterns in discourses
 - What should you conclude from the fact that I said something? How should you react?
 - Co-reference resolution
 - Jane races Mary on weekends. She often beats her.

Tools and Resources Needed

- Probability/Statistical Theory:
 - Statistical Distributions, Bayesian Decision Theory.
- Linguistics Knowledge:
 - Morphology, Syntax, Semantics, Pragmatics...
- Corpora:
 - Bodies of marked or unmarked text
 - to which statistical methods and current linguistic knowledge can be applied
 - in order to discover novel linguistic theories or interesting and useful knowledge to build applications.