CS4442/9542b Artificial Intelligence II Prof. Olga Veksler

Lecture 2

Introduction to ML Basic Linear Algebra Matlab

Some slides on Linear Algebra are from Patrick Nichols

Outline

- Introduction to Machine Learning
- Basic Linear Algebra
- Matlab Intro

Intro: What is Machine Learning?

- How to write a computer program that automatically improves its performance through experience
- Machine learning is useful when it is too difficult to come up with a program to perform a desired task
- Make computer to learn by showing examples (most frequently with correct answers)
 - "supervised" learning or learning with a teacher
- In practice: computer program (or function) which has a tunable parameters, tune parameters until the desirable behavior on the examples

Different Types of Learning

• Learning from examples:

- Supervised Learning: given training examples of inputs and corresponding outputs, produce the "correct" outputs for new inputs
 - study in this course
- Unsupervised Learning: given only inputs as training, find structure in the world: e.g. discover clusters
- Other types, such as **reinforcement learning** are not covered in this course

Supervised Machine Learning

- Training samples (or examples) x¹,x²,..., xⁿ
- Each example **x**ⁱ is typically multi-dimensional
 - xⁱ₁, xⁱ₂,..., xⁱ_d are called *features*, xⁱ is often called a *feature vector*
 - Example: **x**¹ = {3,7, 35}, **x**² = {5, 9, 47}, ...
 - how many and which features do we take?
- Know desired output for each example **y**¹, **y**²,...**y**ⁿ
 - This learning is supervised ("teacher" gives desired outputs)
 - **y**ⁱ are often one-dimensional
 - Example: **y**¹ = 1 ("face"), **y**² = 0 ("not a face")

Supervised Machine Learning

- Two types of supervised learning:
 - Classification (we will only do classification in this course):
 - yⁱ takes value in finite set, typically called a *label* or a *class*
 - Example: $\mathbf{y}^{i} \in \{\text{"sunny", "cloudy", "raining"}\}$
 - Regression
 - yⁱ continuous, typically called an *output value*
 - Example: \mathbf{y}^{i} = temperature \in [-60,60]

Toy Application: fish sorting

Classifier design

- Notice salmon tends to be shorter than sea bass
- Use fish length as the discriminating feature
- Count number of bass and salmon of each length

	2	4	8	10	12	14
bass	0	1	3	8	10	5
salmon	2	5	10	5	1	0

• Classification error (total error) $\frac{17}{50} = 34\%$

Single Feature (length) Classifier

After searching through all possible thresholds *L*, the best *L*= 9, and still 20% of fish is misclassified

Next Step

- Lesson learned:
 - Length is a poor feature alone!
- What to do?
 - Try another feature
 - Salmon tends to be lighter
 - Try average fish lightness

Single Feature (lightness) Classifier

 Now fish are classified best at lightness threshold of 3.5 with classification error of 8%

Can do better by feature combining

- Use both length and lightness features
- Feature vector [length,lightness]

Classification error 4%

Even Better Decision Boundary

• Decision boundary (wiggly) with 0% classification error

Test Classifier on New Data

- The goal is for classifier to perform well on new data
- Test "wiggly" classifier on new data: 25% error

What Went Wrong?

- We always have only a limited amount of data, not all possible data
- We should make sure the decision boundary does not adapt too closely to the particulars of the data we have at hand, but rather grasps the "big picture"

What Went Wrong: Overfitting

- Complicated boundaries *overfit* the data, they are too tuned to the particular training data at hand
- Therefore complicated boundaries tend to not generalize well to the new data
- We usually refer to the new data as "test" data

Overfitting: Extreme Example

- Say we have 2 classes: face and non-face images
- Memorize (i.e. store) all the "face" images
- For a new image, see if it is one of the stored faces
 - if yes, output "face" as the classification result
 - If no, output "non-face"
 - also called "rote learning"
- problem: new "face" images are different from stored "face" examples
 - zero error on stored data, 50% error on test (new) data
- Rote learning is memorization without generalization

slide is modified from Y. LeCun

- The ability to produce correct outputs on previously unseen examples is called **generalization**
- The big question of learning theory: how to get good generalization with a limited number of examples
- Intuitive idea: favor simpler classifiers
 - William of Occam (1284-1347): "entities are not to be multiplied without necessity"
- Simpler decision boundary may not fit ideally to the training data but tends to generalize better to new data

Underfitting

- We can also underfit data, i.e. use too simple decision boundary
 - chosen model is not expressive enough
- There is no way to fit a linear decision boundary so that the training examples are well separated
- Training error is too high
 - test error is, of course, also high

Underfitting \rightarrow Overfitting

underfitting

"just right"

overfitting

Sketch of Supervised Machine Learning

- Chose a learning machine f(x,w)
 - w are tunable weights
 - x is the input sample
 - f(x,w) should output the correct class of sample x
 - use labeled samples to tune weights w so that f(x,w) give the correct label for sample x
- Which function **f**(**x**,**w**) do we choose?
 - has to be expressive enough to model our problem well, i.e. to avoid *underfitting*
 - yet not to complicated to avoid overfitting

Training and Testing

- There are 2 phases, training and testing
 - Divide all labeled samples x¹,x²,...xⁿ into 2 sets, training set and test set
 - Training phase is for "teaching" our machine (finding optimal weights w)
 - Testing phase is for evaluating how well our machine works on unseen examples

Training Phase

- Find the weights w s.t. f(xⁱ,w) = yⁱ "as much as possible" for *training* samples (xⁱ, yⁱ)
 - "as much as possible" needs to be defined
- How do we find parameters w to ensure
 f(xⁱ,w) = yⁱ for most training samples (xⁱ,yⁱ) ?
 - This step is usually done by optimization, can be quite time consuming

Testing Phase

- The goal is to design machine which performs well on unseen examples
- Evaluate the performance of the trained machine f(x,w) on the test samples (unseen labeled samples)
- Testing the machine on unseen labeled examples lets us approximate how well it will perform in practice
- If testing results are poor, may have to go back to the training phase and redesign f(x,w)

Generalization and Overfitting

- *Generalization* is the ability to produce correct output on previously unseen examples
 - In other words, low error on unseen examples
 - Good generalization is the main goal of ML
- Low training error does not necessarily imply that we will have low test error
 - we have seen that it is easy to produce f(x,w) which is perfect on training samples (rote "learning")

• Overfitting

 when the machine performs well on training data but poorly on test data

Classification System Design Overview

- Split data into training and test sets
- Extract possibly discriminating features
 - length, lightness, width, number of fins, etc.
- Classifier design
 - Choose model for classifier
 - Train classifier on training data
- Test classifier on test data

we look at these two steps in this course

Basic Linear Algebra

- Basic Concepts in Linear Algebra
 - vectors and matrices
 - products and norms
 - vector spaces and linear transformations
- Introduction to Matlab

Why Linear Algebra?

- For each example (e.g. a fish image), we extract a set of features (e.g. length, width, color)
- This set of features is represented as a *feature vector*
 - [length, width, color]
- All collected examples will be represented as collection of (feature) vectors

 Also, we will use linear models since they are simple and computationally tractable

What is a Matrix?

• A matrix is a set of elements, organized into rows and columns

Basic Matrix Operations

• addition, subtraction, multiplication by a scalar

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a+e & b+f \\ c+g & d+h \end{bmatrix}$$
 add elements

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} - \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a-e & b-f \\ c-g & d-h \end{bmatrix}$$
 subtract elements

$$\alpha \cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} \alpha \cdot a & \alpha \cdot b \\ \alpha \cdot c & \alpha \cdot d \end{bmatrix}$$
 multiply every entry

Matrix Transpose

n by m matrix A and its m by n transpose'A

Vectors

• Vector: N x 1 matrix

$$v = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

• dot product and magnitude defined on vectors only

More on Vectors

 X_1

 $\begin{array}{c} x_2 \\ \vdots \end{array}$

• n-dimensional row vector $x = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}$

- Transpose of row vector is column vector $x^T =$
- *Vector* product (or *inner* or *dot* product)

$$\langle x, y \rangle = x \cdot y = x^T y = x_1 y_1 + x_2 y_2 + \ldots + x_n y_n = \sum_{i=1...n} x_i y_i$$

More on Vectors

- Euclidian norm or length $||x|| = \sqrt{\langle x, x \rangle} = \sqrt{\sum_{i=1...n} x_i^2}$
- If ||x|| =1 we say x is normalized or unit length
- angle q between vectors x and y: $\cos \theta = \frac{x' y}{\|x\| \|y\|}$
- inner product captures direction relationship

More on Vectors

- Vectors x and y are orthonormal if they are orthogonal and ||x|| = ||y|| =1
- Euclidian distance between vectors x and y

$$||x-y|| = \sqrt{\sum_{i=1...n} (x_i - y_i)^2}$$

Linear Dependence and Independence

 Vectors x₁, x₂,..., x_n are linearly dependent if there exist constants α₁, α₂,..., α_n s.t.

•
$$\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n = 0$$

- $\alpha_i \neq 0$ for at least one *I*
- Vectors $x_1, x_2, ..., x_n$ are linearly independent if $\alpha_1 x_1 + \alpha_2 x_2 + ... + \alpha_n x_n = 0 \implies \alpha_1 = \alpha_2 = ... = \alpha_n = 0$

Vector Spaces and Basis

- The set of all n-dimensional vectors is called a vector space V
 - A set of vectors {u₁, u₂, ..., u_n} are called a basis for vector space if any *v* in *V* can be written as
 v = α₁u₁ + α₂u₂ + ... + α_nu_n
- u₁, u₂, ..., u_n are independent implies they form a basis, and vice versa
- u₁, u₂,..., u_n give an orthonormal basis if
 1. ||u_i|| =1 ∀i
 2. u_i ⊥u_j ∀i ≠ j

Orthonormal Basis

• x, y,..., z form an orthonormal basis

$$x = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T \qquad x \cdot y = 0$$

$$y = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T \qquad x \cdot z = 0$$

$$z = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T \qquad y \cdot z = 0$$

Matrix Product

- # of columns of A = # of rows of B
- even if defined, in general $AB \neq BA$

Matrices

- Rank of a matrix is the number of linearly independent rows (or equivalently columns)
- A square matrix is non-singular if its rank equal to the number of rows. If its rank is less than number of rows it is singular.

• Identity matrix
$$I = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

Matrix A is symmetric if A=A^T

Matrices

- Inverse of a square matrix **A** is matrix \vec{A}^{1} s.t. $\vec{AA} = I$
- If **A** is singular or not square, inverse does not exist
- Pseudo-inverse A^{\dagger} is defined whenever $A^{T}A$ is not singular (it is square) • $A^{\dagger} = (A^{T}A)^{1}A^{T}$ • $A^{\dagger}A = (A^{T}A)^{1}A^{T}A = I$

MATLAB

- Starting matlab
 - xterm -fn 12X24
 - matlab
- Basic Navigation
 - quit
 - more
 - help general
- Scalars, variables, basic arithmetic
 - Clear
 - + * / ^
 - help arith
- Relational operators
 - ==,&,|,~,xor
 - help relop
- Lists, vectors, matrices
 - A=[2 3;4 5]
 - A'
- Matrix and vector operations
 - find(A>3), colon operator
 - * / ^ .* ./ .^
 - eye(n),norm(A),det(A),eig(A)
 - max,min,std
 - help matfun

- Elementary functions
 - help elfun
- Data types
 - double
 - Char
- Programming in Matlab
 - .m files
 - scripts
 - function y=square(x)
 - help lang
- Flow control
 - if i== 1else end, if else if end
 - for i=1:0.5:2 ... end
 - while i == 1 ... end
 - Return
 - help lang
- Graphics
 - help graphics
 - help graph3d
- File I/O
 - load,save
 - fopen, fclose, fprintf, fscanf