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Intro: What is Machine Learning? 

• How to write a computer program that automatically 
improves its performance through experience

• Machine learning is useful when it is too difficult to 
come up with a program to perform a desired task

• Make computer to learn by showing examples (most 
frequently with correct answers)

• “supervised” learning or learning with a teacher

• In practice: computer program (or function) which has 
a tunable parameters, tune parameters until the 
desirable behavior on the examples



Different Types of Learning 

• Learning from examples:

• Supervised Learning: given training examples of 
inputs and corresponding outputs, produce the 
“correct” outputs for new inputs

• study  in this course  

• Unsupervised Learning: given only inputs as 
training, find structure in the world: e.g. discover 
clusters

• Other types, such as reinforcement learning are 
not covered in this course



Supervised Machine Learning

• Training samples (or examples) x1,x2,…, xn

• Each example xi  is typically multi-dimensional

• xi
1, xi

2 ,…, xi
d are called features, xi is often called a 

feature vector

• Example: x1 = {3,7, 35}, x2 = {5, 9, 47}, …

• how many and which features do we take?

• Know desired output for each example y1, y2,…yn

• This learning is supervised (“teacher” gives desired outputs)

• yi are often one-dimensional

• Example: y1 = 1 (“face”), y2 = 0 (“not a face”)



Supervised Machine Learning

• Two types of supervised learning:

• Classification (we will only do classification in this 
course): 

• yi takes value in finite set, typically called a label

or a class

• Example: yi ∈{“sunny”, ”cloudy”, ”raining”} 

• Regression

• yi continuous, typically called  an output value

• Example: yi = temperature ∈[-60,60]



Toy Application: fish sorting
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Classifier design

• Notice salmon tends to be shorter than sea bass

• Use fish length as the discriminating feature

• Count number of bass and salmon of each length
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Single Feature (length) Classifier

• Find the best length L threshold

fish length < L fish length > L

classify as salmon classify as sea bass

2 4 8 10 12 14

bass 0 1 3 8 10 5

salmon 2 5 10 5 1 0

• For example, at  L = 5, misclassified:

• 1 sea bass

• 16 salmon

• Classification error (total error)
17

50
= 34%



• After searching through all possible thresholds L, the 
best L= 9, and still 20% of fish is misclassified
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Next Step

• Lesson learned:

• Length is a poor feature alone!

• What to do?

• Try another feature

• Salmon tends to be lighter

• Try average fish lightness



Single Feature (lightness) Classifier

• Now fish are classified best at lightness 

threshold of 3.5 with classification error of 8%
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bass

salm
on

Can do better by feature combining 

• Use both length and lightness features

• Feature vector [length,lightness]
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Even Better Decision Boundary

• Decision boundary (wiggly) with 0% classification error
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Test Classifier on New Data

• The goal is for classifier to perform well on new data

• Test “wiggly” classifier on new data: 25% error
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What Went Wrong?

• We always have only a limited amount of data, not all 
possible data

• We should make sure the decision boundary does not 
adapt too closely to the particulars of the data we have 
at hand, but rather grasps the “big picture”

added 2 samples



• Complicated boundaries overfit the data,  they are too 
tuned to the particular training data at hand

• Therefore complicated boundaries tend to not 
generalize well to the new data  

• We usually refer to the new data  as “test” data

What Went Wrong: Overfitting



Overfitting: Extreme Example

• Say we have 2 classes: face and non-face images

• Memorize (i.e. store) all the “face” images

• For a new image, see if it is one of the stored faces

• if yes, output “face” as the classification result

• If no, output “non-face”

• also called “rote learning”

• problem: new “face” images are different from stored 

“face” examples

• zero error on stored data, 50% error on test (new) data

• Rote learning is memorization without generalization

slide is modified from Y. LeCun



Generalization
training data

• The ability to produce correct outputs on previously unseen 

examples is called generalization

• The big question of learning theory: how to get good generalization 

with a limited number of examples

• Intuitive idea: favor simpler classifiers

• William of Occam (1284-1347): “entities are not to be multiplied without necessity”

• Simpler decision boundary may not fit ideally to the  training data 

but tends to generalize better to new data

test data



• We can also underfit data, i.e. use too simple decision 
boundary 

• chosen model is not expressive enough

• There is no way to fit a linear decision boundary so that 
the training examples are well separated

• Training error is too high

• test error is, of course, also high

Underfitting



Underfitting → Overfitting

underfitting “just right” overfitting



Sketch of Supervised Machine Learning 

• Chose a learning machine f(x,w)

• w are tunable weights

• x is the input sample

• f(x,w) should output the correct class of sample x

• use labeled samples to tune weights w so that f(x,w) 

give the correct label for sample x

• Which function f(x,w) do we choose?  

• has to be expressive enough to model our problem 
well, i.e. to avoid underfitting

• yet not to complicated to avoid overfitting



Training and Testing

• There are 2 phases, training and testing

• Divide all labeled samples x1,x2,…xn into 2 sets, 

training set and test set 

• Training phase is for “teaching” our machine (finding 

optimal weights w)

• Testing phase is for evaluating how well our machine 

works on unseen examples



Training Phase

• Find the weights w s.t. f(xi,w) = yi “as much as 

possible” for  training samples (xi, yi)

• “as much as possible” needs to be defined

• How do we find parameters w to ensure       

f(xi,w) = yi for most training samples (xi,yi) ?

• This step is usually done by optimization, can be 

quite time consuming



Testing Phase

• The goal is to design machine which performs 

well on unseen examples

• Evaluate the performance of the trained 

machine f(x,w) on the test samples (unseen 

labeled samples) 

• Testing the machine on unseen labeled examples 

lets us approximate how well it will perform in 

practice 

• If testing results are poor, may have to go back 

to the training phase and redesign f(x,w)



Generalization and Overfitting

• Generalization is the ability to produce correct 

output on previously unseen examples

• In other words, low error on unseen examples

• Good generalization is the main goal of ML

• Low training error does not necessarily imply that 

we will have low test error

• we have seen that it is easy to produce f(x,w) which is 

perfect on training samples (rote “learning”)

• Overfitting

• when the machine performs well on training data but 

poorly on test data



Classification System Design Overview
• Collect and label data by hand

salmon salmon salmonsea bass sea bass sea bass

• Preprocess by segmenting fish from background

• Extract possibly discriminating features

• length, lightness, width, number of fins,etc.

• Classifier design

• Choose model for classifier

• Train classifier on training data

• Test classifier on test data

• Split data into training and test sets

we look at these two 

steps in this course



Basic Linear Algebra

• Basic Concepts in Linear Algebra

• vectors and matrices

• products and norms

• vector spaces and linear transformations

• Introduction to Matlab



Why Linear Algebra?
• For each example (e.g. a fish image), we extract a set 

of features (e.g. length, width, color)

• This set of features is represented as a feature vector 

• [length, width, color]

• Also, we will use linear models since they are simple 

and computationally tractable

• All collected examples will be represented as 

collection of (feature) vectors
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What is a Matrix?

• A matrix is a set of elements, organized into 
rows and columns

















6946

9441

10672

rows

columns

example 1

example 2

example 3

fe
a

tu
re

 4

fe
a

tu
re

 3

fe
a

tu
re

 2

fe
a

tu
re

 1



Basic Matrix Operations

• addition, subtraction, multiplication by a scalar
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Matrix Transpose
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Vectors

• Vector:  N x 1 matrix

• dot product and magnitude defined on vectors only
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More on Vectors

• n-dimensional row vector [ ]nxxxx K
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More on Vectors
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More on Vectors

• Euclidian distance between vectors x and y
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• Vectors x and y are orthonormal if they are 

orthogonal and ||x|| = ||y|| =1
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Linear Dependence and Independence

• Vectors  x1, x2,…, xn are linearly dependent if 

there exist constants α1, α2,…, αn s.t.  

• α1x1+ α2x2+…+αnxn = 0

• αi ≠ 0 for at least one  I

• Vectors x1, x2,…, xn are linearly independent if 

α1x1+ α2x2+…+αnxn = 0  ⇒ α1 = α2=…= αn= 0



Vector Spaces and Basis

• The set of all n-dimensional vectors is called a 

vector space V

• A set of vectors  {u1,u2,…, un } are called a basis 

for vector space if any v in V can be written as 

v = α1u1+ α2u2+…+αnun

• u1,u2,…, un are independent implies they form a 

basis, and vice versa     

• u1,u2,…, un give an orthonormal basis if

1.

2.
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Orthonormal Basis
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Matrix Product
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• # of columns of A = # of rows of B

• even if defined, in general AB ≠ BA

cij = 〈ai, bj〉
ai is row i of A

bj is column j of B



Matrices
• Rank of a matrix is the number of linearly 

independent rows (or equivalently columns)

• A square matrix is non-singular if its rank equal 

to the number of rows.  If its rank is less than 

number of rows it is singular.

• Identity matrix
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Matrices

• Inverse of a square matrix A is matrix A s.t.        

AA = I

-1

-1

• If A is singular or not square, inverse does not 

exist

• Pseudo-inverse A   is defined whenever A A is 

not singular (it is square)

� A = (A A) A

� AA =(A A) AA=I
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MATLAB



• Starting matlab

• xterm -fn 12X24

• matlab

• Basic Navigation

• quit

• more 

• help general

• Scalars, variables, basic arithmetic

• Clear

• +   - * /   ^

• help arith

• Relational operators

• ==,&,|,~,xor

• help relop

• Lists, vectors, matrices

• A=[2 3;4 5]

• A’

• Matrix and vector operations

• find(A>3), colon operator

• *  /   ^  .*  ./   .^

• eye(n),norm(A),det(A),eig(A)

• max,min,std

• help matfun

• Elementary functions

• help elfun

• Data types

• double

• Char

• Programming in Matlab

• .m files

• scripts

• function y=square(x)

• help lang

• Flow control

• if  i== 1else end, if else if end

• for i=1:0.5:2   … end

• while i == 1 … end

• Return

• help lang

• Graphics

• help graphics

• help graph3d

• File I/O

• load,save

• fopen, fclose, fprintf, fscanf


