CS4442/9542b Artificial Intelligence II Prof. Olga Veksler

Lecture 2
Introduction to ML
Basic Linear Algebra
Matlab

Some slides on Linear Algebra are from Patrick Nichols

Outline

- Introduction to Machine Learning
- Basic Linear Algebra
- Matlab Intro

Intro: What is Machine Learning?

- How to write a computer program that automatically improves its performance through experience
- Machine learning is useful when it is too difficult to come up with a program to perform a desired task
- Make computer to learn by showing examples (most frequently with correct answers)
- "supervised" learning or learning with a teacher
- In practice: computer program (or function) which has a tunable parameters, tune parameters until the desirable behavior on the examples

Different Types of Learning

- Learning from examples:
- Supervised Learning: given training examples of inputs and corresponding outputs, produce the "correct" outputs for new inputs
- study in this course
- Unsupervised Learning: given only inputs as training, find structure in the world: e.g. discover clusters
- Other types, such as reinforcement learning are not covered in this course

Supervised Machine Learning

- Training samples (or examples) $\mathbf{x}^{1}, \mathbf{x}^{2}, \ldots, \mathbf{x}^{n}$
- Each example \boldsymbol{x}^{i} is typically multi-dimensional
- $\mathbf{x}_{1}{ }_{1}, \mathbf{x}_{2}^{\mathbf{i}}, \ldots, \mathbf{x}_{d}{ }_{d}$ are called features, $\mathbf{x}^{\mathbf{i}}$ is often called a feature vector
- Example: $\mathbf{x}^{1}=\{3,7,35\}, \mathbf{x}^{2}=\{5,9,47\}$, ...
- how many and which features do we take?
- Know desired output for each example $\mathbf{y}^{1}, \mathbf{y}^{2}, \ldots \mathbf{y}^{\mathbf{n}}$
- This learning is supervised ("teacher" gives desired outputs)
- y^{i} are often one-dimensional
- Example: $\mathbf{y}^{1}=1$ ("face"), $\mathbf{y}^{2}=0$ ("not a face")

Supervised Machine Learning

- Two types of supervised learning:
- Classification (we will only do classification in this course):
- $\boldsymbol{y}^{\boldsymbol{i}}$ takes value in finite set, typically called a label or a class
-Example: $\mathbf{y}^{\mathbf{i}} \in\{$ "sunny", "cloudy", "raining"\}
- Regression
- yi continuous, typically called an output value
- Example: $\boldsymbol{y}^{\mathbf{i}}=$ temperature $\in[-60,60]$

Toy Application: fish sorting

Classifier design

- Notice salmon tends to be shorter than sea bass
- Use fish length as the discriminating feature
- Count number of bass and salmon of each length

	2	4	8	10	12	14
bass	0	1	3	8	10	5
salmon	2	5	10	5	1	0

Single Feature (length) Classifier

- Find the best length L threshold

classify as salmon

classify as sea bass
- For example, at $L=5$, misclassified:
- 1 sea bass
- 16 salmon

	2	4	8	10	12	14
bass	0	1	3	8	10	5
salmon	2	5	10	5	1	0

- Classification error (total error) $\frac{17}{50}=34 \%$

Single Feature (length) Classifier

- After searching through all possible thresholds L, the best $L=9$, and still 20% of fish is misclassified

Next Step

- Lesson learned:
- Length is a poor feature alone!
- What to do?
- Try another feature
- Salmon tends to be lighter
- Try average fish lightness

Single Feature (lightness) Classifier

	1	2	3	4	5
bass	0	1	2	10	12
salmon	6	10	6	1	0

- Now fish are classified best at lightness threshold of 3.5 with classification error of 8%

Can do better by feature combining

- Use both length and lightness features
- Feature vector [length,lightness]

- Classification error 4\%

Even Better Decision Boundary

- Decision boundary (wiggly) with 0\% classification error

Test Classifier on New Data

- The goal is for classifier to perform well on new data
- Test "wiggly" classifier on new data: 25% error

What Went Wrong?

- We always have only a limited amount of data, not all possible data
- We should make sure the decision boundary does not adapt too closely to the particulars of the data we have at hand, but rather grasps the "big picture"

What Went Wrong: Overfitting

- Complicated boundaries overfit the data, they are too tuned to the particular training data at hand
- Therefore complicated boundaries tend to not generalize well to the new data
- We usually refer to the new data as "test" data

Overfitting: Extreme Example

- Say we have 2 classes: face and non-face images
- Memorize (i.e. store) all the "face" images
- For a new image, see if it is one of the stored faces
- if yes, output "face" as the classification result
- If no, output "non-face"
- also called "rote learning"
- problem: new "face" images are different from stored "face" examples
- zero error on stored data, 50% error on test (new) data
- Rote learning is memorization without generalization

Generalization

test data

- The ability to produce correct outputs on previously unseen examples is called generalization
- The big question of learning theory: how to get good generalization with a limited number of examples
- Intuitive idea: favor simpler classifiers
- William of Occam (1284-1347): "entities are not to be multiplied without necessity"
- Simpler decision boundary may not fit ideally to the training data but tends to generalize better to new data

Underfitting

- We can also underfit data, i.e. use too simple decision boundary
- chosen model is not expressive enough
- There is no way to fit a linear decision boundary so that the training examples are well separated
- Training error is too high
- test error is, of course, also high

Underfitting \rightarrow Overfitting

underfitting

"just right"

overfitting

Sketch of Supervised Machine Learning

- Chose a learning machine $\mathbf{f}(\mathbf{x}, \mathbf{w})$
- w are tunable weights
- \mathbf{x} is the input sample
- $f(\mathbf{x}, \mathbf{w})$ should output the correct class of sample \mathbf{x}
- use labeled samples to tune weights \mathbf{w} so that $\mathbf{f}(\mathbf{x}, \mathbf{w})$ give the correct label for sample \mathbf{x}
- Which function $f(\mathbf{x}, \mathbf{w})$ do we choose?
- has to be expressive enough to model our problem well, i.e. to avoid underfitting
- yet not to complicated to avoid overfitting

Training and Testing

- There are 2 phases, training and testing
- Divide all labeled samples $\mathbf{x}^{1}, \mathbf{x}^{2}, \ldots \mathbf{x}^{n}$ into 2 sets, training set and test set
- Training phase is for "teaching" our machine (finding optimal weights w)
- Testing phase is for evaluating how well our machine works on unseen examples

Training Phase

- Find the weights \mathbf{w} s.t. $f\left(\mathbf{x}^{i}, \mathbf{w}\right)=\mathbf{y}^{i}$ "as much as possible" for training samples ($\mathbf{x}^{\mathbf{i}}, \mathbf{y}^{\mathbf{i}}$)
- "as much as possible" needs to be defined
- How do we find parameters \mathbf{w} to ensure $\mathbf{f}\left(\mathbf{x}^{i}, \mathbf{w}\right)=\mathbf{y}^{i}$ for most training samples ($\mathbf{x}^{i}, \mathbf{y}^{i}$) ?
- This step is usually done by optimization, can be quite time consuming

Testing Phase

- The goal is to design machine which performs well on unseen examples
- Evaluate the performance of the trained machine $\mathbf{f}(\mathbf{x}, \mathbf{w})$ on the test samples (unseen labeled samples)
- Testing the machine on unseen labeled examples lets us approximate how well it will perform in practice
- If testing results are poor, may have to go back to the training phase and redesign $\mathbf{f}(\mathbf{x}, \mathbf{w})$

Generalization and Overfitting

- Generalization is the ability to produce correct output on previously unseen examples
- In other words, low error on unseen examples
- Good generalization is the main goal of ML
- Low training error does not necessarily imply that we will have low test error
- we have seen that it is easy to produce $\mathbf{f}(\mathbf{x}, \mathbf{w})$ which is perfect on training samples (rote "learning")
- Overfitting
- when the machine performs well on training data but poorly on test data

Classification System Design Overview

- Collect and label data by hand

- Split data into training and test sets
- Preprocess by segmenting fish from background
- Extract possibly discriminating features
- length, lightness, width, number of fins,etc.
- Classifier design
- Choose model for classifier
- Train classifier on training data
- Test classifier on test data
we look at these two
steps in this course

Basic Linear Algebra

- Basic Concepts in Linear Algebra
- vectors and matrices
- products and norms
- vector spaces and linear transformations
- Introduction to Matlab

Why Linear Algebra?

- For each example (e.g. a fish image), we extract a set of features (e.g. length, width, color)
- This set of features is represented as a feature vector
- [length, width, color]
- All collected examples will be represented as collection of (feature) vectors

$$
\begin{array}{cc}
{\left[l_{1}, \mathrm{w}_{1}, \mathrm{c}_{1}\right]} & \text { example 1 } \\
{\left[\mathrm{I}_{2}, \mathrm{w}_{2}, \mathrm{c}_{2}\right]} & \text { example 2 } \\
{\left[\mathrm{I}_{3}, \mathrm{w}_{3}, \mathrm{c}_{3}\right]} & \text { example 3 }
\end{array} \longrightarrow\left[\begin{array}{ccc}
l_{1} & w_{1} & c_{1} \\
l_{2} & w_{2} & c_{2} \\
l_{3} & w_{3} & c_{3}
\end{array}\right]
$$

- Also, we will use linear models since they are simple and computationally tractable

What is a Matrix?

- A matrix is a set of elements, organized into rows and columns
rows

Basic Matrix Operations

- addition, subtraction, multiplication by a scalar

$$
\begin{gathered}
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]+\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a+e & b+f \\
c+g & d+h
\end{array}\right] \text { add elements }} \\
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]-\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{ll}
a-e & b-f \\
c-g & d-h
\end{array}\right] \text { subtract elements }} \\
\alpha \cdot\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
\alpha \cdot a & \alpha \cdot b \\
\alpha \cdot c & \alpha \cdot d
\end{array}\right] \text { multiply every entry }
\end{gathered}
$$

Matrix Transpose

- n by m matrix A and its m by n transpose ${ }^{\top} A$

$$
A=\left[\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 m} \\
x_{21} & x_{22} & \cdots & x_{2 m} \\
\vdots & \vdots & \cdots & \vdots \\
x_{n 1} & x_{n 2} & \cdots & x_{n m}
\end{array}\right] \quad A^{T}=\left[\begin{array}{cccc}
x_{11} & x_{21} & \cdots & x_{n 1} \\
x_{12} & x_{22} & \cdots & x_{n 2} \\
\vdots & \vdots & \cdots & \vdots \\
x_{1 m} & x_{2 m} & \cdots & x_{n m}
\end{array}\right]
$$

Vectors

- Vector: N x 1 matrix

$$
v=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

- dot product and magnitude defined on vectors only

vector addition

vector subtraction

More on Vectors

- n -dimensional row vector $x=\left[\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{n}\end{array}\right]$
- Transpose of row vector is column vector $x^{T}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$
- Vector product (or inner or dot product)

$$
\langle x, y\rangle=x \cdot y=x^{T} y=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}=\sum_{i=1 . . n} x_{i} y_{i}
$$

More on Vectors

- Euclidian norm or length $\|x\|=\sqrt{\langle x, x\rangle}=\sqrt{\sum_{i=1 . . . n} x_{i}^{2}}$
- If $\|\boldsymbol{x}\|=1$ we say \boldsymbol{x} is normalized or unit length
- angle q between vectors \boldsymbol{x} and $\boldsymbol{y}: \cos \boldsymbol{\theta}=\frac{x^{T} y}{\|x\|\|y\|}$
- inner product captures direction relationship

More on Vectors

- Vectors x and y are orthonormal if they are orthogonal and $\|x\|=\|y\|=1$
- Euclidian distance between vectors x and y

$$
\|x-y\|=\sqrt{\sum_{i=1 . . n}\left(x_{i}-y_{i}\right)^{2}}
$$

Linear Dependence and Independence

- Vectors $x_{1}, x_{2}, \ldots, x_{n}$ are linearly dependent if there exist constants $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ s.t.
- $\alpha_{1} x_{1}+\alpha_{2} x_{2}+\ldots+\alpha_{n} x_{n}=0$
- $\alpha_{i} \neq 0$ for at least one I
- Vectors $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ are linearly independent if

$$
\alpha_{1} x_{1}+\alpha_{2} x_{2}+\ldots+\alpha_{n} x_{n}=0 \Rightarrow \alpha_{1}=\alpha_{2}=\ldots=\alpha_{n}=0
$$

Vector Spaces and Basis

- The set of all n-dimensional vectors is called a vector space V
- A set of vectors $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ are called a basis for vector space if any \boldsymbol{v} in \boldsymbol{V} can be written as

$$
v=\alpha_{1} u_{1}+\alpha_{2} u_{2}+\ldots+\alpha_{n} u_{n}
$$

- $u_{1}, u_{2}, \ldots, u_{n}$ are independent implies they form a basis, and vice versa
- $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}$ give an orthonormal basis if

1. $\left\|u_{i}\right\|=1 \quad \forall i$
2. $u_{i} \perp u_{j} \quad \forall i \neq j$

Orthonormal Basis

- x, y, \ldots, z form an orthonormal basis

$$
\begin{array}{ll}
x=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]^{T} & x \cdot y=0 \\
y=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]^{T} & x \cdot z=0 \\
z=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]^{T} & y \cdot z=0
\end{array}
$$

Matrix Product

$$
\left.A B=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 d} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \cdots & a_{n d}
\end{array}\right]\left[\begin{array}{ccc}
b_{11} & \cdots & b_{1 m} \\
b_{21} & \cdots & b_{2 m} \\
b_{31} & \cdots & b_{3 m} \\
\vdots & \cdots & \vdots \\
b_{d 1} & \cdots & b_{d m}
\end{array}\right]=\left[\begin{array}{c}
\\
c_{i j}
\end{array}\right] \begin{array}{c}
\\
\\
c_{\mathrm{ij}}=\left\langle a^{\mathrm{i}}, b_{\mathrm{j}}\right\rangle \\
a^{\text {is is row } \boldsymbol{i} \text { of } \boldsymbol{A}} \\
b_{\mathrm{j}} \text { is column } \boldsymbol{j} \text { of } \boldsymbol{B}
\end{array}\right]
$$

- \# of columns of $A=\#$ of rows of B
- even if defined, in general $A B \neq B A$

Matrices

- Rank of a matrix is the number of linearly independent rows (or equivalently columns)
- A square matrix is non-singular if its rank equal to the number of rows. If its rank is less than number of rows it is singular.
- Identity matrix $\quad I=\left[\begin{array}{cccc}1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \cdots & 1\end{array}\right], \boldsymbol{A}_{\boldsymbol{A}}$
- Matrix \boldsymbol{A} is symmetric if $\boldsymbol{A}=\boldsymbol{A}^{\top}$

Matrices

- Inverse of a square matrix \boldsymbol{A} is matrix \boldsymbol{A}^{-1} s.t. $A^{-1} A=1$
- If \boldsymbol{A} is singular or not square, inverse does not exist
- Pseudo-inverse \boldsymbol{A}^{\dagger} is defined whenever $\boldsymbol{A}^{\top} \boldsymbol{A}$ is not singular (it is square)
- $A^{\dagger}=\left(A^{\top} A\right)^{-1} A^{\top}$
- $A^{\dagger} \boldsymbol{A}=\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\top} \boldsymbol{A}=\boldsymbol{I}$

MATLAB

- Starting matlab
- xterm -fn 12X24
- matlab
- Basic Navigation
- quit
- more
- help general
- Scalars, variables, basic arithmetic
- Clear
- + - */ ^
- help arith
- Relational operators
- ==,\&,|, , ,xor
- help relop
- Lists, vectors, matrices
- $A=[23 ; 45]$
- A^{\prime}
- Matrix and vector operations
- find $(A>3)$, colon operator
- * / ^ .* ./ .^
- eye(n),norm(A), $\operatorname{det}(A), \operatorname{eig}(A)$
- max,min,std
- help matfun
- Elementary functions
- help elfun
- Data types
- double
- Char
- Programming in Matlab
- .m files
- scripts
- function $\mathrm{y}=$ square (x)
- help lang
- Flow control
- if $i==1$ else end, if else if end
- for $i=1: 0.5: 2$... end
- while $\mathrm{i}==1$... end
- Return
- help lang
- Graphics
- help graphics
- help graph3d
- File I/O
- load,save
- fopen, fclose, fprintf, fscanf

