
Lecture 2

Introduction to ML

Basic Linear Algebra

Matlab

Some slides on Linear Algebra are from Patrick Nichols

CS4442/9542b

Artificial Intelligence II

Prof. Olga Veksler

Outline

• Introduction to Machine Learning

• Basic Linear Algebra

• Matlab Intro

Intro: What is Machine Learning?

• How to write a computer program that automatically
improves its performance through experience

• Machine learning is useful when it is too difficult to
come up with a program to perform a desired task

• Make computer to learn by showing examples (most
frequently with correct answers)

• “supervised” learning or learning with a teacher

• In practice: computer program (or function) which has
a tunable parameters, tune parameters until the
desirable behavior on the examples

Different Types of Learning

• Learning from examples:

• Supervised Learning: given training examples of
inputs and corresponding outputs, produce the
“correct” outputs for new inputs

• study in this course

• Unsupervised Learning: given only inputs as
training, find structure in the world: e.g. discover
clusters

• Other types, such as reinforcement learning are
not covered in this course

Supervised Machine Learning

• Training samples (or examples) x1,x2,…, xn

• Each example xi is typically multi-dimensional

• xi
1, xi

2 ,…, xi
d are called features, xi is often called a

feature vector

• Example: x1 = {3,7, 35}, x2 = {5, 9, 47}, …

• how many and which features do we take?

• Know desired output for each example y1, y2,…yn

• This learning is supervised (“teacher” gives desired outputs)

• yi are often one-dimensional

• Example: y1 = 1 (“face”), y2 = 0 (“not a face”)

Supervised Machine Learning

• Two types of supervised learning:

• Classification (we will only do classification in this
course):

• yi takes value in finite set, typically called a label

or a class

• Example: yi ∈{“sunny”, ”cloudy”, ”raining”}

• Regression

• yi continuous, typically called an output value

• Example: yi = temperature ∈[-60,60]

Toy Application: fish sorting

fish im
age

fish species salmon

sea bass

sorting

chamber

classifier

Classifier design

• Notice salmon tends to be shorter than sea bass

• Use fish length as the discriminating feature

• Count number of bass and salmon of each length

0

2

4

6

8

10

12

2 4 8 10 12 14

Length

C
o

u
n

t

salmon

sea bass

2 4 8 10 12 14

bass 0 1 3 8 10 5

salmon 2 5 10 5 1 0

Single Feature (length) Classifier

• Find the best length L threshold

fish length < L fish length > L

classify as salmon classify as sea bass

2 4 8 10 12 14

bass 0 1 3 8 10 5

salmon 2 5 10 5 1 0

• For example, at L = 5, misclassified:

• 1 sea bass

• 16 salmon

• Classification error (total error)
17

50
= 34%

• After searching through all possible thresholds L, the
best L= 9, and still 20% of fish is misclassified

0

2

4

6

8

10

12

2 4 8 10 12 14

Length

C
o
u
n
t

salmon

sea bass

fish classified

as salmon

fish classified

as sea bass

Single Feature (length) Classifier

Next Step

• Lesson learned:

• Length is a poor feature alone!

• What to do?

• Try another feature

• Salmon tends to be lighter

• Try average fish lightness

Single Feature (lightness) Classifier

• Now fish are classified best at lightness

threshold of 3.5 with classification error of 8%

0

2

4

6

8

10

12

14

1 2 3 4 5

Lightness

C
o
u
n
t

salmon

sea bass

1 2 3 4 5

bass 0 1 2 10 12

salmon 6 10 6 1 0

bass

salm
on

Can do better by feature combining

• Use both length and lightness features

• Feature vector [length,lightness]

length

li
g

h
tn

e
ss

decision

boundary

• Classification error 4%

decision regions

Even Better Decision Boundary

• Decision boundary (wiggly) with 0% classification error

length

lig
h
tn

e
s
s

Test Classifier on New Data

• The goal is for classifier to perform well on new data

• Test “wiggly” classifier on new data: 25% error

length

lig
h

tn
e

s
s

What Went Wrong?

• We always have only a limited amount of data, not all
possible data

• We should make sure the decision boundary does not
adapt too closely to the particulars of the data we have
at hand, but rather grasps the “big picture”

added 2 samples

• Complicated boundaries overfit the data, they are too
tuned to the particular training data at hand

• Therefore complicated boundaries tend to not
generalize well to the new data

• We usually refer to the new data as “test” data

What Went Wrong: Overfitting

Overfitting: Extreme Example

• Say we have 2 classes: face and non-face images

• Memorize (i.e. store) all the “face” images

• For a new image, see if it is one of the stored faces

• if yes, output “face” as the classification result

• If no, output “non-face”

• also called “rote learning”

• problem: new “face” images are different from stored

“face” examples

• zero error on stored data, 50% error on test (new) data

• Rote learning is memorization without generalization

slide is modified from Y. LeCun

Generalization
training data

• The ability to produce correct outputs on previously unseen

examples is called generalization

• The big question of learning theory: how to get good generalization

with a limited number of examples

• Intuitive idea: favor simpler classifiers

• William of Occam (1284-1347): “entities are not to be multiplied without necessity”

• Simpler decision boundary may not fit ideally to the training data

but tends to generalize better to new data

test data

• We can also underfit data, i.e. use too simple decision
boundary

• chosen model is not expressive enough

• There is no way to fit a linear decision boundary so that
the training examples are well separated

• Training error is too high

• test error is, of course, also high

Underfitting

Underfitting → Overfitting

underfitting “just right” overfitting

Sketch of Supervised Machine Learning

• Chose a learning machine f(x,w)

• w are tunable weights

• x is the input sample

• f(x,w) should output the correct class of sample x

• use labeled samples to tune weights w so that f(x,w)

give the correct label for sample x

• Which function f(x,w) do we choose?

• has to be expressive enough to model our problem
well, i.e. to avoid underfitting

• yet not to complicated to avoid overfitting

Training and Testing

• There are 2 phases, training and testing

• Divide all labeled samples x1,x2,…xn into 2 sets,

training set and test set

• Training phase is for “teaching” our machine (finding

optimal weights w)

• Testing phase is for evaluating how well our machine

works on unseen examples

Training Phase

• Find the weights w s.t. f(xi,w) = yi “as much as

possible” for training samples (xi, yi)

• “as much as possible” needs to be defined

• How do we find parameters w to ensure

f(xi,w) = yi for most training samples (xi,yi) ?

• This step is usually done by optimization, can be

quite time consuming

Testing Phase

• The goal is to design machine which performs

well on unseen examples

• Evaluate the performance of the trained

machine f(x,w) on the test samples (unseen

labeled samples)

• Testing the machine on unseen labeled examples

lets us approximate how well it will perform in

practice

• If testing results are poor, may have to go back

to the training phase and redesign f(x,w)

Generalization and Overfitting

• Generalization is the ability to produce correct

output on previously unseen examples

• In other words, low error on unseen examples

• Good generalization is the main goal of ML

• Low training error does not necessarily imply that

we will have low test error

• we have seen that it is easy to produce f(x,w) which is

perfect on training samples (rote “learning”)

• Overfitting

• when the machine performs well on training data but

poorly on test data

Classification System Design Overview
• Collect and label data by hand

salmon salmon salmonsea bass sea bass sea bass

• Preprocess by segmenting fish from background

• Extract possibly discriminating features

• length, lightness, width, number of fins,etc.

• Classifier design

• Choose model for classifier

• Train classifier on training data

• Test classifier on test data

• Split data into training and test sets

we look at these two

steps in this course

Basic Linear Algebra

• Basic Concepts in Linear Algebra

• vectors and matrices

• products and norms

• vector spaces and linear transformations

• Introduction to Matlab

Why Linear Algebra?
• For each example (e.g. a fish image), we extract a set

of features (e.g. length, width, color)

• This set of features is represented as a feature vector

• [length, width, color]

• Also, we will use linear models since they are simple

and computationally tractable

• All collected examples will be represented as

collection of (feature) vectors

[l1, w1 , c1]

[l2 , w2 , c2]

[l3 , w3 , c3]

example 1

example 2

example 3














333

222

111

cwl

cwl

cwl

matrix

What is a Matrix?

• A matrix is a set of elements, organized into
rows and columns

















6946

9441

10672

rows

columns

example 1

example 2

example 3

fe
a

tu
re

 4

fe
a

tu
re

 3

fe
a

tu
re

 2

fe
a

tu
re

 1

Basic Matrix Operations

• addition, subtraction, multiplication by a scalar










++

++
=








+








hdgc

fbea

hg

fe

dc

ba










−−

−−
=








−








hdgc

fbea

hg

fe

dc

ba

add elements

subtract elements










⋅⋅

⋅⋅
=







⋅

dc

ba

dc

ba

αα

αα
α multiply every entry

Matrix Transpose



















=

nmnn

m

m

xxx

xxx

xxx

A

L

MLMM

L

L

21

22221

11211



















=

nmmm

n

n

T

xxx

xxx

xxx

A

L

MLMM

L

L

21

22212

12111

T
• n by m matrix A and its m by n transpose A

Vectors

• Vector: N x 1 matrix

• dot product and magnitude defined on vectors only







====
2

1

x

x
v

x1

v

x2

x1

a

x2

b

vector addition vector subtraction

a+b

x1

a

x2

b

a-b

More on Vectors

• n-dimensional row vector []nxxxx K
21

=



















=

n

T

x

x

x

x
M

2

1

• Transpose of row vector is column vector

• Vector product (or inner or dot product)

∑
=

=+++==⋅=
ni

iinn

T
yxyxyxyxyxyxyx

K

K
1

2211
,

More on Vectors

yx

yx
cos

T

====θθθθ• angle q between vectors x and y :

• Euclidian norm or length ∑∑∑∑
====

========
ni

ixxxx
K1

2
,

• If ||x|| =1 we say x is normalized or unit length

• inner product captures direction relationship

0====θθθθcos

0====yx
T

yx ⊥

x

y

1cos =θ

0>= yxyx
T

x

y

1cos −=θ

0<−= yxyx
T

x

y

More on Vectors

• Euclidian distance between vectors x and y

(((())))∑∑∑∑
====

−−−−====−−−−
ni

ii yxyx
K1

2

• Vectors x and y are orthonormal if they are

orthogonal and ||x|| = ||y|| =1

x

y

x-y

Linear Dependence and Independence

• Vectors x1, x2,…, xn are linearly dependent if

there exist constants α1, α2,…, αn s.t.

• α1x1+ α2x2+…+αnxn = 0

• αi ≠ 0 for at least one I

• Vectors x1, x2,…, xn are linearly independent if

α1x1+ α2x2+…+αnxn = 0 ⇒ α1 = α2=…= αn= 0

Vector Spaces and Basis

• The set of all n-dimensional vectors is called a

vector space V

• A set of vectors {u1,u2,…, un } are called a basis

for vector space if any v in V can be written as

v = α1u1+ α2u2+…+αnun

• u1,u2,…, un are independent implies they form a

basis, and vice versa

• u1,u2,…, un give an orthonormal basis if

1.

2.

iui ∀∀∀∀====1

jiuu ji ≠∀⊥

Orthonormal Basis

0

0

0

=⋅

=⋅

=⋅

zy

zx

yx[]

[]

[]T

T

T

z

y

x

100

010

001

=

=

=

• x, y,…, z form an orthonormal basis

Matrix Product














====
































==== ij

dmd

m

m

m

ndnnn

d

c

bb

bb

bb

bb

aaaa

aaaa

AB

L
MLM

L

L

L

L
MMMMM

L

1

331

221

111

321

1131211

• # of columns of A = # of rows of B

• even if defined, in general AB ≠ BA

cij = 〈ai, bj〉
ai is row i of A

bj is column j of B

Matrices
• Rank of a matrix is the number of linearly

independent rows (or equivalently columns)

• A square matrix is non-singular if its rank equal

to the number of rows. If its rank is less than

number of rows it is singular.

• Identity matrix



















=

100

00

010

001

L

MO

L

L

I

AI=IA=A

T
• Matrix A is symmetric if A=A



















4685

6349

8472

5921

Matrices

• Inverse of a square matrix A is matrix A s.t.

AA = I

-1

-1

• If A is singular or not square, inverse does not

exist

• Pseudo-inverse A is defined whenever A A is

not singular (it is square)

� A = (A A) A

� AA =(A A) AA=I
T

T

T

-1

-1

T

T

MATLAB

• Starting matlab

• xterm -fn 12X24

• matlab

• Basic Navigation

• quit

• more

• help general

• Scalars, variables, basic arithmetic

• Clear

• + - * / ^

• help arith

• Relational operators

• ==,&,|,~,xor

• help relop

• Lists, vectors, matrices

• A=[2 3;4 5]

• A’

• Matrix and vector operations

• find(A>3), colon operator

• * / ^ .* ./ .^

• eye(n),norm(A),det(A),eig(A)

• max,min,std

• help matfun

• Elementary functions

• help elfun

• Data types

• double

• Char

• Programming in Matlab

• .m files

• scripts

• function y=square(x)

• help lang

• Flow control

• if i== 1else end, if else if end

• for i=1:0.5:2 … end

• while i == 1 … end

• Return

• help lang

• Graphics

• help graphics

• help graph3d

• File I/O

• load,save

• fopen, fclose, fprintf, fscanf

