CS4442/9542b Artificial Intelligence II prof. Olga Veksler

> Lecture 5 Machine Learning **Boosting**

Boosting: Motivation

- Hard to design accurate classifier which generalizes well
- Easy to find many rule of thumb or weak classifiers
 - a classifier is weak if it is slightly better than random guessing
 - example: if an email has word "money" classify it as spam, otherwise classify it as not spam
 - likely to be better than random guessing
- Can we combine several weak classifiers to produce an accurate classifier?
 - Question people have been working on since 1980's
 - Ada-Boost (1996) was the first practical boosting algorithm

Ada Boost

- Assume 2-class problem, with labels +1 and -1
 - **y**ⁱ in {-1,1}
- Ada boost produces a discriminant function: $\mathbf{g}(\mathbf{x}) = \sum_{t=1}^{T} \alpha_t \mathbf{h}_t(\mathbf{x}) = \alpha_1 \mathbf{h}_1(\mathbf{x}) + \alpha_2 \mathbf{h}_2(\mathbf{x}) + \dots \alpha_T \mathbf{h}_T(\mathbf{x})$
- Where **h**_t(**x**) is a weak classifier, for example:
 - $\mathbf{h}_{\mathbf{t}}(\mathbf{x}) = \begin{cases} -1 & \text{if email has word "money"} \\ 1 & \text{if email does not have word "money"} \end{cases}$
- The final classifier is the sign of the discriminant function $\mathbf{f}_{\text{final}}(\mathbf{x}) = \text{sign}[\mathbf{g}(\mathbf{x})]$

Idea Behind Ada Boost

- Algorithm is iterative
- Maintains distribution of weights over the training examples
- Initially weights are equal
- Main Idea: at successive iterations, the weight of misclassified examples is increased
- This forces the algorithm to concentrate on examples that have not been classified correctly so far

Idea Behind Ada Boost

- Examples of high weight are shown more often at later rounds
- Face/nonface classification problem:

Round 2best weak classifier: \checkmark \checkmark </t

Idea Behind Ada Boost

Round 3

- out of all available weak classifiers, we choose the one that works best on the data we have at round 3
- we assume there is always a weak classifier better than random (better than 50% error)
- - image is half of the data given to the classifier
- chosen weak classifier has to classify this image correctly

More Comments on Ada Boost

- Ada boost is very simple to implement, provided you have an implementation of a "weak learner"
- Will work as long as the "basic" classifier h_t(x) is at least slightly better than random
 - will work if the error rate of $h_t(x)$ is less than 0.5
 - 0.5 is the error rate of a random guessing for a 2-class problem
- Can be applied to boost any classifier, not necessarily weak
 - but there may be no benefits in boosting a "strong" classifier

Ada Boost for 2 Classes

Initialization step: for each example x, set $D(x) = \frac{1}{N}$, where N is the number of examples **Iteration step** (for **t** = 1...T):

- Find best weak classifier $\mathbf{h}_{t}(\mathbf{x})$ using weights $\mathbf{D}(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{y}^{i} \neq \mathbf{h}_{t}(\mathbf{x}^{i}) \\ 0 & \text{otherwise} \end{cases}$
- Compute the error rate ϵ_{t} as 2.

1.

$$\varepsilon_{t} = \sum_{i=1}^{N} D(\mathbf{x}^{i}) \cdot I[\mathbf{y}^{i} \neq \mathbf{h}_{t}(\mathbf{x}^{i})]$$

compute weight α_{t} of classifier \mathbf{h}_{t} 3.

$$\alpha_{t} = \log ((1 - \varepsilon_{t}) / \varepsilon_{t})$$

- For each \mathbf{x}^i , $\mathbf{D}(\mathbf{x}^i) = \mathbf{D}(\mathbf{x}^i) \cdot \exp(\alpha_t \cdot \mathbf{I}[\mathbf{y}^i \neq \mathbf{h}_t(\mathbf{x}^i)])$ 4.
- $\sum_{i=1}^{N} \mathbf{D}(\mathbf{x}^{i}) = 1$ Normalize **D**(**x**ⁱ) so that 5.

$$\mathbf{f}_{\text{final}}(\mathbf{x})$$
 =sign [$\sum \alpha_{t} \, \mathbf{h}_{t} \, (\mathbf{x})$]

- 1. Find best weak classifier $h_t(x)$ using weights D(x)
 - some classifiers accept weighted samples, but most don't
 - if classifier does not take weighted samples, sample from the training samples according to the distribution **D**(**x**)

1/16 1/4 1/16 1/16 1/4 1/16 1/4

• Draw k samples, each x with probability equal to D(x):

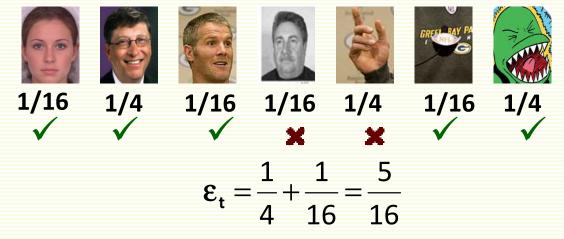
- 1. Find best weak classifier **h**_t(**x**) using weights **D**(**x**)
- Give to the classifier the re-sampled examples:

 To find the best weak classifier, go through all weak classifiers, and find the one that gives the smallest error on the re-sampled examples

weak
classifiers
$$h_1(x)$$
 $h_2(x)$ $h_3(x)$ $h_m(x)$ errors:0.460.360.160.43the best classifier $h_t(x)$
to choose at iteration t

2. Compute ε_t the error rate as

$$\boldsymbol{\varepsilon}_{t} = \sum_{i=1}^{N} \mathbf{D}(\mathbf{x}^{i}) \cdot \mathbf{I}[\mathbf{y}^{i} \neq \mathbf{h}_{t}(\mathbf{x}^{i})] = \begin{cases} 1 & \text{if } \mathbf{y}^{i} \neq \mathbf{h}_{t}(\mathbf{x}^{i}) \\ 0 & \text{otherwise} \end{cases}$$



- $\boldsymbol{\epsilon}_t$ is the weight of all misclassified examples added
 - the error rate is computed over original examples, not the re-sampled examples
- If a weak classifier is better than random, then $\varepsilon_{\rm t}$ < $\frac{1}{2}$

3. compute weight α_t of classifier \mathbf{h}_t $\alpha_t = \log ((1 - \varepsilon_t)/\varepsilon_t)$

n example from previous slide:

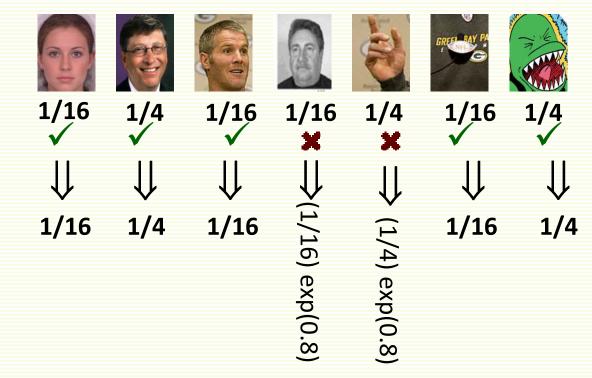
$$\epsilon_t = \frac{5}{16} \implies \alpha_t = \log \frac{1 - \frac{5}{16}}{\frac{5}{16}} = \log \frac{11}{5} \approx 0.8$$

- Recall that $\epsilon_{t} < \frac{1}{2}$
- Thus $(1 \varepsilon_t) / \varepsilon_t > 1 \implies \alpha_t > 0$
- The smaller is ϵ_t , the larger is α_t , and thus the more importance (weight) classifier $h_t(x)$

final(x) =sign [$\sum \alpha_t h_t(x)$]

4. For each \mathbf{x}^i , $\mathbf{D}(\mathbf{x}^i) = \mathbf{D}(\mathbf{x}^i) \cdot \exp(\alpha_t \cdot \mathbf{I}[\mathbf{y}^i \neq \mathbf{h}_t(\mathbf{x}^i)])$

from previous slide $\alpha_t = 0.8$



weight of misclassified examples is increased

5. Normalize $D(x^i)$ so that $\sum D(x^i) = 1$

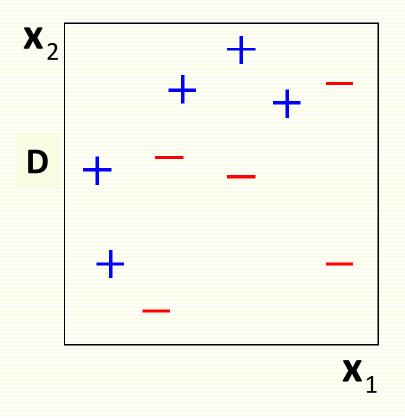
from previous slide:

• after normalization

• In Matlab, if **D** is weights vector, normalize with

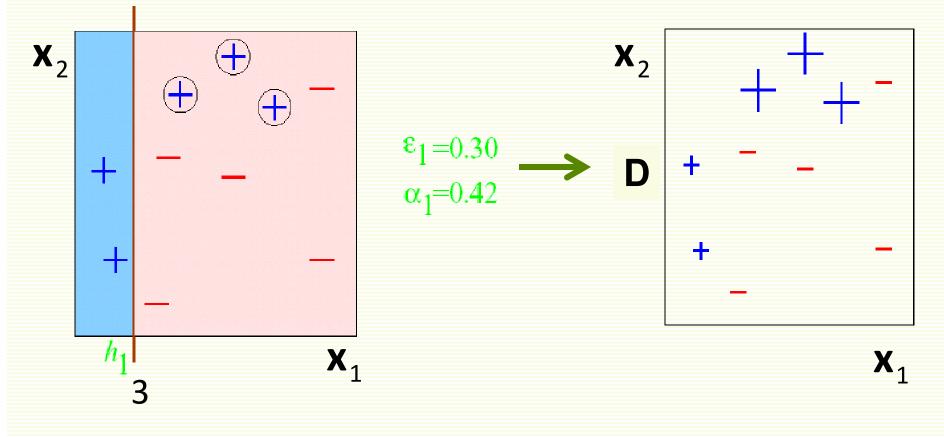
D = **D**./sum(**D**)

• Initialization: all examples have equal weights



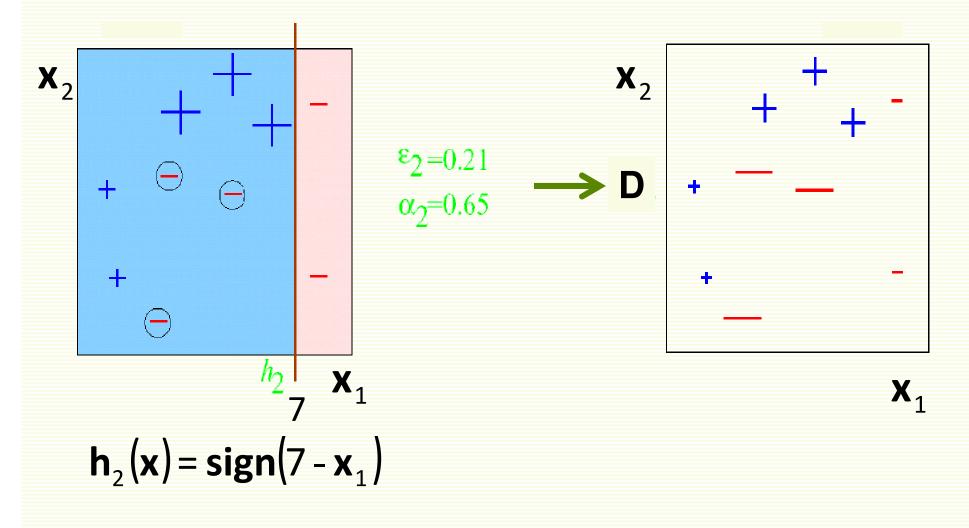
from "A Tutorial on Boosting" by Yoav Freund and Rob Schapire

ROUND 1

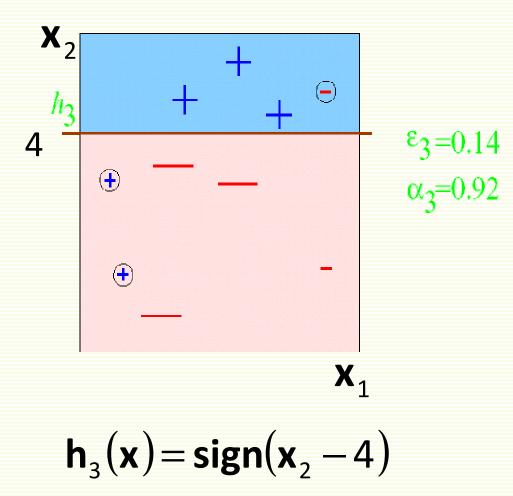


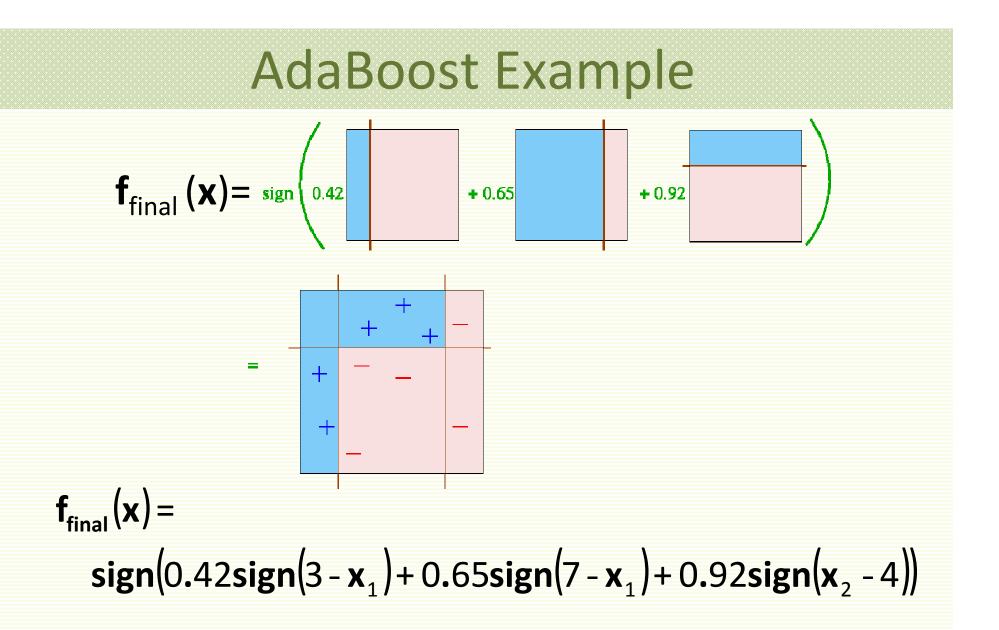
 $\mathbf{h}_1(\mathbf{x}) = \mathbf{sign}(3 - \mathbf{x}_1)$

ROUND 2



ROUND 3





note non-linear decision boundary

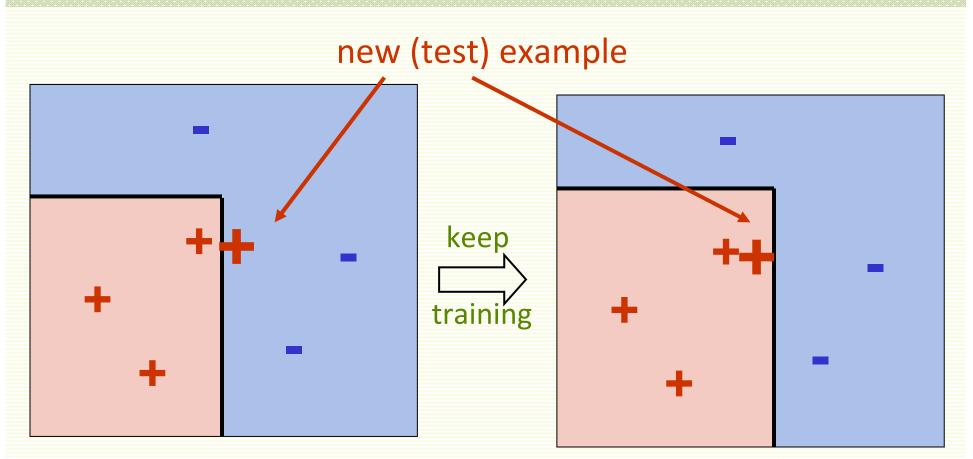
AdaBoost Comments

- Can show that training error drops exponentially fast $Err_{train} \leq exp(-2\sum_{t}\gamma_{t}^{2})$
- Here $\gamma_t = \epsilon_t 1/2$, where ϵ_t is classification error at round t
- Example: let errors for the first four rounds be, 0.3, 0.14, 0.06, 0.03, 0.01 respectively. Then

 $\operatorname{Err}_{\operatorname{train}} \leq \exp\left[-2\left(0.2^{2} + 0.36^{2} + 0.44^{2} + 0.47^{2} + 0.49^{2}\right)\right] \approx 0.19$

AdaBoost Comments

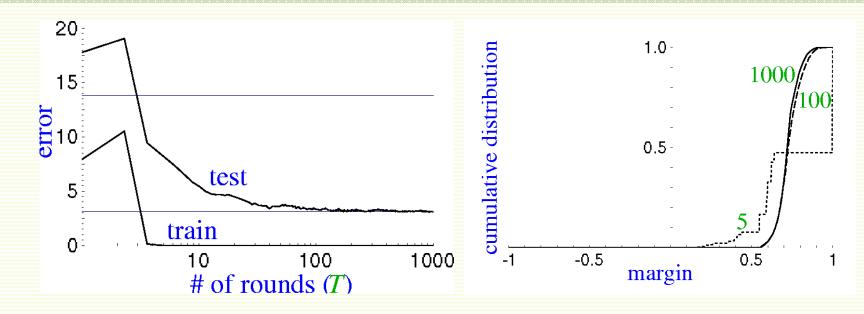
- We are really interested in the generalization properties of f_{FINAL}(x), not the training error
- AdaBoost was shown to have excellent generalization properties in practice
 - the more rounds, the more complex is the final classifier, so overfitting is expected as the training proceeds
 - but in the beginning researchers observed no overfitting of the data
 - It turns out it does overfit data eventually, if you run it really long
- It can be shown that boosting increases the margins of training examples, as iterations proceed
 - larger margins help better generalization
 - margins continue to increase even when training error reaches zero
 - helps to explain empirically observed phenomena: test error continues to drop even after training error reaches zero



• zero training error

- zero training error
- larger margins helps better genarlization

Margin Distribution



Iteration number	5	100	1000
training error	0.0	0.0	0.0
test error	8.4	3.3	3.1
%margins≤0.5	7.7	0.0	0.0
Minimum margin	0.14	0.52	0.55

Practical Advantages of AdaBoost

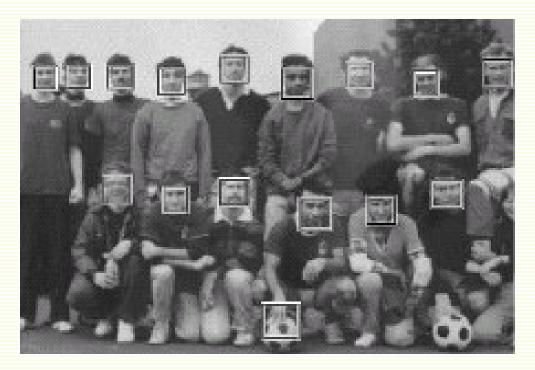
- Can construct arbitrarily complex decision regions
- Fast
- Simple
- Has only one parameter to tune, T
- Flexible: can be combined with any classifier
- provably effective (assuming weak learner)
 - shift in mind set: goal now is merely to find hypotheses that are better than random guessing

Caveats

- AdaBoost can <u>fail</u> if
 - weak hypothesis too complex (overfitting)
 - weak hypothesis too weak ($\gamma_t \rightarrow 0$ too quickly),
 - underfitting
- empirically, AdaBoost seems especially susceptible to noise
 - noise is the data with wrong labels

Applications

• Face Detection



Object Detection

http://www.youtube.com/watch?v=2_0SmxvDbKs