CS4442/9542b Artificial Intelligence II prof. Olga Veksler

> Lecture 7 Machine Learning Validation and Cross-Validation

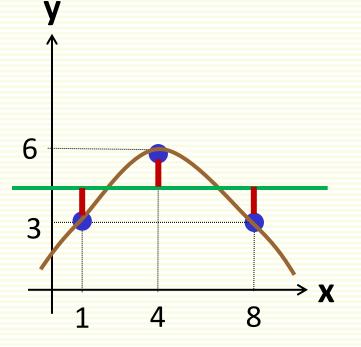
> > Many slides from Andrew Ng, Andrew Moore

Outline

- Performance evaluation and model selection methods
 - validation
 - cross-validation
 - k-fold
 - Leave-one-out

Regression

- In this lecture, it's convenient to show examples in the context of regression
- In regression, labels yⁱ are continuous
- Classification/regression are solved very similarly
- Everything we have done so far transfers to regression with very minor changes
- Error: sum of distances from examples to the fitted model



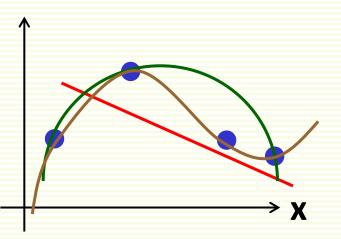
Training/Test Data Split

- Talked about splitting data in training/test sets
 - training data is used to fit parameters
 - test data is used to assess how classifier generalizes to new data
- What if classifier has "non-tunable" parameters?
 - a parameter is "non-tunable" if tuning (or training) it on the training data leads to overfitting
 - Examples:
 - k in kNN classifier
 - number of hidden units in MNN
 - number of hidden layers in MNN
 - etc...

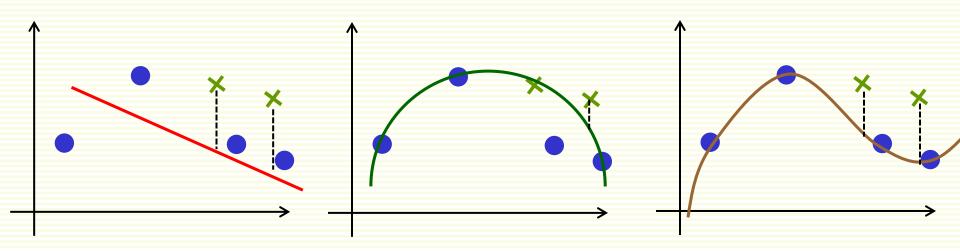
Example of Overfitting

y

- Want to fit a polynomial machine f(x,w)
- Instead of fixing polynomial degree, make it parameter d
 - learning machine **f**(**x**,**w**,**d**)
- Consider just three choices for d
 - degree 1
 - degree 2
 - degree 3
 - Training error is a bad measure to choose **d**
 - degree 3 is the best according to the training error, but overfits the data



Training/Test Data Split



- What about test error? Seems appropriate
 - degree 2 is the best model according to the test error
- Except what do we report as the test error now?
- Test error should be computed on data that was not used for training at all
- Here used "test" data for training, i.e. choosing model

Validation data

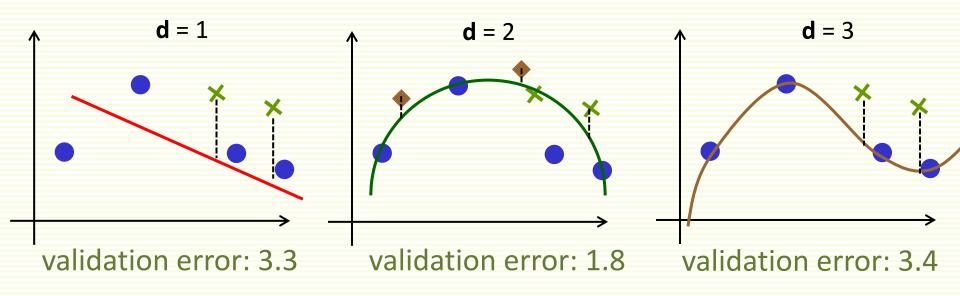
- Same question when choosing among several classifiers
 - our polynomial degree example can be looked at as choosing among 3 classifiers (degree 1, 2, or 3)
- Solution: split the labeled data into three parts

labeled data			
Training ≈60%	Validation ≈20%	Test ≈20%	
train tunable parameters w	train other parameters, or to select classifier	use only to assess final performance	

Training/Validation/Test

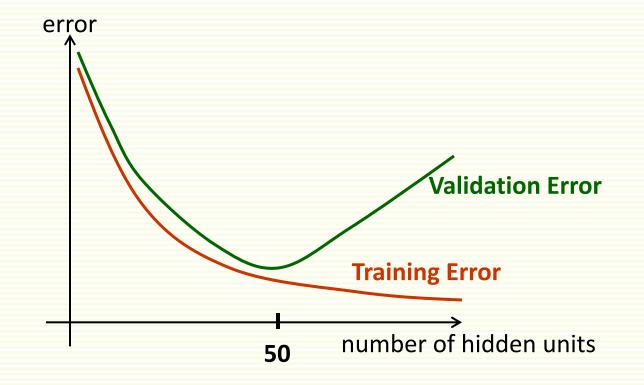
labeled data			
	Training ≈60%	Validation ≈20%	Test ≈20%
	Training error: computed on training examples	Validation error: computed on validation examples	Test error: computed on test examples

Training/Validation/Test Data



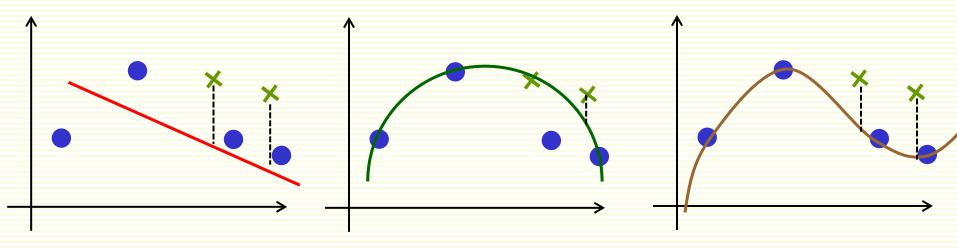
- Training Data
- Validation Data
 - **d** = 2 is chosen
- Test Data
 - 1.3 test error computed for **d** = 2

Choosing Parameters: Example



- Need to choose number of hidden units for a MNN
 - The more hidden units, the better can fit training data
 - But at some point we overfit the data

Diagnosing Underfitting/Overfitting



Underfitting

- large training error
- large validation error

Just Right

- small training error
- small validation error

Overfitting

- small training error
- large validation error

Fixing Underfitting/Overfitting

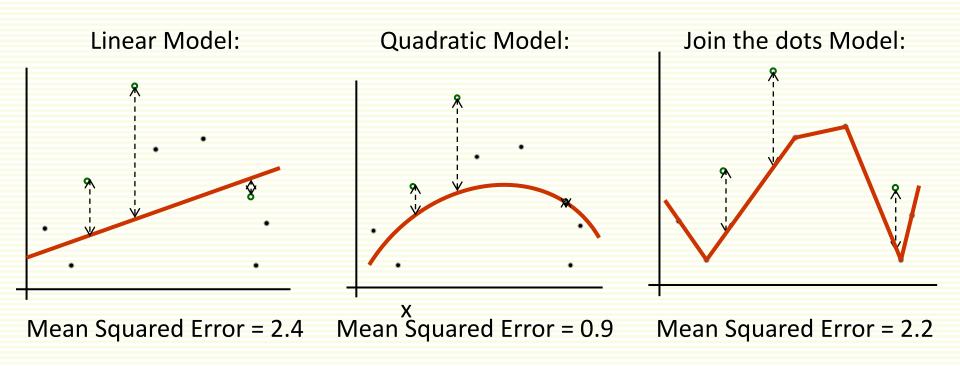
- Fixing Underfitting
 - getting more training examples will not help
 - get more features
 - try more complex classifier
 - if using MNN, try more hidden units
- Fixing Overfitting
 - getting more training examples might help
 - try smaller set of features
 - Try less complex classifier
 - If using MNN, try less hidden units

Train/Test/Validation Method

- Good news
 - Very simple
- Bad news:
 - Wastes data
 - in general, the more data we have, the better are the estimated parameters
 - we estimate parameters on 40% less data, since 20% removed for test and 20% for validation data
 - If we have a small dataset our validation set might just be lucky or unlucky

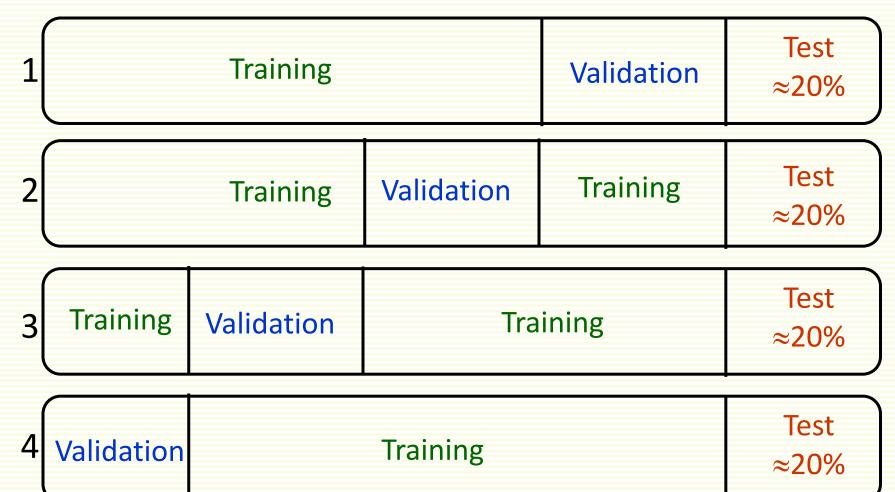
Small Dataset

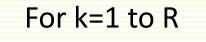
"Unlucky" validation set:



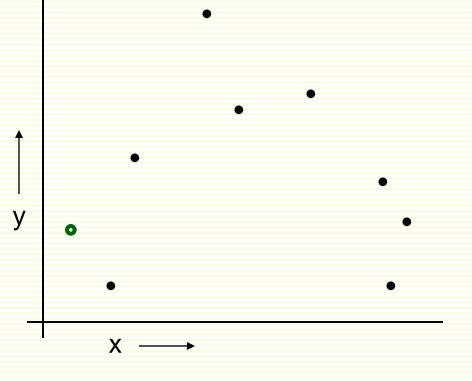
Cross Validation

- Create multiple spits of training/validation
- Average results over splits





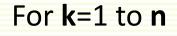
1. Let $(\mathbf{x}^k, \mathbf{y}^k)$ be the **k** example



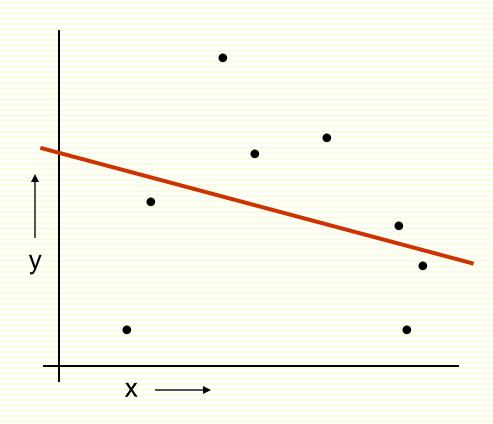
.

У

Х



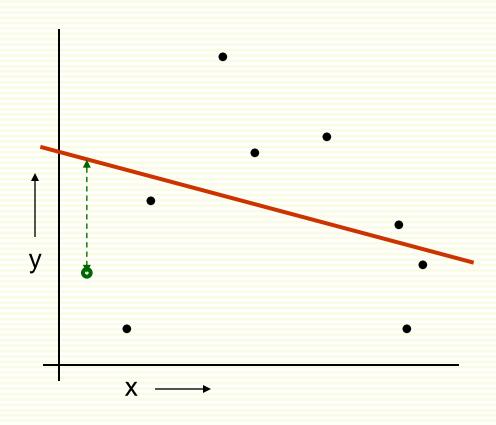
- 1. Let $(\mathbf{x}^k, \mathbf{y}^k)$ be the **k**th example
- Temporarily remove (x^k,y^k) from the dataset



For **k**=1 to **n**

1. Let $(\mathbf{x}^k, \mathbf{y}^k)$ be the **k**th example

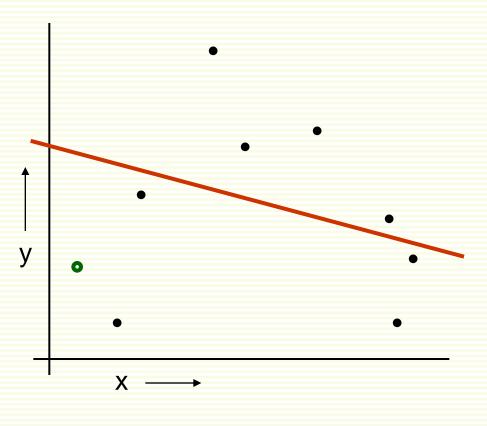
- Temporarily remove (x^k,y^k) from the dataset
- 3. Train on the remaining **n**-1 examples



For **k**=1 to **n**

1. Let $(\mathbf{x}^k, \mathbf{y}^k)$ be the **k**th example

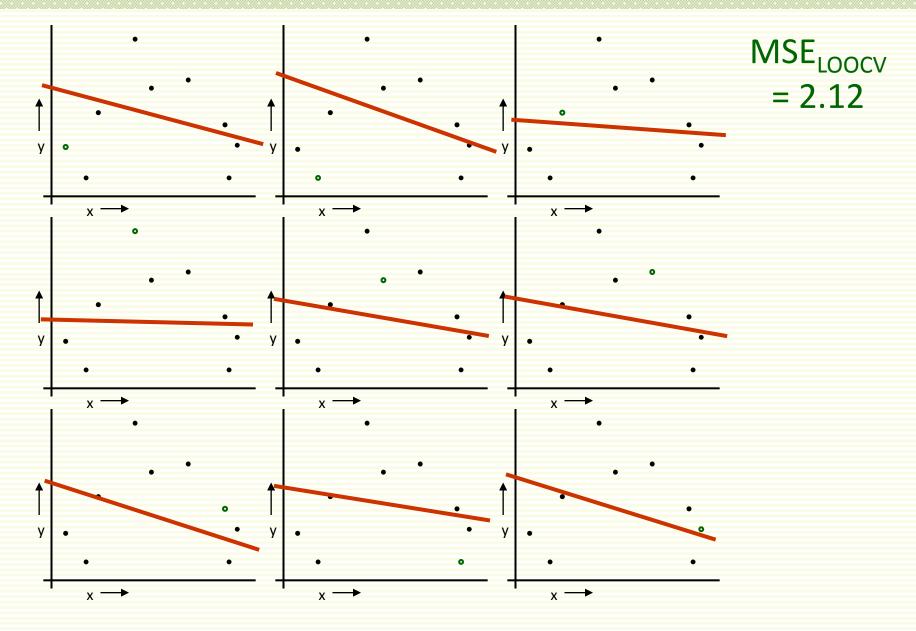
- Temporarily remove (x^k,y^k) from the dataset
- 3. Train on the remaining **n**-1 examples
- 4. Note your error on (**x**^k,**y**^k)



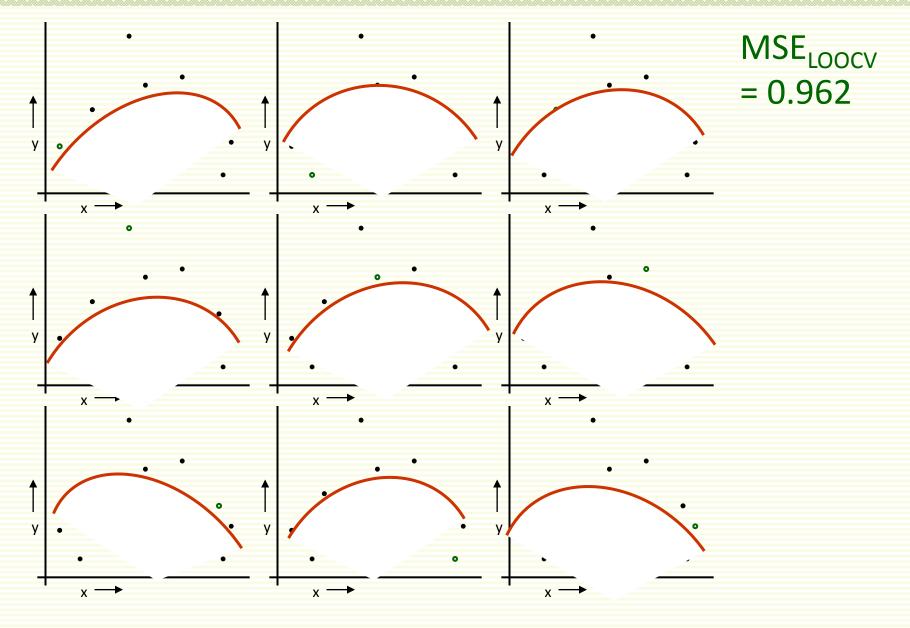
For **k**=1 to **n**

- 1. Let $(\mathbf{x}^k, \mathbf{y}^k)$ be the **k**th example
- Temporarily remove (x^k,y^k) from the dataset
- Train on the remaining n-1 examples
- 4. Note your error on (**x**^k, **y**^k)

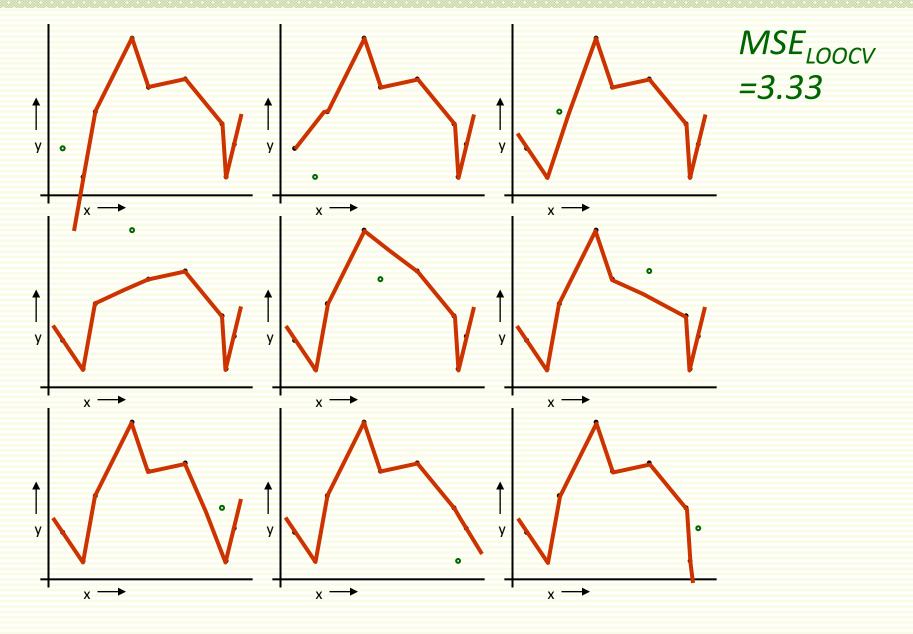
When you've done all points, report the mean error



LOOCV for Quadratic Regression



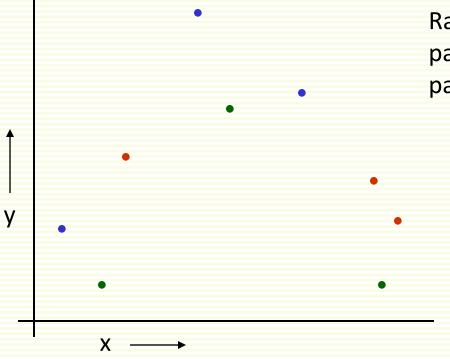
LOOCV for Join The Dots



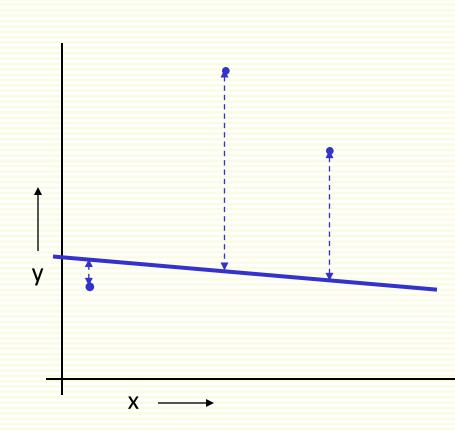
Which kind of Cross Validation?

	Downside	Upside
Validation- set	may give unreliable estimate of future performance	cheap
Leave-one- out	expensive	doesn't waste data

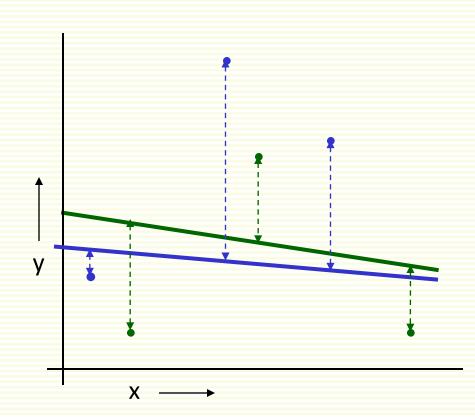
• Can we get the best of both worlds?



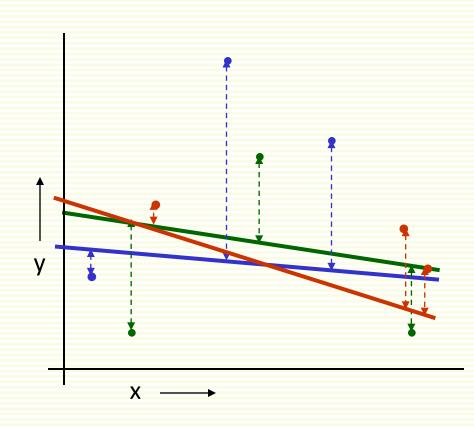
Randomly break the dataset into k partitions in this example we'll have k=3 partitions colored Red Green and Blue)



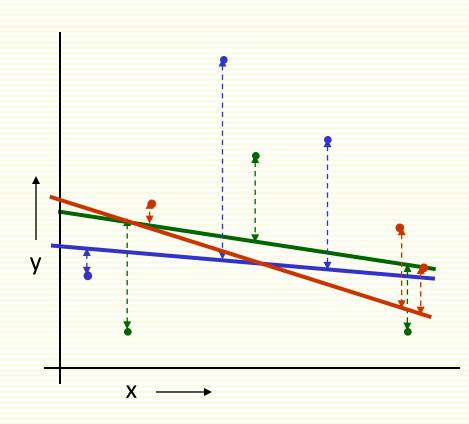
- Randomly break the dataset into k partitions
- in example have k=3 partitions colored red green and blue
- For the blue partition: train on all points not in the blue partition. Find test-set sum of errors on blue points



- Randomly break the dataset into k partitions
- in example have k=3 partitions colored red green and blue
- For the blue partition: train on all points not in the blue partition. Find sum of errors on blue points
- For the green partition: train on all points not in green partition. Find sum of errors on green points

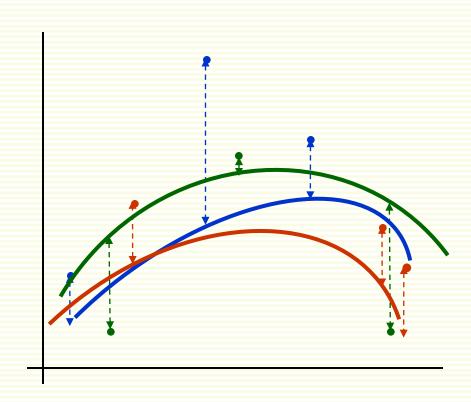


- Randomly break the dataset into k partitions
- in example have k=3 partitions colored red green and blue
- For the blue partition: train on all points not in the blue partition. Find sum of errors on blue points
- For the green partition: train on all points not in green partition. Find sum of errors on green points
- For the red partition: train on all points not in red partition. Find sum of errors on red points



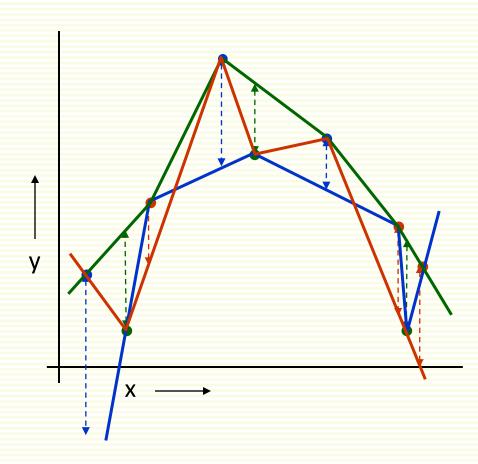
Linear Regression MSE_{3FOLD}=2.05

- Randomly break the dataset into k partitions
- in example have k=3 partitions colored red green and blue
- For the blue partition: train on all points not in the blue partition. Find sum of errors on blue points
- For the green partition: train on all points not in green partition. Find sum of errors on green points
- For the red partition: train on all points not in red partition. Find sum of errors on red points
- Report the mean error



Quadratic Regression MSE_{3FOLD}=1.11

- Randomly break the dataset into k partitions
- in example have k=3 partitions colored red green and blue
- For the blue partition: train on all points not in the blue partition. Find sum of errors on blue points
- For the green partition: train on all points not in green partition. Find sum of errors on green points
- For the red partition: train on all points not in red partition. Find sum of errors on red points
- Report the mean error



Joint-the-dots MSE_{3FOLD}= 2.93

- Randomly break the dataset into k partitions
- in example have k=3 partitions colored red green and blue
- For the blue partition: train on all points not in the blue partition. Find sum of errors on blue points
- For the green partition: train on all points not in green partition. Find sum of errors on green points
- For the red partition: train on all points not in red partition. Find sum of errors on red points
- Report the mean error

Which kind of Cross Validation?

	Downside	Upside	
Validation- set	may give unreliable estimate of future performance	cheap	
Leave- one-out	expensive	doesn't waste data	
10-fold	wastes 10% of the data,10 times more expensive than validation set	only wastes 10%, only 10 times more expensive instead of n times	
3-fold	wastes more data than 10- fold, more expensive than validation set	slightly better than validation-set	
N-fold	Identical to Leave-one-out		

CV-based Model Selection

- We're trying to decide which algorithm to use.
- We train each machine and make a table...

f _i	Training Error	10-FOLD-CV Error	Choice
f ₁			
f ₂			
f ₃			\boxtimes
f ₄			
f ₅			
f ₆			

CV-based Model Selection

- Example: Choosing "k" for a k-nearest-neighbor regression.
- Step 1: Compute LOOCV error for six different model classes:

Algorithm	Training Error	10-fold-CV Error	Choice
k =1			
k =2			
k =3			
k =4			\boxtimes
k =5			
k =6			

- Step 2: Choose model that gave best CV score
- Train it with all the data, and that's the final model you'll use

CV-based Model Selection

- Why stop at **k**=6?
 - No good reason, except it looked like things were getting worse as K was increasing
- Are we guaranteed that a local optimum of K vs LOOCV will be the global optimum?
 - No, in fact the relationship can be very bumpy
- What should we do if we are depressed at the expense of doing LOOCV for k = 1 through 1000?
 - Try: **k**=1, 2, 4, 8, 16, 32, 64, ...,1024
 - Then do hillclimbing from an initial guess at **k**

Cross Validation Notes

• After we chose non-tunable parameters/classifiers, retrain chosen classifier on all training data

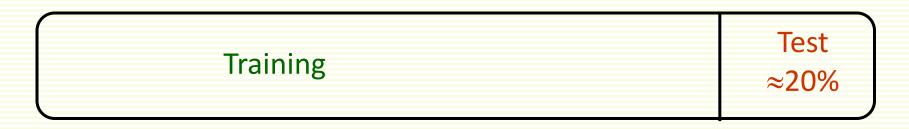
	Training		Validation	Test
			Vandation	≈20%
	Training	Validation	Training	Test ≈20%
		Training		Test
Training	Validation	Tra	ining	≈20%

- Based on 4-fold cross validation error, chose T = 200 for Adaboost
- Retrain AdaBoost classifier with T = 200 on all Training data now:

Training	Test
Training	≈20%

Cross Validation Notes

• Should still have separate Test set, not touched during cross-validation



- Sometime report just CV-results, no separate Test data
- Common practice, but should be aware that extensive use of CV could overfit to the data