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Outline 

• Object Recognition with Deep Neural Nets 
• Convolutional Neural Network 

 
 



Traditional Object Classification 
• Tradition Object Classification system 
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• A lot of work to design good features by hand 



NN as Nonlinear Feature Mapping 

• With NN, change in paradigm: instead of hand-
crafting , learn features automatically from data 
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• Deep architecture works well for  hierarchical feature 
extraction 

• hierarchies features are especially natural in vision 

• Each stage is a trainable feature transform 
• Level of abstraction increases up the hierarchy 

 
 

 
 

 
 

 

Why Deep Networks: Hierarchical Feature Extraction 

Input layer  
pixels 

First layer  
edges 

Second layer  
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Early Work on Deep Networks 
• Fukushima (1980) – Neo-Cognitron 
• LeCun (1998) – Convolutional Networks (convnets) 

• Similarities to Neo-Cognitron 

• Other attempts at deeply layered Networks 
trained with backpropagation 
• not much success 

• very slow 
• diffusion of gradient 

• recent work has shown significant training 
improvements with various tricks (drop-out, 
unsupervised learning of early layers, etc.) 



ConvNets: Prior Knowledge for Network Architecture 

• Convnets use prior knowledge about recognition task 
into network architecture design 
• connectivity structure 
• weight constraints 
• neuron activation functions 

• This is less intrusive than hand-designing the features 
• but it still prejudices the network towards the particular way 

of solving the problem that we had in mind 

 



Convolutional Network: Motivation 
• Consider a fully connected 

network 
• Example: 200 by 200 image, 

4x104 connections to one 
hidden unit 

• For 105 hidden units → 4x109   
connections 

• But spatial correlations are 
mostly local 

• Should not waste resources 
by connecting unrelated 
pixels 
  



Convolutional Network: Motivation 
• Connect only pixels in a local 

patch, say 10x10 
• For 200 by 200 image,  102 

connections to one hidden 
unit 

• For 105 hidden units → 107   
connections 

• factor of 400 decrease 



Convolutional Network: Motivation 
 

• If a feature is useful in one image 
location, it should be useful in all 
other locations 
• Stationarity: statistics is similar at 

different locations 

• All neurons detect the same 
feature at different positions in the 
input image 
• i.e. share parameters (network 

weights) across different locations 
• bias is usually not shared 
• also greatly reduces the number of 

tunable parameters 

all red connections  
have the same weight 
 

all green connections 
have the same weight 
 

all blue connections 
have the same weight 
 



ConvNets: Weight Sharing 
• Much fewer parameters to 

learn 
• For 105 hidden units and 

10x10 patch 
• 107 parameters to learn 

without sharing 
• 102 parameters to learn with  

sharing 



Weight Sharing Constraints 
• Easy to modify  backpropagation algorithm to incorporate 

weight sharing 
• Compute the gradients as usual, and then modify the gradients 

so that they satisfy the constraints. 
• if the weights started off satisfying the constraints, they will continue to 

satisfy them 

• To constrain w1 = w2, we need  ∆w1 = ∆w2 
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Convolutional Layer 
• Share parameters 

(network weights) across 
different locations 

• Note similarity to 
convolution with some 
fixed filter 

• But here the filter is 
learned 



Convolutional Layer 
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Convolutional Layer 
• Each filter is responsible for 

one feature type 
• Learn multiple filters 
• Example: 

• 10x10 patch 
• 100 filters 
• only 104 parameters to learn 
• because parameters are 

shared between different 
locations 

 



Convolutional Layer 
• Can apply convolution only to 

some pixels (say every second) 
• output layer is smaller 
• less parameters to learn 

• Example 
• stride = 2 
• apply convolution every second pixel 
• makes image approximately twice 

smaller in each dimension 
• there is also cropping of image border 

due to convolution 
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Convolutional Layer 
• Each layer h is a d-dimensional  image or map  r x c x d 
• Thus perform d-dimensional convolution 
• If using d’ filters, next layer is a map of size  r’ x c’ x d’ 
• Example with d = 3 and d’ = 2 (i.e. 2 filters) 
• r’ and c’ depend on whether convolution crops image border 

and the stride of convolution 
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Convolutional Layer 
• Example with d = 3 and d’ = 2 (i.e. 2 filters) 
• Applying the first filter 
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Convolutional Layer 
• Example with d = 3 and d’ = 2 (i.e. 2 filters) 
• Applying the second filter 



h j = max (0, ∑k = 1 hk                    ) 
n K n−1 ∗w kj  

n 
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• Formula for convolution application to  K  dimensional layer hn-1 

• Also with application of ReLu activation function 



Pooling Layer 
• Say a filter is an eye detector 
• Want to detection to be robust to precise eye location  

 



Pooling Layer 
• Pool  filter responses at different locations gain 

robustness to exact spatial location 
• pooling could be taking max, average, etc.  

 
• Usually pooling applied 

with stride > 1 
• This reduces resolution 

of  output map 
• But  we already lost 

resolution (precision)   
by pooling   
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Pooling Layer: Receptive Field Size 

• If convolution filters have size K x K and stride 1, and pooling layer 
has pools of size P x P, then each unit in pooling layer depends on 
patch (in preceding convolution layer) of size  (P+K-1) x (P+K-1) 
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Pooling Layer: Receptive Field Size 

• If convolution filters have size K x K and stride 1, and pooling layer 
has pools of size P x P, then each unit in pooling layer depends on 
patch (in preceding convolution layer) of size  (P+K-1) x (P+K-1) 
 

 



Problem with Pooling 
• After several levels of pooling, we have lost 

information about the precise positions of things 
• This makes it impossible to use the precise spatial 

relationships between high-level parts for 
recognition. 
 



Local Contrast Normalization 
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want the same response 
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Local Contrast Normalization 
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Local Contrast Normalization 

• Performed also across 
features and in higher layers 

• Effects 
• Improves invariance 
• Improves optimization 
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Convolution 

One Stage (zoom) 

ConvNets: Typical Stage 

LCN Pooling 



Fully Connected 
Layers 

Whole System 

1st  stage 2nd  stage 3rd  stage 

Input 
Image 

Class 
Labels 

Typical Architecture 

Convolution 

One Stage (zoom) 

LCN Pooling 



Fully Connected Layer 
• Can have just one fully connected layer 
• Example for 3-class classification problem 
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every unit of the previous 
layer connects to every unit 
of the next layer  

• Can have many fully connected layer 
• Example for 3-class classification problem 

 

hn−1 
1 

h2 
n−1 

h3 
n−1 

every unit of the previous 
layer connects to every unit 
of the next layer  

every unit of the previous 
layer connects to every unit of 
the next layer  



ConvNets: Training 

• All Layers are differentiable 
• Use standard back-propagation (gradient descent) 
• At test time, run only in forward mode 

 
 



Conv Nets: Character Recognition 
• http://yann.lecun.com/exdb/lenet/index.html 

http://yann.lecun.com/exdb/lenet/index.html


ConvNet for ImageNet 
• Krizhevsky et.al.(NIPS 2012) developed  deep 

convolutional neural net of the type pioneered by  
Yann LeCun 

•  Architecture: 
• 7 hidden layers not counting some max pooling layers 
• the early layers were convolutional 
• the last two layers were globally connected 

 
 

• Activation function: 
• rectified linear units in every hidden layer 
• train much faster and are more expressive than logistic unit 



Results: ILSVRC 2012 



Going Deeper with Convolutions 
http://arxiv.org/abs/1409.4842 
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