CS4442/9542b Artificial Intelligence II prof. Olga Veksler

Lecture 12 *Computer Vision* **Object Recognition with CNN**

Some slides are from S. Seitz, S. Narasimhan, K. Grauman

Outline

- Object Recognition with Deep Neural Nets
- Convolutional Neural Network

Traditional Object Classification

• Tradition Object Classification system

• A lot of work to design good features by hand

NN as Nonlinear Feature Mapping

• With NN, change in paradigm: instead of handcrafting, learn features automatically from data

Why Deep Networks: Hierarchical Feature Extraction

- Deep architecture works well for hierarchical feature extraction
 - hierarchies features are especially natural in vision
- Each stage is a trainable feature transform
- Level of abstraction increases up the hierarchy

Early Work on Deep Networks

- Fukushima (1980) Neo-Cognitron
- LeCun (1998) Convolutional Networks (convnets)
 - Similarities to Neo-Cognitron
- Other attempts at deeply layered Networks trained with backpropagation
 - not much success
 - very slow
 - diffusion of gradient
 - recent work has shown significant training improvements with various tricks (drop-out, unsupervised learning of early layers, etc.)

ConvNets: Prior Knowledge for Network Architecture

- Convnets use prior knowledge about recognition task into network architecture design
 - connectivity structure
 - weight constraints
 - neuron activation functions
- This is less intrusive than hand-designing the features
 - but it still prejudices the network towards the particular way of solving the problem that we had in mind

Convolutional Network: Motivation

- Consider a fully connected network
- Example: 200 by 200 image, 4x10⁴ connections to one hidden unit
- For 10⁵ hidden units → 4x10⁹ connections
- But spatial correlations are mostly local
- Should not waste resources by connecting unrelated pixels

Convolutional Network: Motivation

- Connect only pixels in a local patch, say 10x10
- For 200 by 200 image, 10² connections to one hidden unit
- For 10^5 hidden units $\rightarrow 10^7$ connections
- factor of 400 decrease

Convolutional Network: Motivation

- If a feature is useful in one image location, it should be useful in all other locations
 - *Stationarity*: statistics is similar at different locations
- All neurons detect the same feature at different positions in the input image
 - i.e. share parameters (network weights) across different locations
 - bias is usually not shared
 - also greatly reduces the number of tunable parameters

all red connections have the same weight

all green connections have the same weight

all blue connections have the same weight

ConvNets: Weight Sharing

- Much fewer parameters to learn
- For 10⁵ hidden units and 10x10 patch
 - 10⁷ parameters to learn without sharing
 - 10² parameters to learn with sharing

Weight Sharing Constraints

- Easy to modify backpropagation algorithm to incorporate weight sharing
- Compute the gradients as usual, and then modify the gradients so that they satisfy the constraints.
 - if the weights started off satisfying the constraints, they will continue to satisfy them
- To constrain $\mathbf{w}_1 = \mathbf{w}_2$, we need $\Delta \mathbf{w}_1 = \Delta \mathbf{w}_2$
- Before we used $\frac{\partial \mathbf{L}}{\partial \mathbf{w}_1}$ to update \mathbf{w}_1 and $\frac{\partial \mathbf{L}}{\partial \mathbf{w}_2}$ to update \mathbf{w}_2

• Now use
$$\frac{\partial \mathbf{E}}{\partial \mathbf{w}_1} + \frac{\partial \mathbf{E}}{\partial \mathbf{w}_2}$$
 to update \mathbf{w}_1 and \mathbf{w}_2 , use

- Share parameters (network weights) across different locations
- Note similarity to convolution with some fixed filter
- But here the filter is learned

- Each filter is responsible for one feature type
- Learn multiple filters
- Example:
 - 10x10 patch
 - 100 filters
 - only 10⁴ parameters to learn
 - because parameters are shared between different locations

- Can apply convolution only to some pixels (say every second)
 - output layer is smaller
 - less parameters to learn
- Example
 - stride = 2
 - apply convolution every second pixel
 - makes image approximately twice smaller in each dimension
 - there is also cropping of image border due to convolution

- Each layer h is a d-dimensional image or map r x c x d
- Thus perform **d**-dimensional convolution
- If using d' filters, next layer is a map of size r' x c' x d'
- Example with **d** = 3 and **d'** = 2 (i.e. 2 filters)
- r' and c' depend on whether convolution crops image border and the stride of convolution

- Example with **d** = 3 and **d'** = 2 (i.e. 2 filters)
- Applying the first filter

- Example with **d** = 3 and **d'** = 2 (i.e. 2 filters)
- Applying the second filter

- Formula for convolution application to **K** dimensional layer **h**ⁿ⁻¹
 - Also with application of ReLu activation function

$$h_{j}^{n} = max(0, \sum_{k=1}^{K} h_{k}^{n-1} * w_{kj}^{n})$$

output feature map input feature map

Pooling Layer

- Say a filter is an eye detector
- Want to detection to be robust to precise eye location

Pooling Layer

- *Pool* filter responses at different locations gain robustness to exact spatial location
 - pooling could be taking max, average, etc.
- Usually pooling applied with stride > 1
- This reduces resolution of output map
- But we already lost resolution (precision) by pooling

Pooling Layer: Receptive Field Size

• If convolution filters have size **K** x **K** and stride 1, and pooling layer has pools of size **P** x **P**, then each unit in pooling layer depends on patch (in preceding convolution layer) of size (**P**+**K**-1) x (**P**+**K**-1)

Pooling Layer: Receptive Field Size

 If convolution filters have size K x K and stride 1, and pooling layer has pools of size P x P, then each unit in pooling layer depends on patch (in preceding convolution layer) of size (P+K-1) x (P+K-1)

Problem with Pooling

- After several levels of pooling, we have lost information about the precise positions of things
- This makes it impossible to use the precise spatial relationships between high-level parts for recognition.

Local Contrast Normalization

Local Contrast Normalization

Local Contrast Normalization

- Improves invariance
- Improves optimization

ConvNets: Typical Stage

One Stage (zoom)

Typical Architecture

One Stage (zoom)

Whole System

Fully Connected Layer

- Can have just one fully connected layer
- Example for 3-class classification problem

- Can have many fully connected layer
- Example for 3-class classification problem

ConvNets: Training

- All Layers are differentiable
- Use standard back-propagation (gradient descent)
- At test time, run only in forward mode

Conv Nets: Character Recognition

http://yann.lecun.com/exdb/lenet/index.html

ConvNet for ImageNet

- Krizhevsky et.al.(NIPS 2012) developed deep convolutional neural net of the type pioneered by Yann LeCun
- Architecture:
 - 7 hidden layers not counting some max pooling layers
 - the early layers were convolutional
 - the last two layers were globally connected
- Activation function:
 - rectified linear units in every hidden layer
 - train much faster and are more expressive than logistic unit

Results: ILSVRC 2012

Going Deeper with Convolutions http://arxiv.org/abs/1409.4842