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Machine Learning 

K Nearest Neighbor Classifier 



Today 

• kNN classifier - the simplest classifier on 
earth 

• matlab implementation of kNN 



k-Nearest Neighbors 
• classify an unknown example with the most 

common class among k closest examples 
• “tell me who your neighbors are, and I’ll tell you 

who  you are” 

• Example: 
• k = 3 
• 2 sea bass, 1 

salmon 
• Classify as sea 

bass lightness 

length 



kNN: Multiple Classes 
• Easy to implement for multiple classes 
• Example for k = 5 

•  3 fish species:  salmon, sea bass, eel  
 

lightness 

length 

•  3 sea bass, 1 eel, 1 salmon ⇒ classify as sea bass 



• In theory, if infinite number of samples 
available, the larger is k, the better is 
classification  

• But the caveat is that all k neighbors have to be 
close  
• Possible when infinite # samples available 
• Impossible in practice since # samples is finite 

 

kNN: How to Choose k? 



kNN: How to Choose k? 
• Rule of thumb is k = sqrt(n), n is number of 

examples 
•   interesting theoretical properties 

• In practice, k = 1 is often used for efficiency, but can 
be sensitive to “noise” 
 

 noisy sample 

1 NN 

every example in the blue 
shaded  area will be 
misclassified as the blue class 

3 NN 

every example in the blue 
shaded  area will be classified 
correctly as the red class 



kNN: How to Choose k? 

picture from R. Gutierrez-Osuna 

• Larger k  gives smoother boundaries, better for generalization 
• But only if locality is preserved. Locality  is not preserved if end up looking 

at samples too far away, not from the same class. 

• Interesting theoretical properties if  k < sqrt(n), n is # of examples 
• Can choose k through cross-validation (study soon) 

 



• kNN  is simple and intuitive, but does it work? 
• Theoretically, the best error rate is the Bayes rate E* 

• Bayes error rate is the best (smallest) error rate a classifier can have, for 
a given problem, but we do not study it in this course 

• Assume we have an unlimited number of samples 
• kNN leads to an error rate greater than E* 
• But even for k =1,  as  n → ∞, it can be shown that 

kNN error rate is smaller than 2E* 
• As we increase k, the upper bound on the error gets 

better, that is the error rate (as  n → ∞) for the kNN 
rule is smaller than cE*,with smaller c for larger k 

• If we have lots of samples, kNN works well 

kNN: How Well does it Work? 



1NN Visualization 
• Voronoi tesselation is useful for visualization 

decision boundary 
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kNN Selection of Distance 
• So far we assumed we use Euclidian Distance 

to find the nearest neighbor: 

• Euclidean distance treats each feature as 
equally important 

• However some features (dimensions) may be 
much more discriminative than other features  
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kNN Distance Selection: Extreme Example 
• feature 1 gives the correct class: 1 or 2 
• feature 2 gives irrelevant number from 100 to 200 
• dataset: [1  150]  

              [2  110] 
• classify   [1  100] 

• [1  100] is misclassified! 
• The denser the samples, the less of this problem 
• But we rarely have samples dense enough 



1 1.2 1.4 1.6 1.8 2
100

120

140

160

180

• Decision boundary is in red, and is really wrong because 
• feature 1 is discriminative, but it’s scale is small 
• feature 2 gives no class information but its scale is large, it 

dominates distance calculation  
 

kNN Distance Selection: Extreme Example 
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kNN: Feature Normalization 
• Notice that 2 features are on different scales: 
• First feature takes values between 1 or 2 
• Second feature takes values between 100 to 200 
• Idea: normalize features to be on the same scale 
• Different normalization approaches 
• Linearly scale the range of each feature to be, say, in 

range  [0,1] 
 

 



 
 

kNN: Feature Normalization 
• Linearly scale to 0 mean variance 1: 
• If Z is a random variable of mean μ and variance Ϭ2,  then (Z - μ)/Ϭ   

has mean 0 and variance 1 
• For each feature f  let the new rescaled feature be                                       

   

• C  is a matrix with all samples stored as rows, in Matlab can 
normalize all features simultaneously 
 

 Cnew=(C-repmat(mean(C), size(C,1), 1))*diag(1./std(C)) 
 

σ
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kNN: Feature Normalization 
• C  is a matrix with all samples stored as rows, in 

Matlab can normalize all features simultaneously 
 Cnew=(C-repmat(mean(C), size(C,1), 1))*diag(1./std(C)) 
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kNN: Feature Normalization 
• C  is a matrix with all samples stored as rows, in 

Matlab can normalize all features simultaneously 
 Cnew=(C-repmat(mean(C), 6, 1))*diag(1./std(C)) 
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kNN: Feature Normalization 
• C  is a matrix with all samples stored as rows, in 

Matlab can normalize all features simultaneously 
 Cnew=(C-repmat(mean(C), 6, 1))*diag(1./std(C)) 
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repmat Function 
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kNN: Feature Normalization 
• C  is a matrix with all samples stored as rows, in 

Matlab can normalize all features simultaneously 
 Cnew=(C-repmat(mean(C), 6, 1))*diag(1./std(C)) 

 

σ
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ff

mean(C) = [1.5  146.7] 
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kNN: Feature Normalization 
• C  is a matrix with all samples stored as rows, in 

Matlab can normalize all features simultaneously 
 Cnew= (C - repmat(mean(C),6,1))*diag(1./std(C)) 
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kNN: Feature Normalization 
• C  is a matrix with all samples stored as rows, in 

Matlab can normalize all features simultaneously 
 Cnew= (C-repmat(mean(C), 6, 1))*diag(1./std(C)) 
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std(C) = [ 0.55   30.8 ] 
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kNN: Feature Normalization 
• C  is a matrix with all samples stored as rows, in 

Matlab can normalize all features simultaneously 
 Cnew= (C-repmat(mean(C), 6, 1))*diag(1./std(C)) 
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1./std(C) = [ 1.83   0.03 ] 

std(C) = [ 0.55   30.8 ] 



 
 

kNN: Feature Normalization 
• C  is a matrix with all samples stored as rows, in 

Matlab can normalize all features simultaneously 
 Cnew= (C-repmat(mean(C), 6, 1))*diag(1./std(C)) 
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1./std(C) = [ 1.83   0.03 ] 

  1.83      0 
     0      0.03  



 
 

kNN: Feature Normalization 
• C  is a matrix with all samples stored as rows, in 

Matlab can normalize all features simultaneously 
 Cnew= (C-repmat(mean(C), 6, 1))*diag(1./std(C)) 
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kNN: Feature Normalization 
• C  is a matrix with all samples stored as rows, in 

Matlab can normalize all features simultaneously 
 Cnew= (C-repmat(mean(C), 6, 1))*diag(1./std(C)) 
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kNN: Feature Normalization 
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discriminative  
features 

noisy 
features 

kNN: Selection of Distance 
• Feature normalization does not help in high dimensional 

spaces if most features are irrelevant 

• If the number of useful features is smaller than the 
number of  noisy features, Euclidean distance is 
dominated by noise 
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kNN: Feature Weighting 

• Scale each feature by its importance for classification 

• Can use our prior knowledge about which features are 
more important 

• Can learn the weights wk using cross-validation (to be 
covered later) 



 

kNN: Computational Complexity 

• Basic kNN algorithm stores all examples 
•  Suppose we have n examples each of dimension d 
• O(d) to compute distance to one example  
• O(nd) to find distances to all examples 
• O(knd) to  find k closest examples examples 

• O(nd) + O(kn)  if  careful 

• Thus total complexity is O(knd)  
• Very expensive for a large number of samples 
• But we need a large number of samples for kNN to 

work well! 



remove 

Reducing Complexity: editing 1NN 
• If all Voronoi neighbors have the same class, a sample is 

useless, remove it 

• Number of samples decreases 
• Decision boundary does not change 



 

 

Reducing Complexity: Partial Distance 
• Have current k closes samples 
• Abort distance computation if partial distance is already 

greater than the full distance to the current k closest 
samples 

• Advantages:  
• complexity decreases 
• we are guaranteed to find closes neighbor(s) 

• Disadvantages: 
• how much complexity decreases depends on our luck 

and data layout 
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kNN in Matlab 

• Want to classify newSample = [4    7] 



numClass1      = size(Class1,1); 
numClass2      = size(Class2,1); 
totalSamples  = numClass1+numClass2; 
  

combinedSamples = [Class1;Class2]; 
trueClass = [zeros(numClass1,1)+1;zeros(numClass2,1)+2]; 
  

testMatrix = repmat(newSample,totalSamples,1); 
absDiff       = abs(combinedSamples-testMatrix); 
absDiff       = absDiff.^2; 
dist             = sum(absDiff,2); 
  

[Y,I]                   = sort(dist);  
neighborsInd  = I(1:k); 
neighbors        = trueClass(neighborsInd); 
 
class1   = find(neighbors == 1); 
class2   = find(neighbors == 2); 
joint     = [size(class1,1);size(class2,1)]; 
 
[value class] = max(joint); 

[ ]74=newSamle

3k =

kNN in Matlab without Loops 
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numClass1     = size(Class1,1); 
numClass2     = size(Class2,1); 
totalSamples = numClass1+numClass2; 
  

combinedSamples = [Class1;Class2]; 
trueClass = [zeros(numClass1,1)+1;zeros(numClass2,1)+2]; 

[ ]74=newSample

numClass1   = 4 
numClass2   = 3 
totalSamples = 7 
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kNN in Matlab 
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testMatrix = repmat(newSample,totalSamples,1); 
absDiff       = abs(combinedSamples-testMatrix); 
absDiff       = absDiff.^2; 
dist             = sum(absDiff,2); 
  

[ ]74=newSample
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kNN in Matlab 
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[Y,I]                   =  sort(dist); 
neighborsInd  =  I(1:k); 
neighbors        =  trueClass(neighborsInd); 
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kNN in Matlab 
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class1  = find(neighbors == 1); 
class2  = find(neighbors == 2); 
joint    = [size(class1,1);size(class2,1)]; 
 
[value class] = max(joint); 
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kNN in Matlab 
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class1  = find(neighbors == 1); 
class2  = find(neighbors == 2); 
joint    = [size(class1,1);size(class2,1)]; 
 
[value class] = max(joint); 
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kNN in Matlab 
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Also can use class = mode(neighbors) instead 
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Video 
• http://videolectures.net/aaai07_bosch_knnc/ 

http://videolectures.net/aaai07_bosch_knnc/


• Advantages 
• Can be applied to the data from any distribution 

• for example, data does not have to be separable with a linear 
boundary 

• Very simple and intuitive 
• Good classification if the number of samples is large enough 

• Disadvantages 
• Choosing k may be tricky 
• Test stage is computationally expensive 

• No training stage, all the work is done during the test stage 
• This is actually the opposite of what we want. Usually we can afford 

training step to take a long time, but we want fast test step 
• Need large number of samples for accuracy 

 

kNN Summary 
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