
CS4442/9542b
Artificial Intelligence II

 prof. Olga Veksler

Lecture 3
Machine Learning

K Nearest Neighbor Classifier

Today

• kNN classifier - the simplest classifier on
earth

• matlab implementation of kNN

k-Nearest Neighbors
• classify an unknown example with the most

common class among k closest examples
• “tell me who your neighbors are, and I’ll tell you

who you are”

• Example:
• k = 3
• 2 sea bass, 1

salmon
• Classify as sea

bass lightness

length

kNN: Multiple Classes
• Easy to implement for multiple classes
• Example for k = 5

• 3 fish species: salmon, sea bass, eel

lightness

length

• 3 sea bass, 1 eel, 1 salmon ⇒ classify as sea bass

• In theory, if infinite number of samples
available, the larger is k, the better is
classification

• But the caveat is that all k neighbors have to be
close
• Possible when infinite # samples available
• Impossible in practice since # samples is finite

kNN: How to Choose k?

kNN: How to Choose k?
• Rule of thumb is k = sqrt(n), n is number of

examples
• interesting theoretical properties

• In practice, k = 1 is often used for efficiency, but can
be sensitive to “noise”

 noisy sample

1 NN

every example in the blue
shaded area will be
misclassified as the blue class

3 NN

every example in the blue
shaded area will be classified
correctly as the red class

kNN: How to Choose k?

picture from R. Gutierrez-Osuna

• Larger k gives smoother boundaries, better for generalization
• But only if locality is preserved. Locality is not preserved if end up looking

at samples too far away, not from the same class.

• Interesting theoretical properties if k < sqrt(n), n is # of examples
• Can choose k through cross-validation (study soon)

• kNN is simple and intuitive, but does it work?
• Theoretically, the best error rate is the Bayes rate E*

• Bayes error rate is the best (smallest) error rate a classifier can have, for
a given problem, but we do not study it in this course

• Assume we have an unlimited number of samples
• kNN leads to an error rate greater than E*
• But even for k =1, as n → ∞, it can be shown that

kNN error rate is smaller than 2E*
• As we increase k, the upper bound on the error gets

better, that is the error rate (as n → ∞) for the kNN
rule is smaller than cE*,with smaller c for larger k

• If we have lots of samples, kNN works well

kNN: How Well does it Work?

1NN Visualization
• Voronoi tesselation is useful for visualization

decision boundary

()∑ −=
k

kk babaD 2),(

kNN Selection of Distance
• So far we assumed we use Euclidian Distance

to find the nearest neighbor:

• Euclidean distance treats each feature as
equally important

• However some features (dimensions) may be
much more discriminative than other features

() () 5015010011)
150

1
,

100
1

(22 =−+−=














D

() () 5.1011010021)
110

2
,

100
1

(22 =−+−=














D

kNN Distance Selection: Extreme Example
• feature 1 gives the correct class: 1 or 2
• feature 2 gives irrelevant number from 100 to 200
• dataset: [1 150]

 [2 110]
• classify [1 100]

• [1 100] is misclassified!
• The denser the samples, the less of this problem
• But we rarely have samples dense enough

1 1.2 1.4 1.6 1.8 2
100

120

140

160

180

• Decision boundary is in red, and is really wrong because
• feature 1 is discriminative, but it’s scale is small
• feature 2 gives no class information but its scale is large, it

dominates distance calculation

kNN Distance Selection: Extreme Example

minmax

min

oldold

oldold
new ff

fff
−
−

=

kNN: Feature Normalization
• Notice that 2 features are on different scales:
• First feature takes values between 1 or 2
• Second feature takes values between 100 to 200
• Idea: normalize features to be on the same scale
• Different normalization approaches
• Linearly scale the range of each feature to be, say, in

range [0,1]

kNN: Feature Normalization
• Linearly scale to 0 mean variance 1:
• If Z is a random variable of mean μ and variance Ϭ2, then (Z - μ)/Ϭ

has mean 0 and variance 1
• For each feature f let the new rescaled feature be

• C is a matrix with all samples stored as rows, in Matlab can
normalize all features simultaneously

 Cnew=(C-repmat(mean(C), size(C,1), 1))*diag(1./std(C))

σ
µ−

= old
new

ff

kNN: Feature Normalization
• C is a matrix with all samples stored as rows, in

Matlab can normalize all features simultaneously
 Cnew=(C-repmat(mean(C), size(C,1), 1))*diag(1./std(C))

σ
µ−

= old
new

ff



























=

1702
1502
1202
1601
1001
1801

C size(C,1) = 6

kNN: Feature Normalization
• C is a matrix with all samples stored as rows, in

Matlab can normalize all features simultaneously
 Cnew=(C-repmat(mean(C), 6, 1))*diag(1./std(C))

σ
µ−

= old
new

ff



























=

1702
1502
1202
1601
1001
1801

C

kNN: Feature Normalization
• C is a matrix with all samples stored as rows, in

Matlab can normalize all features simultaneously
 Cnew=(C-repmat(mean(C), 6, 1))*diag(1./std(C))

σ
µ−

= old
new

ff



























=

1702
1502
1202
1601
1001
1801

C

[1.5 146.7]

repmat Function



















=
















434343
212121
434343
212121

3,2,
43
21

repmat





















































kNN: Feature Normalization
• C is a matrix with all samples stored as rows, in

Matlab can normalize all features simultaneously
 Cnew=(C-repmat(mean(C), 6, 1))*diag(1./std(C))

σ
µ−

= old
new

ff

mean(C) = [1.5 146.7]



























7.1465.1
7.1465.1
7.1465.1
7.1465.1
7.1465.1
7.1465.1

kNN: Feature Normalization
• C is a matrix with all samples stored as rows, in

Matlab can normalize all features simultaneously
 Cnew= (C - repmat(mean(C),6,1))*diag(1./std(C))

σ
µ−

= old
new

ff



























1702
1502
1202
1601
1001
1801



























−

7.1465.1
7.1465.1
7.1465.1
7.1465.1
7.1465.1
7.1465.1



























−
−−

−
−−

−

=

3.235.1
3.35.0

7.265.0
3.135.0
7.465.0

33.35.0

kNN: Feature Normalization
• C is a matrix with all samples stored as rows, in

Matlab can normalize all features simultaneously
 Cnew= (C-repmat(mean(C), 6, 1))*diag(1./std(C))

σ
µ−

= old
new

ff

std(C) = [0.55 30.8]



























=

1702
1502
1202
1601
1001
1801

C

kNN: Feature Normalization
• C is a matrix with all samples stored as rows, in

Matlab can normalize all features simultaneously
 Cnew= (C-repmat(mean(C), 6, 1))*diag(1./std(C))

σ
µ−

= old
new

ff

1./std(C) = [1.83 0.03]

std(C) = [0.55 30.8]

kNN: Feature Normalization
• C is a matrix with all samples stored as rows, in

Matlab can normalize all features simultaneously
 Cnew= (C-repmat(mean(C), 6, 1))*diag(1./std(C))

σ
µ−

= old
new

ff

1./std(C) = [1.83 0.03]

 1.83 0
 0 0.03

kNN: Feature Normalization
• C is a matrix with all samples stored as rows, in

Matlab can normalize all features simultaneously
 Cnew= (C-repmat(mean(C), 6, 1))*diag(1./std(C))

σ
µ−

= old
new

ff



























−
−

−−
−

3.235.1
3.35.0

7.265.0
3.135.0
7.465.0

33.35.0








03.00
083.1



























−
−

−−
−

=

76.09.0
11.09.0
87.09.0

43.09.0
21.19.0

1.089.0

kNN: Feature Normalization
• C is a matrix with all samples stored as rows, in

Matlab can normalize all features simultaneously
 Cnew= (C-repmat(mean(C), 6, 1))*diag(1./std(C))

σ
µ−

= old
new

ff



























−
−

−−
−

3.235.1
3.35.0

7.265.0
3.135.0
7.465.0

33.35.0








03.00
083.1



























−
−

−−
−

=

76.09.0
11.09.0
87.09.0

43.09.0
21.19.0

1.089.0

-1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

kNN: Feature Normalization

() () ()∑∑∑ −+−=−=
j

jj
i

ii
k

kk babababaD 222),(

discriminative
features

noisy
features

kNN: Selection of Distance
• Feature normalization does not help in high dimensional

spaces if most features are irrelevant

• If the number of useful features is smaller than the
number of noisy features, Euclidean distance is
dominated by noise

()∑ −=
k

kkk bawbaD 2),(

kNN: Feature Weighting

• Scale each feature by its importance for classification

• Can use our prior knowledge about which features are
more important

• Can learn the weights wk using cross-validation (to be
covered later)

kNN: Computational Complexity

• Basic kNN algorithm stores all examples
• Suppose we have n examples each of dimension d
• O(d) to compute distance to one example
• O(nd) to find distances to all examples
• O(knd) to find k closest examples examples

• O(nd) + O(kn) if careful

• Thus total complexity is O(knd)
• Very expensive for a large number of samples
• But we need a large number of samples for kNN to

work well!

remove

Reducing Complexity: editing 1NN
• If all Voronoi neighbors have the same class, a sample is

useless, remove it

• Number of samples decreases
• Decision boundary does not change

Reducing Complexity: Partial Distance
• Have current k closes samples
• Abort distance computation if partial distance is already

greater than the full distance to the current k closest
samples

• Advantages:
• complexity decreases
• we are guaranteed to find closes neighbor(s)

• Disadvantages:
• how much complexity decreases depends on our luck

and data layout
















=

45
73
42

2class



















=

86
107
95
83

1class

kNN in Matlab

• Want to classify newSample = [4 7]

numClass1 = size(Class1,1);
numClass2 = size(Class2,1);
totalSamples = numClass1+numClass2;

combinedSamples = [Class1;Class2];
trueClass = [zeros(numClass1,1)+1;zeros(numClass2,1)+2];

testMatrix = repmat(newSample,totalSamples,1);
absDiff = abs(combinedSamples-testMatrix);
absDiff = absDiff.^2;
dist = sum(absDiff,2);

[Y,I] = sort(dist);
neighborsInd = I(1:k);
neighbors = trueClass(neighborsInd);

class1 = find(neighbors == 1);
class2 = find(neighbors == 2);
joint = [size(class1,1);size(class2,1)];

[value class] = max(joint);

[]74=newSamle

3k =

kNN in Matlab without Loops
















=

45
73
42

2class



















=

86
107
95
83

1class

numClass1 = size(Class1,1);
numClass2 = size(Class2,1);
totalSamples = numClass1+numClass2;

combinedSamples = [Class1;Class2];
trueClass = [zeros(numClass1,1)+1;zeros(numClass2,1)+2];

[]74=newSample

numClass1 = 4
numClass2 = 3
totalSamples = 7























=

45
73
42
86

107
95
83

mplescombinedSa























=

2
2
2
1
1
1
1

trueClass

kNN in Matlab
















=

45
73
42

2class



















=

86
107
95
83

1class

testMatrix = repmat(newSample,totalSamples,1);
absDiff = abs(combinedSamples-testMatrix);
absDiff = absDiff.^2;
dist = sum(absDiff,2);

[]74=newSample





















=

74
74
74
74
74
74
74

testMatrix























=

31
01
32
12
33
21
11

absDiff























=

91
01
94
14
99
41
11

absDiff























=

10
1

13
5

18
5
2

dist























=

2
2
2
1
1
1
1

trueClass

kNN in Matlab























=

45
73
42
86

107
95
83

mplescombinedSa

[Y,I] = sort(dist);
neighborsInd = I(1:k);
neighbors = trueClass(neighborsInd);























=

18
13
10
5
5
2
1

Y























=

3
5
7
4
2
1
6

I












=

2
1
6

ndneighborsI
3k =











=

1
1
2

neighbors

kNN in Matlab























=

2
2
2
1
1
1
1

trueClass























=

10
1

13
5

18
5
2

dist

class1 = find(neighbors == 1);
class2 = find(neighbors == 2);
joint = [size(class1,1);size(class2,1)];

[value class] = max(joint);





= 3
21class

[]12 =class





= 1
2intjo

1=class

kNN in Matlab












=

1
1
2

neighbors

class1 = find(neighbors == 1);
class2 = find(neighbors == 2);
joint = [size(class1,1);size(class2,1)];

[value class] = max(joint);





= 3
21class

[]12 =class





= 1
2intjo

1=class

kNN in Matlab












=

1
1
2

neighbors
Also can use class = mode(neighbors) instead












=

2
2
1

neighbors

kNN in Matlab

Video
• http://videolectures.net/aaai07_bosch_knnc/

http://videolectures.net/aaai07_bosch_knnc/

• Advantages
• Can be applied to the data from any distribution

• for example, data does not have to be separable with a linear
boundary

• Very simple and intuitive
• Good classification if the number of samples is large enough

• Disadvantages
• Choosing k may be tricky
• Test stage is computationally expensive

• No training stage, all the work is done during the test stage
• This is actually the opposite of what we want. Usually we can afford

training step to take a long time, but we want fast test step
• Need large number of samples for accuracy

kNN Summary

	Slide Number 1
	Today
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	kNN: How to Choose k?
	kNN: How Well does it Work?
	1NN Visualization
	kNN Selection of Distance
	kNN Distance Selection: Extreme Example
	Slide Number 12
	kNN: Feature Normalization
	kNN: Feature Normalization
	kNN: Feature Normalization
	kNN: Feature Normalization
	kNN: Feature Normalization
	repmat Function
	kNN: Feature Normalization
	kNN: Feature Normalization
	kNN: Feature Normalization
	kNN: Feature Normalization
	kNN: Feature Normalization
	kNN: Feature Normalization
	kNN: Feature Normalization
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Video
	kNN Summary

