CS4442/9542b
Artificial Intelligence |
prof. Olga Veksler

Lecture 4
Machine Learning

Linear Classifier

Outline

e Optimization with gradient descent

e Linear Classifier
e Two classes
e Multiple classes

e Perceptron Criterion Function
e Batch perceptron rule
e Single sample perceptron rule

e Minimum Squared Error (MSE) rule
e Pseudoinverse

Optimization

How to minimize a function of a single variable
J(x) =(x-5)?

From calculus, take derivative, setitto O
d
—J(x)=0
dx

Solve the resulting equation
e maybe easy or hard to solve

Example above is easy:

d
—IJ(x)=2(x-5)=0 = x=5
dx

Optimization

How to minimize a function of many variables
J(x) = J(x,..., xy)

From calculus, take partial derivatives, set them to O

gradient

|0 J(xﬂ|

' |

I : | = Vi(x)=0
| —(x) !
I_axu| J
Solve the resulting system of d equations

It may not be possible to solve the system of equations
above analytically

e Gradient VJ(x) points in the direction of steepest
increase of function J(x)

e -VI(x) points in the direction of steepest decrease

Picture from Andrew Ng

Gradient Direction in 1D

e Gradientis just derivative in 1D
e Example: J(x) =(x-5)% and derivative is iJ(x) = 2(x -5)

J(x) |

negative
slope,
negative
derivative

dx
e derivative says increase X

dx
J(x)
positive
slope,
positive
derivative
X
e |letx=8
d
e - —1J(33)=-6
dx

derivative says decrease x

Gradient Direction in 2D

J(x,, X,) =(X,-5)?+(x,-10)? X2¢ global min
10 - ®
0
J(x)=2(x, -5 [-10, 10]
@xl (X) (x1) - '\'
(x)=2(x, - 10) :
X)=2(x, —
ox, z I I X}
] I >
5 10

Let a =[10, 5]

0
—~ J(a)=-10
OX

1

0
- J(a) =10
O X

2

J(x4, X,) =(x;-5)?+(x,-10)2
Which step size to take?
Controlled by parameter a

From previous example:

Gradient Descent: Step Size

called learning rate

a=[10 5]
-VlJ(a) =[-10 10]

leta=0.2

a-aVJ(@) = [10 5]+0.2 [-10 10]=[8 7]
J(10, 5) =50; J(8,7) =18

X214 global min
10 - o
[-10, 10]
5 - e
E
| —
5 10

Gradient Descent Algorithm

== J(x) | (1)
x1) = any initial guess)
choose a,, € y
while a||VI(xM)|| > €
x(k+1) = y (k) . ¢ Vj(x(k))

k=k+1

Gradient Descent: Local Minimum

e Not guaranteed to find global minimum
e gets stuck in local minimum

_Vj(x(l))

J(x) |

X

global minimum x (k) x(2) x(1)

e Still gradient descent is very popular because it is
simple and applicable to any differentiable function

How to Set Learning Rate a.?

If oo too small, too
many iterations to
converge

If oo too large, may
overshoot the local
minimum and possibly
never even converge

J(x)]

N

J(x)1

® ® 0 ®
x@ () x(1) x(3)

It helps to compute J(x) as a function of iteration
number, to make sure we are properly minimizing it

Variable Learning Rate

e |f desired, can change learning rate o at each iteration

k=1 k=1
x1) = any initial guess x1) = any initial guess
choose a, € choose €
while a[VIxW)[| > |~ | while a[VI(xW)]| > &
x(1) = x () - g, VI (x®) choose ol
K=k+1 x(6+1) = x 09 - (1) V7)(x(9)
k=k+1

Variable Learning Rate

e Usually don’t keep track of all intermediate solutions

k=1

x!t) = any initial guess X = any initial guess

choose a, € choose q, €
) —

while a||VI(xW)|| > & while a||VJ(x)|| > €
x(k+l) = x (K - g, VI(x () Xx=x -a VJ(x)
k=k+1

Advanced Optimization Methods

e There are more advanced gradient-based
optimization methods

e Such as conjugate gradient
e automatically pick a good learning rate a
e usually converge faster

e however more complex to understand and
implement

e in Matlab, use fminunc for various advanced
optimization methods

Supervised Machine Learning (Recap)

e Chose a learning machine f(x,w)
e w are tunable weights, x is the input example
e f(x,w) should output the correct class of sample x

e use labeled samples to tune weights w so that
f(x,w) give the correct class (correct y) for
example x

e How to choose a learning machine f(x,w)?
e many choices possible

e previous lecture: kNN classifier
e this lecture: linear classifier

Linear Classifier: 2 Classes

e First consider the two-class case = f(x)

e \We choose the following encoding: ; .
e vy = 1 forthe firstclass X
e vy = -1 forthe second class g(x)/v/

e Linear classifier
e linear function: -oo < w +x, W, + ... + X ;W < o0
e we need f(x,w) to be either +1 or -1
e let g(x,w) =Wy +x, W, + ... + X W,
e let f(x,w)=sign(g(x,w))
e 1 if g(x,w)is positive
e -1if g(x,w)is negative
e g(x,w) is called the discriminant function

Linear Classifier: Decision Boundary

*

o '8
*

% uow|ps
ssoq

o
s =
o O

o8
® °

bad boundary better boundary

f(x,w) = sign(g(x,w)) = sign(wy+x,w, + ... + x ;W)
Decision boundary is linear

Find the best linear boundary to separate two classes

e Search for best w = [w,,w,,...,w] to minimize training error

More on Linear Discriminant Function (LDF)

e LDF: g(x,wW) = Wy+X,W, + ... + X W,
e Written using vector notation g(x) = w' + wj

v
weight vector bias or threshold

gx)=0
decision region
for class 1

dec:smn region
forclass2 ___ ~ N

More on Linear Discriminant Function (LDF)

e Decision boundary: g(x,w) = wy+x,w, + ... + x;,w,=0
e This is a hyperplane, by definition

e apointin1D

e alinein2D

e aplanein3D
e a hyperplane in higher dimensions

Multiple Classes

e \We have m classes
e Define m linear discriminant functions
g(x)=wx+w, fori=1,2,.. m

e Assign x toclassi if
gi(x) > gi(x) forall j#i

* Let R be the decision region for class i

* That is all examples in R, get assigned class i
R,

81(x) > 8,(x)
g.(x) > g5(x)

R

g,(x) > g,(x)
g,(x) > g5(x)
R3

83(X) > g,(x)
g3(X) > g,(x)

Multiple Classes

e Can be shown that decision regions are convex

e |n particular, they must be spatially contiguous

Failure Cases for Linear Classifier

Thus applicability of linear classifiers is limited to
mostly unimodal distributions, such as Gaussian

Not unimodal data
Need non-contiguous
decision regions
Linear classifier will fail

Fitting Parameters w

Linear discriminant function g(x) = w' + wj

1

Can rewrite it g(x) = [w, w] = a'z =g(z)
X

new weight |
vectora pew

feature
vector z

z is called augmented feature vector
new problem equivalent to the old g(z) = a'z

N

W5

g

1

w

[w |
_—
|
|
_—
(Wl

d

Augmented Feature Vector

e Feature augmenting is done to simplify notation
e From now on we assume that we have augmented

feature vectors

e given samples x1,..., X" convert them to augmented samples
z1,..., 2" by adding a new dimension of value 1

. glz) = atz

g(z)=0

W\

Training Error

For the rest of the lecture, assume we have 2 classes
Samples z%,..., 2" some in class 1, some in class 2

Use these samples to determine weights a in the
discriminant function g(z) = a'z

Want to minimize number of misclassified samples

g(z)>0 = class 1

Recall that {g(z‘) <0 =>class 2

g(z)>0 Vz'class1

Thus training error is O if {g(z‘) <0 Viziclass 2

Simplifying Notation Further

atz >0 Vz'class1

e Thus training erroris O if {atzi <0 Vzclass?2

cauivalently. train - alzz > 0 Vz'class 1
e Equivalently, training erroris O i | |
- Y = al(-z') >0 Vz'class 2

e Problem “normalization”:
1. replace all examples z' from class 2 by -2
2. seek weights as.t. a'z' > 0 for VZ

e [f exists, such a is called a separating or solution vector
e Original samples x,... X" can also be linearly separated

Effect of Normalization

before normalization after normalization

seek a hyperplane that seek hyperplane that puts
separates samples from normalized samples on the
different categories same (positive) side

Solution Region

e Find weight vector a s.t. for all samples z3,...,2"

d

t i i
az :Zakzd>0

k=0

e |f there is one such a, then there are infinitely many a

Solution Region

e Solution region: the set of all possible solutions for a

Criterion Function: First Attempt

Find weight vector a s.t. Vzi,...,z",atz' >0

Design a criterion function J(a), which is minimum

when a is a solution vector

Let Z(a) be the set of examples misclassified by a
Z(a)={2z'| atz'<0}

Natural choice: number of misclassified examples

J(a) = [Z(a)]
Unfortunately, can’t be 14(a)
minimized with gradient descent = —
e piecewise constant, gradient zero — a

or does not exist

Perceptron Criterion Function
Better choice: Perceptron criterion function

1 (@)=Y (- a‘z)

zeZ(a)
If z is misclassified, a'z< 0

Thus J(a) 20

J,(a) is proportional to the sum
of distances of misclassified
examples to decision boundary

J,(a) is piecewise linear and
suitable for gradient descent M
d

Optimizing with Gradient Descent
) (a)= > (—atz)

zez(a)

* GradientofJ (a)is vi (a)= > (-2)

zez(a)

* cannot solve VJ (a) = 0 analytically because of Z(a)

e Recall update rule for gradient descent

x(k"'l): x(k"'l)— oL Vj(x(k))

* Gradient decent update rule for J (a) is:
a“ -2 q Z Z

zeZ(a)
e called batch rule because it is based on all examples

e true gradient descent

Perceptron Single Sample Rule

* Gradient decent single sample rule for J (a) is

e Geometric Interpretation:

a(k"'l) :a(k) +a.zM

e z,,is one sample misclassified by al¥

e must have a consistent way to visit samples

z,, misclassified by a®l
(@*)z, <o

Z), 1S on the wrong side of
decision boundary

adding a.-z,, to a moves decision
boundary in the right direction

A\ 4

Perceptron Single Sample Rule

if a is too small, z,, is still if a is too large, previously
misclassified correctly classified sample z' is

now misclassified

lk+1)
4K

v

Perceptron Single Sample Rule Example

features grade
name good tall? sleeps in chews
attendance? class? gum?
Jane yes (1) yes (1) no (-1) no (-1) A
Steve yes (1) yes (1) yes (1) yes (1) F
Mary no (-1) no (-1) no (-1) yes (1) F
Peter yes (1) no (-1) no (-1) yes (1) A

e class 1: students who get grade A

e class 2: students who get grade F

Augment Feature Vector

features grade
name | extra good tall? sleeps in chews
attendance? class? gum?
Jane 1 yes (1) yes (1) no (-1) | no (-1) A
Steve 1 yes (1) yes (1) yes (1) | yes(1) F
Mary 1 no (-1) no (-1) no (-1) | yes (1) F
Peter 1 yes (1) no (-1) no (-1) | yes (1) A

e convert samples x?,..., X" to augmented samples z%,..., 2"
by adding a new dimension of value 1

“Normalization”

features grade
name | extra good tall? sleeps in chews
attendance? class? gum?
Jane 1 yes (1) yes (1) no (-1) | no(-1) A
Steve -1 yes (-1) yes (-1) | yes (-1) | yes (-1) F
Mary -1 no (1) no (1) no (1) | yes(-1) F
Peter 1 yes (1) no (-1) no (-1) | yes (1) A

e Replace all examples from class 2 by their negative

e Seek weight vector as.t. atz' >0 for all 2

2> -2

Apply Single Sample Rule

features grade
name | extra good tall? sleeps in chews
attendance? class? gum?
Jane 1 yes (1) yes (1) no(-1) | no(-1) A
Steve -1 yes (-1) yes (-1) | yes(-1) | yes(-1) F
Mary -1 no (1) no (1) no (1) | yes(-1) F
Peter 1 yes (1) no (-1) no (-1) | yes (1) A
e Gradient descent single sample rule: alk*) =alk) +q.z,,

e Set fixed learning rate to o = 1:

e Sample is misclassified if a'z' =Y a,z, <0

a(k"'l) :a(k) + ZM

4

k=0

Apply Single Sample Rule

e initial weights alt) = [0.25, 0.25, 0.25, 0.25]
e visit all samples sequentially

name 3tz misclassified?
Jane 0.25*%1+0.25*1+0.25*1+0.25*(-1)+0.25%*(-1) >0 no
Steve | 0.25%(-1)+0.25*(-1)+0.25*(-1)+0.25*(-1)+0.25*(-1)<0 yes

e new weights

a?=a"4+z =025 025 025 0.25 0.25]+

+ [-1 ~1 -1 ~1 —1] =

=[|-075 -075 -0.75 -0.75 -0.75]

Apply Single Sample Rule

a®’=[-075 -0.75 -0.75 -0.75 -0.75]
name 3tz misclassified?
Mary | -0.75%(-1)-0.75*1-0.75 *1-0.75 *1-0.75*(-1) <0 yes

e new weights

a®’=a®”+z =[-075 -0.75 -0.75 -0.75 -0.75]+

= [-1.75 0.25 0.25 0.25 —1.75]

Apply Single Sample Rule

a® =[-1.75 0.25 0.25 0.25 -1.75]

name 3tz misclassified?

Peter | -1.75 *1 +0.25% 1+0.25* (-1) +0.25 *(-1)-1.75*1 <0 yes

e new weights

a®=a® 4z =[-1.75 0.25 0.25 0.25 -1.75]+

= [-0.75 1.25 -0.75 -0.75 -0.75]

Single Sample Rule: Convergence

a =[-0.75 1.25 ~0.75 -0.75 -0.75]
name 3tz misclassified?
Jane -0.75 *1 +1.25*1 -0.75*1-0.75 *(-1) -0.75 *(-1)+0 no
Steve | -0.75*(-1)+1.25%*(-1) -0.75%*(-1) -0.75*(-1)-0.75*(-1)>0 no
Mary -0.75 *(-1)+1.25%1-0.75%1 -0.75 *1 —0.75*(-1) >0 no
Peter -0.75 *1+ 1.25%1-0.75* (-1)-0.75* (-1) -0.75 *1 >0 no

e Thus the discriminant function is
g(z) =-0.75 z,+1.25z, — 0.75z, - 0.752,- 0.75z,

e Converting back to the original features x
g(x) = 1.25x, — 0.75x, - 0.75x,- 0.75x, - 0.75

Final Classifier

Trained LDF: g(x) = 1.25x, — 0.75X, - 0.75x, - 0.75x, - 0.75

Leads to classifier:
1.25x, — 0.75x, - 0.75x5- 0.75x, > 0.75 = grade A
/ / \ \

good tall sleeps in class chews gum
attendance

This is just one possible solution vector

With a'¥=[0,0.5, 0.5, 0, 0], solution is [-1,1.5, -0.5, -1, -1]
1.5x, - 0.5x, - X3 - X, > 1 = grade A

e |n this solution, being tall is the least important feature

Non-Linearly Separable Case

e Suppose we have examples:
e class 1: [2,1], [4,3], [3,5]
e class 2:[1,3], [5,6]
e not linearly separable
e Still would like to get approximate
separation

6
5
4
sl
2
1
00

e Good line choice is shown in green
e Let us run gradient descent

e Add extra feature and “normalize”

1 1 1

—"

3
Z =

1
Z =

2
z

4

3 Z =

X
|
g

N
~
I
ol

!
1
|- 3]

it
I

»

AALTEAY R RUE AR

NN
| B
BB

Non-Linearly Separable Case

e single sample perceptron rule z -

e |nitial weights alt) =1 1 1] ;

e Thisislinex, +x,+1=0 z ® -

e Use fixed learning rate a = 1 \ & =

e Ruleis: al®*l=alkl +z,, :\< R
R I E R R F S R S Y Y
1) 3] s8] [-3] |-
1

e atz'=[111]-[121]*>0
® a'z2=[111]-[143]*>0
® a'z3=[111]-[135]*>0

Non-Linearly Separable Case

e alll=[1 1 1]

e ruleis: a*l=alkl+z

1 1 1

L
23:|31
|5

1
Z =

2
Z

4

4 z

N
14
3]

N

X
|
1]

atz*=[111]-[-1-1-3]'= -5< 0 |
Update: a?=alll+z,=[1 1 1]+[-1 -1 -3]=[0 0 -2]

az5=[00-2] - [(1-5-6]t =12 >0
azl=[00-2]-[121]t<0

|
—

6
5 []

4

; []
2_

1 NN

o’(;‘!"$\:‘."

A1 '

. N W3(2) 4

Update: a®=alPl+z,=[0 0 -2]+[1 2 1]=[1 2 -1]

5

Non-Linearly Separable Case

* al¥=[1 2 -1] s
* ruleis: al*!=alk +z :
AT N E) S | R
S P PR % IS N I BN PO R B
R e
K5 I R A R] R S RO
* a'z’=[143]-[1 2-1]*'=6>0
* a'z3=[135]-[1 2-1]*'=2>0
* atzt=[-1-1-3]-[1 2-1]t =

* Update: a4 =

al®)+z,, = [1 2 -1]+[-1 -1 -3] =

[0 1 -4]

Non-Linearly Separable Case

We can continue this forever
* there is no solution vector a satisfying for all a'z. > 0 for all i

Need to stop at a good point

6_

Solutions at iterations
900 through 915

Some are good some
are not

How do we stop at a
good solution? 0r

Convergence of Perceptron Rules

1. Classes are linearly separable:

* with fixed learning rate, both single sample and batch rules converge to a
correct solution a

* can be any ain the solution space

2. Classes are not linearly separable:
* with fixed learning rate, both single sample and batch do not converge
* can ensure convergence with appropriate variable learning rate
e a—>0 as k> e
* example, inverse linear: a = c/k, where c is any constant
* also converges in the linearly separable case

* no guarantee that we stop at a good point, but there are good reasons
to choose inverse linear learning rate

* Practical Issue: both single sample and batch algorithms converge
faster if features are roughly on the same scale

* see kNN lecture on feature normalization

Batch vs. Single Sample Rules

Batch Single Sample
True gradient descent, full * Only partial gradient is
gradient computed computed
Smoother gradient because * Noisier gradient, therefore
all samples are used may concentrates more than
Takes longer to converge necessary on any isolated

training examples (those
could be noise)

* Converges faster
e Easier to analyze

Minimum Squared Error Optimization

* |dea: convert to easier and better understood problem

atz' >0 for all samples z'
solve system of linear inequalities

/

a'z' = b, for all samples 2
solve system of linear equations

* MSE procedure
* choose positive constants b, b,,..., b,
* try to find weight vector a s.t. a'z' = b, for all samples z'
* if succeed, then ais a solution because b,’s are positive
* consider all the samples (not just the misclassified ones)

MSE: Margins

By setting a'z' = b,, we expect z' to be at a
relative distance b, from the separating
hyperplane

Thus b, b,,..., b, are expected relative
distances of examples from the separating
hyperplane

Should make b, small if samplei is
expected to be near separating hyperplane,
and make b, larger otherwise

In the absence of any such information,
there are good reasons to set

b,=b,=..=b_=1

MSE: Matrix Notation

e Solve system of n equations 4

e Using matrix notation:

|_z:) zi zz—| b, |
|2 2 2||—a0_| |b|
12, 2, zd||a| | P2 |
B B & |
| RS
| RU i
2 2] a1 b,

Z a b

e Solve alinear systemZa=b

MSE: Exact Solution is Rare

e Solve a linear systemZa=">b
e Zisannby (d+1) matrix

e Exact solution can be found only if Z is

nonsingular and square, in which case inverse Z**
exists

e a=2Z'b
e (number of samples) = (number of features + 1)

e if happens, guaranteed to find separating hyperplane
e but almost never happens in practice

MSE:Approximate Solution

* Typically Z is overdetermined

* more rows (examples) than columns (features)

y4 al =|b

* No exact solution for Za = b in this case

* Find an approximate solution a, thatisZa=b

* approximate solution a does not necessarily give a
separating hyperplane in the separable case

* but hyperplane corresponding to an approximate a
may still be a good solution

MSE Criterion Function
b

* MSE approach: find a which minimizes e
the length of the error vectore=2Za-b 5=

* Minimize the minimum squared error criterion function:

(a)=za —b[=3 (a'z'=b)

i=1

* Can be optimized exactly

MSE: Optimizing J<(a)

J.(a)= ||Za = b”2 = z (atzi = bi)2
Compute the gradient: V¢(a) =2Z%(Za-b)
Set it to zero: 2Z%Za-b) =0
If Z'Z is non-singular, its inverse exists and can find a
unique solution for a=(Z22)'Zb
In Matlab
e a=2Z\b
e or use pinvcommand (pseudo-inverse)
e a=pinv(Z)*b;

MSE: Example

Class 1: (6 9), (5 7)
Class 2: (5 9), (0 4)
Add extra feature and “normalize”

DU S A A
21:|6|22:|5Iz3:|_5|z4:| O|
o] L7 [-o)] [-4]
[1 6 9 |
1 5 7
7 =
-1 -5 -9
—1 0 —4

1 G E= wl [=2] ~ «© «©
T T T T T T

Choose b=

R R R R

Use a=Z\b to solve in Matlab

Note a is an approximation since Za =

Gives a separating hyperplane since

Za>0

MSE: Example

10¢

2.7 |
1.0

- 0.9

8_

6_

N
T

0.4

1.3
0.6
1.1

a1]| g

MSE: Another Example

e Class1:(69), (57) o o
 Class2:(59), (010) 9

8_

* One example is far compared to
others from separating hyperplane

[1] [1] [-1] [-1]
dolgl 2-lsl Pol_sl 42l ol
1 1] T R)

1 6 9]

1 5 7

° 7 _
-1 -5 -9
-1 0 -10

MSE: Another Example Cont.

r1
Choose b = Ii oo -
| 9.5+
L

1

(LRRERY R RN RO R AR R RRR]

8.5

[3.2] 1
Solvea=27Z\b=! 0.2/
L—OAJ ™l
7t O
{ 0'2} {1] 5% 0 2 4 6
0.9 |1
Za =| 0.0a 1711
R I
|_ 1.16J |_1J

Does not give a separating hyperplane since aiz3 < 0

MSE: Problems

* MSE wants all examples to be at the same distance
from the separating hyperplane

* Examples that are “too right”, i.e. too far from the
boundary cause problems

)

“too right”
O

MSE solution

desired solution

* No problems with convergence though,
both in separable and non-separable cases

MSE: Another Example Cont.

If we know that 4t point is far from

10
separating hyperplane '
[0.2]
* in practice can look at points | 0.9 21
which are furthest from the %= I —— 4
decision boundary L 2
ER
Set b, larger for such points: b=/ 1 |
I 1 I % 0 > 4 6
[—1.1] 110 |
Solve a=Z\b=! 1.7/
Y
| 0.9] [1]
| 1.0l 1| : .
Za = | 0gl | >0, therefore gives a separating hyperplane
I
LlO .OJ LlOJ

More General Discriminant Functions

e Linear discriminant functions give simple decision
boundary
e try simpler models first

e Linear Discriminant functions are optimal for certain
type of data

e Gaussian distributions with equal covariance (don’t worry if
you don’t know what a Gaussian is)

e May not be optimal for other data distributions, but
they are very simple to use

e Discriminant functions can be more general than linear
e For example, polynomial discriminant functions

e Decision boundaries more complex than linear
e Later will look more at non-linear discriminant functions

Summary

* Linear classifier works well when examples are
linearly separable, or almost separable

* Two Training Approaches:

e Perceptron Rules

find a separating hyperplane in the linearly separable case
uses gradient descent for optimization
do not converge in the non-separable case

can force convergence by using a decreasing learning rate, but are not
guaranteed a reasonable stopping point

e MSE Rules

converges in separable and not separable case
can be optimized with pseudo-inverse

but may not find separating hyperplane even if classes are linearly
separable

