
CS4442/9542b
Artificial Intelligence II

 prof. Olga Veksler

Lecture 4
Machine Learning

Linear Classifier

Outline

• Optimization with gradient descent

• Linear Classifier
• Two classes

• Multiple classes

• Perceptron Criterion Function
• Batch perceptron rule

• Single sample perceptron rule

• Minimum Squared Error (MSE) rule
• Pseudoinverse

  0xJ
dx

d


Optimization

• How to minimize a function of a single variable

J(x) =(x-5)2

• From calculus, take derivative, set it to 0

• Solve the resulting equation
• maybe easy or hard to solve

• Example above is easy:

    5x05x2xJ
dx

d


 

 

  0xJ

xJ
x

xJ
x

d

1









































Optimization
• How to minimize a function of many variables

J(x) = J(x1,…, xd)

• From calculus, take partial derivatives, set them to 0

gradient

• Solve the resulting system of d equations

• It may not be possible to solve the system of equations
above analytically

Optimization: Gradient Direction

x2
x1

J(x1, x2)

Picture from Andrew Ng

• Gradient J(x) points in the direction of steepest
increase of function J(x)

• - J(x) points in the direction of steepest decrease

Gradient Direction in 1D
• Gradient is just derivative in 1D

• Example: J(x) =(x-5)2 and derivative is

   5x2xJ
dx

d


  43J
dx

d


•

• derivative says increase x

x=3

J(x)

x

negative
slope,
negative
derivative

• Let x = 3

x=8

J(x)

x

positive
slope,
positive
derivative

  63J
dx

d


•

• derivative says decrease x

• Let x = 8

Gradient Direction in 2D

• J(x1, x2) =(x1-5)2+(x2-10)2

   5x2xJ
x

1

1





•

   10x2xJ
x

2

2





•

• Let a = [10, 5]

  10aJ

x
1





•

  10aJ
x

2





•

a

 [-10, 10]

global min

 x1

x2

5

10

10

5

Gradient Descent: Step Size

• J(x1, x2) =(x1-5)2+(x2-10)2

• Which step size to take?

• Controlled by parameter 
• called learning rate

• From previous example:
• a = [10 5]

• -J(a) = [-10 10]

• Let  = 0.2

a

 [-10, 10]

global min

 x1

x2

5

10

10

5

• a -  J(a) = [10 5]+0.2 [-10 10]=[8 7]

• J(10, 5) = 50; J(8,7) = 18

J(x)

x

Gradient Descent Algorithm

x(1) x(2)

-J(x(1))

-J(x(2))

x(k)

-J(x(k))0

k = 1

x(1) = any initial guess

choose , 

while ||J(x(k))|| > 

 x(k+1) = x (k) -  J(x(k))
 k = k + 1

Gradient Descent: Local Minimum

• Not guaranteed to find global minimum
• gets stuck in local minimum

J(x)

x

x(1) x(2)

-J(x(1))

-J(x(2))

x(k)

-J(x(k))=0

global minimum

• Still gradient descent is very popular because it is
simple and applicable to any differentiable function

 x

How to Set Learning Rate ?

• If  too large, may
overshoot the local
minimum and possibly
never even converge

J(x)

x

• If  too small, too
many iterations to
converge

x(2)

x(1)

x(4)

x(3)

• It helps to compute J(x) as a function of iteration
number, to make sure we are properly minimizing it

J(x)

Variable Learning Rate

k = 1

x(1) = any initial guess

choose , 

while ||J(x(k))|| > 

 x(k+1) = x (k) -  J(x(k))
 k = k + 1

• If desired, can change learning rate  at each iteration

k = 1

x(1) = any initial guess

choose 

while ||J(x(k))|| > 

 choose (k)

 x(k+1) = x (k) - (k) J(x(k))
 k = k + 1

Variable Learning Rate

k = 1

x(1) = any initial guess

choose , 

while ||J(x(k))|| > 

 x(k+1) = x (k) -  J(x(k))
 k = k + 1

• Usually don’t keep track of all intermediate solutions

x = any initial guess

choose , 

while ||J(x)|| > 

 x = x -  J(x)

Advanced Optimization Methods

• There are more advanced gradient-based
optimization methods

• Such as conjugate gradient

• automatically pick a good learning rate 

• usually converge faster

• however more complex to understand and
implement

• in Matlab, use fminunc for various advanced
optimization methods

Supervised Machine Learning (Recap)

• Chose a learning machine f(x,w)

• w are tunable weights, x is the input example

• f(x,w) should output the correct class of sample x

• use labeled samples to tune weights w so that
f(x,w) give the correct class (correct y) for
example x

• How to choose a learning machine f(x,w)?
• many choices possible

• previous lecture: kNN classifier

• this lecture: linear classifier

Linear Classifier: 2 Classes
• First consider the two-class case

• We choose the following encoding:

• y = 1 for the first class

• y = -1 for the second class

• Linear classifier
• linear function: -∞ ≤ w0+x1w1 + … + xdwd ≤ ∞

• we need f(x,w) to be either +1 or -1

• let g(x,w) = w0+x1w1 + … + xdwd

• let f(x,w) = sign(g(x,w))
• 1 if g(x,w) is positive

• -1 if g(x,w) is negative

• g(x,w) is called the discriminant function

g(x)

x
-1

1
f(x)

bad boundary

Linear Classifier: Decision Boundary

• f(x,w) = sign(g(x,w)) = sign(w0+x1w1 + … + xdwd)

• Decision boundary is linear

• Find the best linear boundary to separate two classes

• Search for best w = [w0,w1,…,wd] to minimize training error

better boundary

More on Linear Discriminant Function (LDF)

• LDF: g(x,w) = w0+x1w1 + … + xdwd

• Written using vector notation g(x) = wtx + w0

 x1

x2

weight vector bias or threshold

decision boundary

g(x) = 0

g(x) > 0

decision region
for class 1

g(x) < 0

decision region
for class 2

More on Linear Discriminant Function (LDF)

• Decision boundary: g(x,w) = w0+x1w1 + … + xdwd = 0

• This is a hyperplane, by definition

• a point in 1D

• a line in 2D

• a plane in 3D

• a hyperplane in higher dimensions

• We have m classes
• Define m linear discriminant functions

gi(x) = wi
tx + wi0 for i = 1, 2, … m

Multiple Classes

• Assign x to class i if

gi(x) > gj(x) for all j ≠ i

• Let Ri be the decision region for class i

• That is all examples in Ri get assigned class i

g2(x) > g1(x)
g2(x) > g3(x)

 R1
R2

R3

g1(x) > g2(x)
g1(x) > g3(x)

g3(x) > g1(x)
g3(x) > g2(x)

Multiple Classes

• Can be shown that decision regions are convex

• In particular, they must be spatially contiguous

Failure Cases for Linear Classifier

• Thus applicability of linear classifiers is limited to
mostly unimodal distributions, such as Gaussian

• Not unimodal data

• Need non-contiguous
decision regions

• Linear classifier will fail

























d
x

x



1

1

Fitting Parameters w

• Linear discriminant function g(x) = wtx + w0

• Can rewrite it g(x) = [w0 wt] = atz = g(z)

1
x
new

feature
vector z

new weight
vector a

• z is called augmented feature vector

• new problem equivalent to the old g(z) = atz

























d
w

w

w



1

0

g(z) > 0

g(z) < 0 z

g(z) = 0

Augmented Feature Vector

• Feature augmenting is done to simplify notation

• From now on we assume that we have augmented
feature vectors

• given samples x1,…, xn convert them to augmented samples
z1,…, zn by adding a new dimension of value 1

• g(z) = atz

Training Error
• For the rest of the lecture, assume we have 2 classes

• Samples z1,…, zn
 some in class 1, some in class 2

• Use these samples to determine weights a in the
discriminant function g(z) = atz

• Want to minimize number of misclassified samples

 g(zi) > 0 zi
 class 1

 g(zi) < 0 zi
 class 2

• Thus training error is 0 if

• Recall that

 g(zi) > 0  class 1

 g(zi) < 0  class 2

Simplifying Notation Further

 atzi > 0 zi
 class 1

 atzi < 0 zi
 class 2

• Thus training error is 0 if

 atzi > 0 zi
 class 1

 at(-zi) > 0 zi
 class 2

• Equivalently, training error is 0 if

• Problem “normalization”:

1. replace all examples zi from class 2 by –zi

2. seek weights a s.t. atzi > 0 for zi

• If exists, such a is called a separating or solution vector

• Original samples x1,… xn can also be linearly separated

before normalization

 seek a hyperplane that

separates samples from
different categories

 seek hyperplane that puts
normalized samples on the
same (positive) side

Effect of Normalization

after normalization

0zaza

d

0k

i

dk

it
 



a

 a

 a

Solution Region
• Find weight vector a s.t. for all samples z1,…,zn

• If there is one such a, then there are infinitely many a

a

Solution Region

• Solution region: the set of all possible solutions for a

Criterion Function: First Attempt
• Find weight vector a s.t. z1,…, zn , at zi

 > 0

• Design a criterion function J(a), which is minimum
when a is a solution vector

• Let Z(a) be the set of examples misclassified by a

Z(a) = { zi | at zi
 < 0 }

• Natural choice: number of misclassified examples

J(a) = |Z(a)|

• Unfortunately, can’t be
minimized with gradient descent

• piecewise constant, gradient zero
or does not exist

a

J(a)

   
 






aZz

t

p
zaaJ

Perceptron Criterion Function
• Better choice: Perceptron criterion function

• If z is misclassified, atz < 0

• Thus J(a) ≥ 0

• Jp(a) is proportional to the sum
of distances of misclassified
examples to decision boundary

• Jp(a) is piecewise linear and
suitable for gradient descent

a

J(a)

• Gradient of Jp(a) is    
 






aZz

p
zaJ

• Gradient decent update rule for Jp(a) is:
   

 







aZz

kk
zαaa

1

• called batch rule because it is based on all examples

• true gradient descent

• cannot solve Jp(a) = 0 analytically because of Z(a)

   
 






aZz

t

p
zaaJ

• Recall update rule for gradient descent

 x(k+1)= x(k+1)–  J(x(k))

Optimizing with Gradient Descent

• Gradient decent single sample rule for Jp(a) is

 a(k+1) =a(k) +zM

• zM is one sample misclassified by a(k)

• Geometric Interpretation:

• must have a consistent way to visit samples

• zM misclassified by a(k)

   0
M

tk
za

a(k)

• zM is on the wrong side of
decision boundary

• adding zM to a moves decision
boundary in the right direction

Perceptron Single Sample Rule

zM

 a(k+1)

zM

Perceptron Single Sample Rule

 if  is too large, previously
correctly classified sample zi

 is
now misclassified

a(k)

zM

a(k+1)

zi

a(k)

 if  is too small, zM is still
misclassified

zM

a(k+1)

features grade
name good

attendance?
tall? sleeps in

class?
chews
gum?

Jane yes (1) yes (1) no (-1) no (-1) A

Steve yes (1) yes (1) yes (1) yes (1) F

Mary no (-1) no (-1) no (-1) yes (1) F

Peter yes (1) no (-1) no (-1) yes (1) A

• class 1: students who get grade A

• class 2: students who get grade F

Perceptron Single Sample Rule Example

features grade

name extra good
attendance?

tall? sleeps in
class?

chews
gum?

Jane 1 yes (1) yes (1) no (-1) no (-1) A

Steve 1 yes (1) yes (1) yes (1) yes (1) F

Mary 1 no (-1) no (-1) no (-1) yes (1) F

Peter 1 yes (1) no (-1) no (-1) yes (1) A

 • convert samples x1,…, xn to augmented samples z1,…, zn
by adding a new dimension of value 1

Augment Feature Vector

• Replace all examples from class 2 by their negative

 zi→ - zi

 • Seek weight vector a s.t. atzi > 0 for all zi

features grade

name extra good
attendance?

tall? sleeps in
class?

chews
gum?

Jane 1 yes (1) yes (1) no (-1) no (-1) A

Steve -1 yes (-1) yes (-1) yes (-1) yes (-1) F

Mary -1 no (1) no (1) no (1) yes (-1) F

Peter 1 yes (1) no (-1) no (-1) yes (1) A

“Normalization”

• Gradient descent single sample rule: a(k+1) =a(k) +zM

• Set fixed learning rate to  = 1: a(k+1) =a(k) + zM

features grade

name extra good
attendance?

tall? sleeps in
class?

chews
gum?

Jane 1 yes (1) yes (1) no (-1) no (-1) A

Steve -1 yes (-1) yes (-1) yes (-1) yes (-1) F

Mary -1 no (1) no (1) no (1) yes (-1) F

Peter 1 yes (1) no (-1) no (-1) yes (1) A

Apply Single Sample Rule

• Sample is misclassified if 0

4

0

 
k

i

kk

it
zaza

• initial weights a(1) = [0.25, 0.25, 0.25, 0.25]

name atz misclassified?

Jane 0.25*1+0.25*1+0.25*1+0.25*(-1)+0.25*(-1) >0 no

Steve 0.25*(-1)+0.25*(-1)+0.25*(-1)+0.25*(-1)+0.25*(-1)<0 yes

• visit all samples sequentially

• new weights
       25.025.025.025.025.0

12

M
zaa

   11111

 75.075.075.075.075.0 

Apply Single Sample Rule

name atz misclassified?

Mary -0.75*(-1)-0.75*1 -0.75 *1 -0.75 *1 -0.75*(-1) <0 yes

• new weights

       75.075.075.075.075.0
23

M
zaa

   11111

 75.125.025.025.075.1 

   75.075.075.075.075.0
2

a

Apply Single Sample Rule

name atz misclassified?

Peter -1.75 *1 +0.25* 1+0.25* (-1) +0.25 *(-1)-1.75*1 <0 yes

• new weights
       75.125.025.025.075.1

34

M
zaa

   11111

 75.075.075.025.175.0 

   75.125.025.025.075.1
3

a

Apply Single Sample Rule

name atz misclassified?

Jane -0.75 *1 +1.25*1 -0.75*1 -0.75 *(-1) -0.75 *(-1)+0 no

Steve -0.75*(-1)+1.25*(-1) -0.75*(-1) -0.75*(-1)-0.75*(-1)>0 no

Mary -0.75 *(-1)+1.25*1-0.75*1 -0.75 *1 –0.75*(-1) >0 no

Peter -0.75 *1+ 1.25*1-0.75* (-1)-0.75* (-1) -0.75 *1 >0 no

   75.075.075.025.175.0
4

a

• Thus the discriminant function is

g(z) = -0.75 z0+1.25z1 – 0.75z2 - 0.75z3 - 0.75z4

• Converting back to the original features x

 g(x) = 1.25x1 – 0.75x2 - 0.75x3 - 0.75x4 - 0.75

Single Sample Rule: Convergence

good

attendance

tall

sleeps in class

chews gum

• This is just one possible solution vector

• With a(1)=[0,0.5, 0.5, 0, 0], solution is [-1,1.5, -0.5, -1, -1]

1.5x1 - 0.5x2 - x3 - x4 > 1  grade A

 • In this solution, being tall is the least important feature

• Trained LDF: g(x) = 1.25x1 – 0.75x2 - 0.75x3 - 0.75x4 - 0.75

• Leads to classifier:

Final Classifier

1.25x1 – 0.75x2 - 0.75x3 - 0.75x4 > 0.75  grade A

• Suppose we have examples:

• class 1: [2,1], [4,3], [3,5]

• class 2: [1,3] , [5,6]

• not linearly separable























1

2

1

1
z























3

4

1

2
z























5

3

1

3
z





























6

5

1

5
z





























3

1

1

4
z

Non-Linearly Separable Case

• Still would like to get approximate
separation

• Good line choice is shown in green

• Let us run gradient descent

• Add extra feature and “normalize”

• atz1 = [1 1 1] · [1 2 1]t > 0

• atz2 = [1 1 1] · [1 4 3]t > 0

• atz3 = [1 1 1] · [1 3 5]t > 0

• single sample perceptron rule

• Initial weights a(1) = [1 1 1]

• This is line x1 + x2 + 1 = 0

• Use fixed learning rate  = 1

• Rule is: a(k+1) =a(k) + zM























1

2

1

1
z























3

4

1

2
z























5

3

1

3
z





























6

5

1

5
z





























3

1

1

4
z

Non-Linearly Separable Case

• atz4
 = [1 1 1] · [-1 -1 -3]t = -5 < 0

• Update: a(2) = a(1) + zM = [1 1 1] + [-1 -1 -3] = [0 0 -2]

• atz5
 = [0 0 -2] · [-1 -5 -6]t = 12 > 0

• atz1
 = [0 0 -2] · [1 2 1]t < 0

• Update: a(3) = a(2) + zM = [0 0 -2] + [1 2 1] = [1 2 -1]

Non-Linearly Separable Case

• a(1) = [1 1 1]

• rule is: a(k+1) =a(k) + zM























1

2

1

1
z























3

4

1

2
z























5

3

1

3
z





























6

5

1

5
z





























3

1

1

4
z

Non-Linearly Separable Case

• a(3) = [1 2 -1]

• rule is: a(k+1) =a(k) + zM

• atz2

 = [1 4 3] · [1 2 -1]t = 6 > 0

• atz3
 = [1 3 5] · [1 2 -1]t = 2 > 0

• atz4
 = [-1 -1 -3] · [1 2 -1]t = 0

• Update: a(4) = a(3) + zM = [1 2 -1] + [-1 -1 -3] = [0 1 -4]























1

2

1

1
z























3

4

1

2
z























5

3

1

3
z





























6

5

1

5
z





























3

1

1

4
z

• We can continue this forever

• there is no solution vector a satisfying for all atzi > 0 for all i

• Need to stop at a good point

• Solutions at iterations
900 through 915

• Some are good some
are not

• How do we stop at a
good solution?

Non-Linearly Separable Case

1. Classes are linearly separable:

• with fixed learning rate, both single sample and batch rules converge to a
correct solution a

• can be any a in the solution space

2. Classes are not linearly separable:
• with fixed learning rate, both single sample and batch do not converge

• can ensure convergence with appropriate variable learning rate

•  → 0 as k → ∞

• example, inverse linear:  = c/k, where c is any constant

• also converges in the linearly separable case

• no guarantee that we stop at a good point, but there are good reasons
to choose inverse linear learning rate

• Practical Issue: both single sample and batch algorithms converge
faster if features are roughly on the same scale
• see kNN lecture on feature normalization

Convergence of Perceptron Rules

• True gradient descent, full
gradient computed

• Smoother gradient because
all samples are used

• Takes longer to converge

Batch

• Only partial gradient is
computed

• Noisier gradient, therefore
may concentrates more than
necessary on any isolated
training examples (those
could be noise)

• Converges faster

• Easier to analyze

Single Sample

Batch vs. Single Sample Rules

• MSE procedure

• choose positive constants b1, b2,…, bn

• try to find weight vector a s.t. atzi = bi for all samples zi

• if succeed, then a is a solution because bi’s are positive

• consider all the samples (not just the misclassified ones)

• Idea: convert to easier and better understood problem

atzi > 0 for all samples zi

solve system of linear inequalities

atzi = bi for all samples zi

solve system of linear equations

Minimum Squared Error Optimization

• By setting atzi = bi, we expect zi to be at a
relative distance bi from the separating
hyperplane

• Thus b1, b2,…, bn are expected relative
distances of examples from the separating
hyperplane

• Should make bi small if sample i is
expected to be near separating hyperplane,
and make bi larger otherwise

• In the absence of any such information,
there are good reasons to set

 b1 = b2 =… = bn = 1

MSE: Margins

• Solve system of n equations

• Using matrix notation:



























































































n

dn

d

nn

d

d

b

b

b

a

a

a

zzz

zzz

zzz
















2

1

1

0

10

22

1

2

0

11

1

1

0

• Solve a linear system Za = b

n

nt

t

bza

bza







1

1

MSE: Matrix Notation

Z a b

• Solve a linear system Za = b

• Z is an n by (d +1) matrix

• Exact solution can be found only if Z is
nonsingular and square, in which case inverse Z-1

exists

• a = Z-1 b

• (number of samples) = (number of features + 1)

• if happens, guaranteed to find separating hyperplane

• but almost never happens in practice

MSE: Exact Solution is Rare

• No exact solution for Za = b in this case

• Find an approximate solution a, that is Za  b
• approximate solution a does not necessarily give a

separating hyperplane in the separable case
• but hyperplane corresponding to an approximate a

may still be a good solution

• Typically Z is overdetermined

• more rows (examples) than columns (features)

Z b a =

MSE:Approximate Solution

• MSE approach: find a which minimizes
the length of the error vector e = Za - b

Za

b

 e

• Minimize the minimum squared error criterion function:

• Can be optimized exactly

   




n

i

i

it

S
bzabZaaJ

1

22

MSE Criterion Function

• Compute the gradient: JS(a) =2Zt(Za-b)

• Set it to zero: 2Zt(Za-b) = 0

• If ZtZ is non-singular, its inverse exists and can find a
unique solution for a = (ZtZ)-1 Ztb

MSE: Optimizing JS(a)

   




n

i

i

it

S
bzabZaaJ

1

22

• In Matlab

• a = Z\b

• or use pinv command (pseudo-inverse)

• a = pinv(Z)*b;

• Class 1: (6 9), (5 7)

• Class 2: (5 9), (0 4)

• Add extra feature and “normalize”

•






























401

951

751

961

Z























9

6

1

1
z























7

5

1

2
z





























9

5

1

3
z



























4

0

1

4
z

MSE: Example

• Choose b=




















1

1

1

1

• Use a=Z\b to solve in Matlab





















90

01

72

.

.

.

a

• Note a is an approximation since Za =










































1

1

1

1

11

60

31

40

.

.

.

.

• Gives a separating hyperplane since
Za > 0

MSE: Example

• Class 1: (6 9), (5 7)

• Class 2: (5 9), (0 10)

• One example is far compared to
others from separating hyperplane

•

























1001

951

751

961

Z



















9

6

1
1

z


















7

5

1
2

z
























9

5

1
3

z






















10

0

1
4

z

MSE: Another Example

• Choose b =




















1

1

1

1

• Solve a = Z\b =
















 40

20

23

.

.

.

• Za =












































1

1

1

1

161

040

90

20

.

.

.

.

• Does not give a separating hyperplane since atz3 < 0

MSE: Another Example Cont.

• MSE wants all examples to be at the same distance
from the separating hyperplane

• Examples that are “too right”, i.e. too far from the
boundary cause problems

desired solution

MSE solution

• No problems with convergence though,
both in separable and non-separable cases

MSE: Problems

“too right”

• If we know that 4th point is far from
separating hyperplane

• Solve a=Z\b =




















90

71

11

.

.

.

• Za = > 0, therefore gives a separating hyperplane










































10

1

1

1

010

80

01

90

.

.

.

.





















10

1

1

1

• Set bi larger for such points: b =
























161

040

90

20

.

.

.

.

Za

MSE: Another Example Cont.

• in practice can look at points
which are furthest from the

decision boundary

More General Discriminant Functions
• Linear discriminant functions give simple decision

boundary

• try simpler models first

• Linear Discriminant functions are optimal for certain
type of data

• Gaussian distributions with equal covariance (don’t worry if
you don’t know what a Gaussian is)

• May not be optimal for other data distributions, but
they are very simple to use

• Discriminant functions can be more general than linear

• For example, polynomial discriminant functions

• Decision boundaries more complex than linear

• Later will look more at non-linear discriminant functions

• Linear classifier works well when examples are
linearly separable, or almost separable

• Two Training Approaches:

• Perceptron Rules
• find a separating hyperplane in the linearly separable case

• uses gradient descent for optimization

• do not converge in the non-separable case

• can force convergence by using a decreasing learning rate, but are not
guaranteed a reasonable stopping point

• MSE Rules
• converges in separable and not separable case

• can be optimized with pseudo-inverse

• but may not find separating hyperplane even if classes are linearly
separable

Summary

