
CS4442/9542b 
Artificial Intelligence II  

 prof. Olga Veksler 

Lecture 4 
Machine Learning 

Linear Classifier 



Outline 

• Optimization with gradient descent 

• Linear Classifier 
• Two classes  

• Multiple classes 

• Perceptron Criterion Function 
• Batch perceptron rule 

• Single sample perceptron rule 

• Minimum Squared Error (MSE) rule 
• Pseudoinverse 
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Optimization 

• How to minimize a function of a single variable 

J(x) =(x-5)2 

• From calculus, take derivative, set it to 0 

• Solve the resulting equation 
• maybe easy or hard to solve 

• Example above is easy:  
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Optimization 
• How to minimize a function of many variables 

J(x) = J(x1,…, xd) 

• From calculus, take partial derivatives, set them to 0 

gradient 

• Solve the resulting system of d equations 

• It may not be possible to solve the system of equations 
above analytically 



Optimization: Gradient Direction 

x2 
x1 

J(x1, x2) 

Picture from Andrew Ng 

• Gradient J(x) points in the direction of steepest 
increase of function J(x) 

• - J(x) points in the direction of steepest decrease 



Gradient Direction in 1D 
• Gradient is just derivative in 1D 

• Example: J(x) =(x-5)2 and derivative is  
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• derivative says increase x 
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• Let x = 3 
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• derivative says decrease x 

 

 

 

• Let x = 8 

 

 



Gradient Direction in 2D 

• J(x1, x2) =(x1-5)2+(x2-10)2 
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• Let a = [10, 5] 
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Gradient Descent: Step Size 

• J(x1, x2) =(x1-5)2+(x2-10)2 

• Which step size to take? 

• Controlled by parameter   
• called learning rate 

• From previous example: 
• a = [10   5] 

• -J(a) = [-10  10] 

• Let  = 0.2 

a 

 [-10, 10] 

global min 
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• a -  J(a) =  [10   5]+0.2 [-10  10]=[8  7] 

• J(10, 5) = 50;  J(8,7) = 18 
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Gradient Descent Algorithm 

 

x(1) x(2) 
 

-J(x(1)) 

 

 

 
-J(x(2)) 

x(k) 
 

-J(x(k))0 

k = 1   

x(1) = any initial guess 

choose ,  

while ||J(x(k))|| >  

 x(k+1) = x (k) -  J(x(k)) 
 k = k + 1   



   

Gradient Descent: Local Minimum 

• Not guaranteed to find global minimum 
• gets stuck in local minimum 

J(x) 

x 

 

x(1) x(2) 

-J(x(1)) 
 

 
-J(x(2)) 

x(k) 

-J(x(k))=0 

global minimum 

• Still gradient descent is very popular because it is 
simple and applicable to any differentiable function 
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How to Set Learning Rate ? 

• If   too large, may 
overshoot the local 
minimum and possibly 
never even converge 

  
 

  

 

 

 

J(x) 
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• If   too small, too 
many iterations to 
converge 

 

 

 

x(2) 

 

x(1) 

 

 

 

x(4) 

 

x(3) 

• It  helps to compute J(x) as a function of iteration 
number, to make  sure we are properly minimizing it 

J(x) 



Variable Learning Rate 

k = 1   

x(1) = any initial guess 

choose ,  

while ||J(x(k))|| >  

 x(k+1) = x (k) -  J(x(k)) 
 k = k + 1   

• If desired, can change learning rate  at each iteration 

k = 1   

x(1) = any initial guess 

choose   

while ||J(x(k))|| >  

 choose (k)  

 x(k+1) = x (k) - (k) J(x(k)) 
 k = k + 1   

 



Variable Learning Rate 

k = 1   

x(1) = any initial guess 

choose ,  

while ||J(x(k))|| >  

 x(k+1) = x (k) -  J(x(k)) 
 k = k + 1   

• Usually don’t keep track of all intermediate solutions 

 

x = any initial guess 

choose ,  

while ||J(x)|| >  

 x = x  -  J(x) 
  



Advanced Optimization Methods 

• There are more advanced gradient-based 
optimization methods 

• Such as conjugate gradient 

• automatically pick a good learning rate   

• usually converge faster 

• however more complex to understand and 
implement 

• in Matlab, use fminunc for various advanced 
optimization methods 

 

 



Supervised Machine Learning (Recap) 

• Chose a learning machine f(x,w) 

• w are tunable weights, x is the input example 

• f(x,w) should output the correct class of sample x 

• use labeled samples to tune weights w so that 
f(x,w) give the correct class (correct y) for 
example x 

• How to choose a learning machine f(x,w)? 
• many choices possible 

• previous lecture: kNN classifier 

• this lecture: linear classifier  



Linear Classifier: 2 Classes 
• First consider the two-class case 

• We choose the following encoding: 

• y  =   1  for the first class       

• y  =  -1  for the second class 

• Linear classifier 
• linear function:  -∞ ≤  w0+x1w1 + … + xdwd  ≤ ∞ 

• we need f(x,w) to be either  +1   or   -1 

• let  g(x,w) = w0+x1w1 + … + xdwd 

• let   f(x,w) = sign(g(x,w)) 
•   1  if  g(x,w) is positive 

•  -1 if  g(x,w) is negative 

• g(x,w) is called the discriminant  function 
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bad boundary 

Linear Classifier: Decision Boundary 

• f(x,w) = sign(g(x,w)) = sign(w0+x1w1 + … + xdwd) 

• Decision boundary is linear 

• Find the best linear boundary to separate two classes 

• Search for best w = [w0,w1,…,wd] to minimize training error 

better boundary  

 



 

More on Linear Discriminant Function (LDF) 

• LDF: g(x,w) = w0+x1w1 + … + xdwd 

• Written using vector notation   g(x) = wtx + w0           

  x1 

x2
 

weight vector bias or threshold 

decision boundary 

g(x) = 0 
 

g(x) > 0 

decision region 
for class 1 

g(x) < 0 

decision region 
for class 2 



More on Linear Discriminant Function (LDF) 

• Decision boundary: g(x,w) = w0+x1w1 + … + xdwd = 0 

• This is a hyperplane, by definition 

• a point in 1D 

• a line in 2D 

• a plane in 3D 

• a hyperplane in higher dimensions 



• We have m classes 
• Define m  linear discriminant functions 

gi(x) = wi
tx + wi0  for i = 1, 2, … m 

Multiple Classes 

• Assign x  to class i  if 

gi(x)  >  gj(x) for all j ≠ i  

• Let Ri be the decision region for class i  

• That is all examples in Ri get assigned class i   

g2(x) > g1(x) 
g2(x) > g3(x) 

 

 R1 
R2 

R3 

 

g1(x) > g2(x) 
g1(x) > g3(x) 

g3(x) > g1(x) 
g3(x) > g2(x) 



 

  

Multiple Classes 

• Can be shown that decision regions are convex 

• In particular, they must be spatially contiguous 



 

 

 

 

Failure Cases for Linear Classifier 

• Thus applicability of linear classifiers is limited to 
mostly unimodal distributions, such as Gaussian 

• Not unimodal data 

• Need non-contiguous 
decision regions 

• Linear classifier will fail 
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Fitting Parameters w 

• Linear discriminant function g(x) = wtx + w0 
 

• Can rewrite it  g(x) = [w0    wt]        =  atz  = g(z) 

 

1 
x 
new 

feature  
vector z 

new weight  
vector a 

• z is called augmented feature vector 

• new problem equivalent to the old   g(z) = atz  

 

























d
w

w

w



1

0



 

g(z) > 0 

g(z) < 0 z 

 

   

g(z) = 0 

 

Augmented Feature Vector 

• Feature augmenting is done to simplify notation 

• From now on we assume that we have augmented 
feature vectors 

• given samples x1,…, xn  convert them to augmented samples 
z1,…, zn  by adding  a new dimension of value 1  

• g(z) = atz 

 



Training Error 
• For the rest of the lecture, assume we have 2 classes 

• Samples z1,…, zn
  some  in class 1, some in class 2 

• Use these samples to determine weights a in the 
discriminant function g(z) = atz 

• Want to minimize number of misclassified samples 

 

                                                     g(zi) > 0     zi
 class 1 

                                                     g(zi) < 0     zi
 class 2 

 

• Thus training error is 0 if 

• Recall that 

 

                           g(zi) > 0   class 1 

                           g(zi) < 0   class 2 

 

 



Simplifying Notation Further 

                                                     atzi > 0     zi
 class 1 

                                                     atzi < 0     zi
 class 2 

 

• Thus training error is 0 if 

                                                     atzi     >  0  zi
 class 1 

                                                     at(-zi) > 0  zi
 class 2 

 

• Equivalently, training error is 0 if 

• Problem “normalization”: 

1. replace all examples zi from class 2 by –zi 

2. seek weights a s.t. atzi > 0 for zi
  

• If exists, such a is called a separating or solution vector 

• Original samples x1,… xn can also be linearly separated 



  

 
before normalization 

 

 

  
 seek a hyperplane that 

separates samples from 
different categories 

 seek hyperplane that puts 
normalized samples on the 
same (positive) side  

Effect of Normalization 

after normalization 
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Solution Region 
• Find weight vector a s.t. for all samples z1,…,zn 

• If there is one such a, then there are infinitely many a 



 

  
 

   
a 

Solution Region 

• Solution region: the set of all possible solutions for a  



Criterion Function: First Attempt 
• Find weight vector a s.t. z1,…, zn , at zi

  > 0  

• Design a criterion function J(a), which is minimum 
when a is a solution vector 

• Let Z(a) be the set of examples misclassified by a 

Z(a) = { zi | at zi
 < 0 } 

• Natural choice: number of misclassified examples 

J(a) = |Z(a)| 

• Unfortunately, can’t be                                  
minimized with gradient descent 

• piecewise constant, gradient zero                                               
or does not exist 
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Perceptron Criterion Function 
• Better choice: Perceptron criterion function 

• If z is misclassified, atz < 0 

• Thus J(a) ≥ 0  

• Jp(a) is proportional to the sum 
of distances of misclassified 
examples to decision boundary 

• Jp(a) is piecewise linear and 
suitable for gradient descent 
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• Gradient of Jp(a) is    
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• called batch rule because it is based on all examples 

• true gradient descent 

• cannot  solve Jp(a) = 0 analytically because of Z(a) 
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• Recall update rule for gradient descent 

 x(k+1)= x(k+1)–  J(x(k)) 

Optimizing with Gradient Descent 



• Gradient decent single sample rule for Jp(a) is 

 a(k+1) =a(k) +zM 

• zM is one sample misclassified by a(k) 

• Geometric Interpretation: 

• must have a consistent way to visit samples 

• zM  misclassified by a(k) 
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a(k) 

• zM is on the wrong side of 
decision boundary 

• adding zM  to a moves  decision 
boundary in the right direction  

 

Perceptron Single Sample Rule 

zM 

 
 

 a(k+1) 

 

zM 



 

Perceptron Single Sample Rule 

 if  is too large, previously 
correctly classified sample zi

  is 
now misclassified 

  

 

a(k) 

 

zM 

 

a(k+1) 

zi 

a(k) 

 if  is too small,  zM  is still 
misclassified 

  
 

 

zM 

a(k+1) 



features grade 
name good 

attendance? 
tall? sleeps in 

class? 
chews 
gum? 

Jane yes (1) yes (1) no (-1) no (-1) A  

Steve yes (1) yes (1) yes (1) yes (1) F 

Mary no (-1) no (-1) no (-1) yes (1) F 

Peter yes (1) no (-1) no (-1) yes (1) A 

• class 1: students who get grade A 

• class 2: students who get grade F 

Perceptron Single Sample Rule Example 



features grade 

name extra good 
attendance? 

tall? sleeps in 
class? 

chews 
gum? 

Jane 1 yes (1) yes (1) no (-1) no (-1) A  

Steve 1 yes (1) yes (1) yes (1) yes (1) F 

Mary 1 no (-1) no (-1) no (-1) yes (1) F 

Peter 1 yes (1) no (-1) no (-1) yes (1) A 

 • convert samples x1,…, xn  to augmented samples z1,…, zn  
by adding  a new dimension of value 1  

Augment Feature Vector 



• Replace all examples from class 2 by their negative 

  zi→ - zi 

  • Seek weight vector a s.t.  atzi  > 0  for all zi 

features grade 

name extra good 
attendance? 

tall? sleeps in 
class? 

chews 
gum? 

Jane 1 yes (1) yes (1) no (-1) no (-1) A  

Steve -1 yes (-1) yes (-1) yes (-1) yes (-1) F 

Mary -1 no (1) no (1) no (1) yes (-1) F 

Peter 1 yes (1) no (-1) no (-1) yes (1) A 

“Normalization” 



• Gradient descent  single sample rule:  a(k+1) =a(k) +zM 

 
• Set fixed learning rate to  = 1:    a(k+1) =a(k) + zM 

 

features grade 

name extra good 
attendance? 

tall? sleeps in 
class? 

chews 
gum? 

Jane 1 yes (1) yes (1) no (-1) no (-1) A  

Steve -1 yes (-1) yes (-1) yes (-1) yes (-1) F 

Mary -1 no (1) no (1) no (1) yes (-1) F 

Peter 1 yes (1) no (-1) no (-1) yes (1) A 

Apply Single Sample Rule 

• Sample is misclassified if  0
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• initial weights a(1) = [0.25, 0.25, 0.25, 0.25] 

name atz misclassified? 

Jane 0.25*1+0.25*1+0.25*1+0.25*(-1)+0.25*(-1) >0 no 

Steve 0.25*(-1)+0.25*(-1)+0.25*(-1)+0.25*(-1)+0.25*(-1)<0 yes 

• visit all samples sequentially 

• new weights 
       25.025.025.025.025.0

12
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   11111

 75.075.075.075.075.0 

Apply Single Sample Rule 



name atz misclassified? 

Mary -0.75*(-1)-0.75*1 -0.75 *1 -0.75 *1 -0.75*(-1) <0 yes 

• new weights 

       75.075.075.075.075.0
23
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   11111

 75.125.025.025.075.1 

   75.075.075.075.075.0
2
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Apply Single Sample Rule 



name atz misclassified? 

Peter -1.75 *1 +0.25* 1+0.25* (-1) +0.25 *(-1)-1.75*1 <0 yes 

• new weights 
       75.125.025.025.075.1
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 75.075.075.025.175.0 

   75.125.025.025.075.1
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Apply Single Sample Rule 



name atz misclassified? 

Jane -0.75 *1 +1.25*1  -0.75*1 -0.75 *(-1) -0.75 *(-1)+0 no 

Steve -0.75*(-1)+1.25*(-1) -0.75*(-1) -0.75*(-1)-0.75*(-1)>0 no 

Mary -0.75 *(-1)+1.25*1-0.75*1 -0.75 *1 –0.75*(-1) >0 no 

Peter -0.75 *1+ 1.25*1-0.75* (-1)-0.75* (-1) -0.75 *1 >0 no 

   75.075.075.025.175.0
4

a

• Thus the discriminant function is  

g(z) = -0.75 z0+1.25z1 – 0.75z2 - 0.75z3 - 0.75z4  

• Converting back to the original features x 

 g(x) = 1.25x1 – 0.75x2 - 0.75x3 - 0.75x4  - 0.75  

Single Sample Rule: Convergence 



good  

attendance 

 
tall 

 
sleeps in class 

 
chews gum 

 

• This is just one possible solution vector  

• With a(1)=[0,0.5, 0.5, 0, 0], solution is [-1,1.5, -0.5, -1, -1] 

1.5x1 - 0.5x2  -  x3  -  x4  >  1  grade A 

 • In this solution, being tall is the least important feature 

• Trained LDF:  g(x) = 1.25x1 – 0.75x2 - 0.75x3 - 0.75x4  - 0.75  

• Leads to classifier: 

Final Classifier 

1.25x1 – 0.75x2 - 0.75x3 - 0.75x4  >  0.75  grade A 



• Suppose we have examples: 

• class 1:  [2,1], [4,3], [3,5] 

• class 2: [1,3] , [5,6] 

• not linearly separable  
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Non-Linearly Separable Case 

• Still would like to get approximate 
separation 

• Good line choice is shown in green 

• Let us run gradient descent 

• Add extra feature and “normalize” 



• atz1 = [1 1 1] · [1 2 1]t  > 0       

• atz2 = [1 1 1] · [1 4 3]t  > 0      

• atz3 = [1 1 1] · [1 3 5]t  > 0      

 

 

• single sample perceptron rule 

• Initial weights a(1) = [1  1  1] 

• This is line x1 + x2 + 1 = 0 

• Use fixed learning rate  = 1 

• Rule is:   a(k+1) =a(k) + zM 
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Non-Linearly Separable Case 



• atz4
 = [1 1 1] · [-1 -1 -3]t  =  -5 <  0 

• Update:  a(2) = a(1) + zM = [1  1  1] + [-1  -1  -3] = [0  0  -2]    
 

 

 

 
  

• atz5
 = [0 0 -2] · [-1 -5 -6]t  = 12 > 0 

• atz1
 = [0 0 -2] · [1 2 1]t  < 0 

• Update:  a(3) = a(2) + zM = [0  0  -2] + [1  2  1] = [1  2  -1] 
 

 

Non-Linearly Separable Case 

• a(1) = [1  1  1] 

• rule is:   a(k+1) =a(k) + zM 
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Non-Linearly Separable Case 

• a(3) = [1  2  -1] 

• rule is:   a(k+1) =a(k) + zM 

 
 

 

 
• atz2

 = [1 4 3] · [1  2 -1]t  =  6 > 0 

• atz3
 = [1 3 5] · [1  2 -1]t  =  2 > 0 

• atz4
 = [-1 -1 -3] · [1  2 -1]t  =  0 

• Update:  a(4)  = a(3) + zM = [1   2  -1] + [-1  -1  -3] = [0  1  -4] 
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• We can continue this forever 

• there is no solution vector a satisfying for all atzi > 0 for all i 

• Need to stop at a good point 

• Solutions at iterations 
900 through 915  

• Some are good some 
are not 

• How do we stop at a 
good solution? 

 

Non-Linearly Separable Case 



 
1. Classes are linearly separable: 

• with fixed learning rate, both single sample and batch rules converge to a 
correct solution a 

• can be any a in the solution space 

2. Classes are not linearly separable: 
• with fixed learning rate, both single sample and batch do not converge 

• can ensure convergence with appropriate variable learning rate 

•  → 0  as  k → ∞ 

• example, inverse linear:   = c/k, where c is any constant 

• also converges in the linearly separable case   

• no guarantee that we stop at a good point, but there are good reasons 
to choose inverse linear learning rate 

• Practical Issue: both single sample and batch algorithms converge 
faster if features are roughly on the same scale 
• see kNN lecture on feature normalization 

 

 

 

Convergence of Perceptron Rules 



• True gradient descent, full 
gradient computed 

• Smoother gradient because 
all samples are used  

• Takes longer to converge 

Batch 

• Only partial gradient is 
computed 

• Noisier gradient, therefore 
may concentrates more than 
necessary on any isolated 
training examples (those 
could be noise) 

• Converges faster 

• Easier to analyze 

Single Sample 

Batch  vs. Single Sample Rules 



• MSE procedure 

• choose positive constants b1, b2,…, bn  

• try to find weight vector a s.t. atzi = bi  for all samples zi
 

• if succeed, then a is a solution because bi’s are positive 

• consider all the samples (not just the misclassified ones) 

• Idea: convert to easier and better understood  problem 

atzi  > 0  for all samples zi
 

solve system of linear inequalities 

atzi = bi  for all samples zi
 

solve system of linear equations 

Minimum Squared Error Optimization 



• By setting atzi = bi, we expect zi to be at  a 
relative distance bi from the separating 
hyperplane 

• Thus b1, b2,…, bn  are expected relative 
distances of examples from the separating 
hyperplane  

• Should make bi small if sample i  is 
expected to be near separating hyperplane, 
and make bi larger otherwise 

• In the absence of any such information, 
there are good reasons to set 

 b1 =  b2 =… = bn  = 1 

MSE: Margins 

   

 



• Solve system of n equations 

• Using matrix notation: 
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• Solve a linear system Za = b 
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MSE: Matrix Notation 

Z a b 



 

 

• Solve a linear system Za = b 

• Z is an n by (d +1) matrix 

• Exact solution can be found only if Z is 
nonsingular and square, in which case inverse Z-1 

exists 

• a = Z-1 b 

• (number of samples) = (number of features + 1) 

• if happens, guaranteed to find separating hyperplane 

• but almost never happens in practice 

 

 
 

MSE: Exact Solution is Rare 



• No exact solution for Za = b in this case 

• Find an approximate solution a, that is Za  b  
• approximate solution a does not necessarily give a 

separating hyperplane in the separable case 
• but hyperplane corresponding to an approximate a 

may still be a good solution 
 

• Typically Z  is overdetermined 

• more rows (examples) than columns (features) 

Z b a = 

MSE:Approximate Solution 



• MSE approach: find a which minimizes 
the length of the error vector e = Za - b 

 

Za 

b 

 e 

• Minimize the minimum squared error criterion function:  

• Can be optimized exactly 
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MSE Criterion Function 



• Compute the gradient:  JS(a) =2Zt(Za-b) 

• Set it to zero: 2Zt(Za-b) = 0 

• If ZtZ  is non-singular, its inverse exists and can find a 
unique solution for  a = (ZtZ)-1 Ztb 

 

MSE: Optimizing JS(a) 
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• In Matlab 

•  a = Z\b 

• or use pinv command (pseudo-inverse) 

• a = pinv(Z)*b; 

 

 



• Class 1: (6 9), (5 7) 

• Class 2: (5 9), (0 4) 

• Add extra feature and “normalize”  
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MSE: Example 



• Choose  b= 
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• Gives a separating hyperplane since 
Za > 0 

MSE: Example 



• Class 1: (6 9), (5 7) 

• Class 2: (5 9), (0 10) 

• One example is far compared to 
others from separating hyperplane 
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MSE: Another Example 



• Choose b = 
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• Does not give a separating hyperplane since atz3 < 0 

MSE: Another Example Cont. 



• MSE wants all examples to be at the same distance 
from the separating hyperplane 

• Examples that are “too right”, i.e. too far from the 
boundary cause problems 

  

 

desired solution 

MSE solution 

• No problems with convergence though, 
both in separable and non-separable cases 

MSE: Problems 

“too right” 



• If we know that 4th point is far from 
separating hyperplane 

• Solve  a=Z\b = 
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MSE: Another Example Cont. 

• in practice can look at points 
which are furthest from the 

decision boundary    



More General Discriminant Functions 
• Linear discriminant functions give simple decision 

boundary 

• try simpler models first 

• Linear Discriminant functions are optimal for certain 
type of data 

•  Gaussian distributions with equal covariance (don’t  worry if 
you don’t know what a Gaussian is)  

• May not be optimal for other data distributions, but 
they are very simple to use 

• Discriminant functions can be more general than linear 

• For example, polynomial discriminant functions 

• Decision boundaries more complex than linear 

• Later will look more at non-linear discriminant functions 



• Linear classifier works well when examples are 
linearly separable, or almost separable  

• Two Training Approaches: 

• Perceptron Rules 
• find a separating hyperplane  in the linearly separable case 

• uses gradient descent for optimization 

• do not converge in the non-separable case 

• can force convergence  by using a decreasing learning rate, but are not 
guaranteed a reasonable stopping point 

• MSE Rules 
• converges in separable and not separable case 

• can be optimized with pseudo-inverse 

• but may not find separating hyperplane even if classes are linearly 
separable 

 

Summary 


