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Abstrat. In reent years, interative methods for segmentation are in-reasing in popularity due to their suess in di�erent domains suh asmedial image proessing, photo editing, et. In this paper we disussa hallenging industrial appliation of transistor gate segmentation inthe images of integrated hips, whih is essential for reverse engineeringtasks. Segmentation in the domain of integrated hips is very diÆultdue to large variations in ontrast and noise type and also due to ex-treme variation in the size of the transistor gates, whih an range froma few pixels to a few thousands of pixels in length, and from one to sev-eral hundred pixels in width. We present a semiautomati segmentationalgorithm that produes reliable and aurate segmentation of a transis-tor gate from its bakground with the minimum guidane from the user,who just has to lik on one pixel inside the transistor gate of interest.The algorithm is based on the powerful graph-ut interative segmenta-tion tehnique of Boykov and Jolly [1℄. In order to obtain aurate androbust segmentation with suh low user interation, we make several as-sumptions based on our observations of the transistor gate images. Themain assumption is that the transistor gates are approximately ompatin shape, or an be approximated by several roughly ollinear ompatparts. To ahieve robustness in segmentation, we inorporate the om-pat shape prior into the framework of [1℄. The use of the ompat shapeprior allows us to introdue a parameter bias to bias the segmentation to-wards larger objet boundaries, whih ounterats the general tendenyof the algorithm in [1℄ to produe smaller segments. In order to aom-modate large variation in the quality of the images, most parameters inthe algorithm are seleted automatially to adapt to the urrent image.An appliation developed on the basis of our algorithm runs in real-timeand is being used by Semiondutor Insight In.



21 IntrodutionSegmentation is an important problem in omputer vision and is often requiredas a preliminary step to solving various image analysis tasks. Segmentation issubjetive, and thus it is ill-posed in a general setting. However for a partiularappliation segmentation an beome tratable, provided that enough problemspei� assumptions an be made to simplify the problem.In this paper, we desribe a segmentation appliation for Semiondutor In-sight, whih is an engineering onsultany ompany speializing in intelletualproperty protetion in the integrated iruit domain. To obtain images, the in-tegrated iruit is delayered and SEM miro-photographed. The upper layers ofthe hip, that ontain metal wiring, are typially high quality and an be seg-mented by automated means. The lower levels, that ontain the atual dopantsilion implementation of transistors, are typially low quality, and ould havesubstantial variation in brightness and ontrast. Two of the most important pa-rameters in IC iruitry are the length and the width of the transistors. Theydetermine the iruitry power harateristis and are ruial for proper modelingand understanding of the funtionality. Prior to the development of the applia-tion desribed in the paper, the width and length measurements were done bya human operator, boxing the atual gate in a omputer appliation, whih alsoinvolved time onsuming panning and zooming aross the image. We developedan interative segmentation system for determining the length and the width ofthe transistor gates. The system requires the minimum possible user interationand produes aurate and robust segmentation. The user just has to hoose thetarget transistor by liking inside it only one. Hene we refer to our appliationas semiautomati segmentation.We hose the graph-ut segmentation algorithm proposed by Boykov andJolly in [1℄ as a basi framework for our appliation. The interative graphut [1℄ is one of the state-of-the-art methods for interative segmentation. Unlikeloal methods like region growing or thresholding [2℄, algorithm in [1℄ is ableto produe globally optimal segments. The global methods typially solve theproblem by de�ning an objetive funtion and optimizing it. Exept the graph-ut based method of [1℄, none of the other optimization based methods like ativeontour (snake) [3, 4℄, level sets [5℄, normalized ut [6℄ guarantees a globallyoptimal solution.The framework in [1℄ was proposed for a general segmentation and requiresthe user to mark a few objet seeds and a few bakground seeds. In addition, ifsegmentation results are not satisfatory, the user has to orret them by addingmore objet and bakground seeds. We seek to redue the interation to theminimum, the user just needs to hoose the transistor gate to be segmented bymarking a single seed pixel inside it. The algorithm in [1℄ is not diretly appliablewith suh a low user interation. In order to make the graph ut framework ap-pliable, we make several simplifying assumptions based on the observed images.Consider the sample images in the Fig:1. The ommon property of the transis-tor gates is that they are nearly retangular in shape. Hene, we inorporate theompat shape prior in the framework of [1℄ whih onstrains the segmentation
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Fig. 1. Sample of the images provided by Semiondutor Insight In.
to follow the ompat shape3. Another observation is that the transistor gatesappear brighter than their bakground. Inorporating these assumptions intothe framework of [1℄ helps ahieve robust and aurate segmentation.A major diÆulty in our appliation arises from the large variability in thesizes of the transistor gates. They an range from 2 to 200 pixels in widthand from 10 to a few thousands of pixels in length. In addition, there is alarge variation in quality of the images. The ontrast between the transistorgate and its bakground is frequently poor, and the intensity within a singletransistor gate may vary signi�antly. Moreover, the noise level varies from imageto image. Fig:1 shows some of the images. Aurate estimation and adaptationof the algorithm's parameters to a spei� image is hene essential for robustsegmentation.In [1℄, the user is required to deide upon the quality of the segment and, ifneessary, orret it by repeatedly adding new seeds and rerunning the graph-utstep. However the algorithm in [1℄ is sensitive to the hoie of parameters, andif they are far from optimal, signi�ant interation may be required from theuser to obtain the desired segmentation. Unfortunately, automati parameterestimation for [1℄ is not a solved problem yet. In our appliation, we solve theparameter seletion issue as follows. We devise a simple yet intuitive test forautomatially heking the quality of the segment. If the urrent segment doesnot pass the quality hek, we readjust the parameters and rerun the graph utsegmentation. We iterate this step using a searh over parameter spae until theresulting segment passes the quality hek.Another issue with [1℄ is its tendeny to produe objets with shorter bound-aries. For tehnial reasons, due to the ompat shape prior, we an introdue anew parameter bias into the framework of [1℄ to bias segmentation towards larger3 We explain in setion 3.4 what we mean by the word ompat.



4objets. The value of this parameter has a large inuene on the segmentationresults, and we hoose it automatially as desribed in the previous paragraph.The semiautomati segmentation system developed on the basis of our al-gorithm for Semiondutor Insight In. has suessfully replaed their existingtime-onsuming and tedious manual segmentation system. This paper is orga-nized as follows. In Se. 2 we review the graph ut segmentation framework of[1℄, in Se. 3 we give the details of our algorithm for transistor segmentation, inSe. 4 we present results.
2 Segmentation with Graph CutsIn [1℄ segmentation of an objet from its bakground is stated as a binary labelingproblem. Given a set of pixels P and a set labels L = f0; 1g, where labels 0 and1 represent the bakground and the objet, respetively, the goal is to �nd anassignment of labels to pixels S = fS1; : : : ; Sp; : : : ; SjP jg that minimizes theenergy funtion: E(S) = �Xp2P Dp(Sp) + Xfp;qg2Np<q Vpq(Sp; Sq); (1)N is the neighborhood system, whih is often hosen as the standard 4-onneted grid, and p and q are pixels. Dp(Sp) is the penalty for assigning labelSp to the pixel p, and should be small if label Sp is likely for a pixel p. Vpq(Sp; Sq)is the pairwise penalty for assigning labels Sp, Sq to neighboring pixels p andq, and should be large if Sp 6= Sq and an objet border is unlikely between pand q. Dp is alled the regional term and it enodes the regional properties ofthe segment, while Vpq is alled the boundary term and it enodes the boundaryproperties of a segment. The parameter � deides the relative importane be-tween the regional and the boundary properties of the segment. In [1℄ it is shownhow to �nd the global minimum of the energy in equation (1) using the min-ut/max-ow algorithm. We use the fast max-ow algorithm developed in [7℄.
3 Transistor Gate SegmentationOur goal is to develop a semiautomati segmentation system that segments atransistor gate in an IC image aurately with minimum guidane from the user,who just has to hoose the transistor gate of interest by liking inside it one.The graph ut algorithm [1℄ an not be diretly applied beause of several issues,whih we address in our work. The main issues are as follows: automati seletionof bakground seeds, automati parameter seletion for the energy in Eqn. (1),ounterating the bias of [1℄ towards smaller segment boundaries, and reduinguser interation to a single seed. In this setion, we address these issues and alsodisuss other modi�ations to [1℄ that improve segmentation robustness.This setion is organized as follows. Se. 3.1 desribes automati bakgroundseed seletion based on orientation estimation for transistor gates. Se. 3.2 ex-plains our automati parameter seletion for the energy in Eqn. (1), whih also



5leads to eliminating the need for user guidane beyond the initial objet seed.Se. 3.3 and 3.5 explain the regional and boundary terms that we use in equa-tion (1). Se. 3.4 explains the ompat shape prior, and Se. 3.6 explains how weperform segmentation in pieewise manner, whih improves eÆieny and allowssegmenting transistor gates of shapes somewhat more general than ompat.
3.1 Bakground Seed Detetion and Orientation EstimationIn [1℄ the user is required to mark a few objet seeds and a few bakground seeds.Sine we don't require bakground seeds from the user, we need to identify themautomatially. For this purpose we use our prior knowledge about the width oftransistor gates, whih ranges from 2 to 200 pixels, and about orientation, whihis roughly horizontal or vertial. We �rst estimate the orientation by omparingthe intensity variation along the horizontal and vertial diretions in a smallwindow around the user provided seed. We hoose the orientation orrespondingto the smallest intensity variation. Then we take the line parallel to the dominantdiretion and passing through the user marked seed. All pixels at distane 200(the maximum width) away from that line an be safely assumed to be in thebakground, and we mark them as bakground seeds.3.2 Eliminating User Guidane and Parameter EstimationIn [1℄, the user has to deide on the segment quality and, if neessary, orret itby repeatedly adding new seeds and rerunning the graph-ut step. However [1℄is sensitive to the parameters hoie, and if they are far from optimal, signif-iant interation may be required for aeptable segmentation. Unfortunately,parameter estimation for [1℄ is not yet solved. We solve the parameter seletionissue as follows. We devise a simple yet intuitive test for automatially hekingthe quality of a segment. Our quality test requires the average intensity di�er-ene between adjaent pixels along the segment boundary to be greater thanthe intensity variation inside the objet. If the urrent segment does not passthe quality hek, we readjust the parameters and rerun the graph ut step. Wesearh over parameter spae until the resulting segment passes the quality hek.Thus we eliminate the need for user guidane beyond the initial objet seed.3.3 Regional TermIn this setion, we explain the regional terms Dp's that we use in Eqn. (1). We�rst disuss Dp's for the objet seed and the automatially deteted bakgroundseeds. For the objet seed pixel p, we set Dp(0) =MaxInt and Dp(1) = 0, whereMaxInt is the maximum integer allowed. This insures that p will be assignedto the objet in the optimal labeling. Similarly, for a bakground seed p, weset Dp(1) = MaxInt and Dp(0) = 0. In [1℄ the seeds are also used to buildthe objet and bakground models to be used for regional properties for otherpixels. For more objet data, we ollet pixels from the region of size equal to theminimum possible transistor gate (2 by 10 in our appliation) and entered at



6the objet seed to build an objet intensity histogram. Still the amount of datamay be insuÆient for an aurate intensity distribution model. Hene we use aweighted mixture of uniform distribution and a smoothed normalized histogram.For the bakground, we use a uniform distribution. The atual osts Dp(Sp) arenegative logarithms of the likelihoods. Therefore,Dp(1) = �ln�Phist(Ip) + (1� ) 1256� ; (2)and Dp(0) = �ln(1=256); where we assume that there are 256 gray levels in animage, and Phist(�) is the objet intensity likelihood (built from the histogram).
3.4 Compat Shape

Fig. 2. Shows how segmentation is restrited in di�erent quadrants. Objet seed is red.
The transistor gates are roughly retangular in shape, and thus if we imposea roughly retangular shape prior on the objet segment, we an signi�antlyimprove the robustness of our algorithm. We inorporate the so alled om-pat shape prior. We use the word ompat informally, borrowing the ideafrom [8℄, where they hose the word ompat to reet that for suh segments,the perimeter to area ratio tends to be small. Consider Fig:2. It shows a squareimage region with the side equal to the maximum possible width of a transistorgate. The squares are the image pixels, and the dark square is the objet seed.We divide this region into four slightly overlapping quadrants with respet tothe seed, named P1, P2, P3, and P4. P1 onsists of all pixels above and to theright of the seed, P2 onsists of all the pixels above and to the left of the seed,P3 onsists of all the pixels below and to the left of the seed, and P4 onsists ofall the pixels to the right and below the seed. We say that an objet is ompatif its boundary an be fully traed lokwise using only the edges in eah quad-rant shown in Fig:2. Thus in order for the objet segment to be ompat, weprohibit a ertain set of label assignments to neighboring pixels. For example,for any neighboring pixels p and q in the �rst quadrant, we prohibit assigning 0to p and 1 to q if p is either to the left or below q. Notation p <l q denotes thatpixel p is to the left of q and notation p <a q means pixel p is above pixel q. If



7l, l0 are labels, we will denote the assignment of l to pixel p and l0 to pixel q by(p l; q  l0). Now we an de�ne the set of prohibited assignments:
Ap = fp 0; q  1gjp; q 2 P1 [ P4; p <l qg[fp 0; q  1gjp; q 2 P2 [ P3; q <l pg[fp 0; q  1gjp; q 2 P1 [ P2; q <a pg[fp 0; q  1gjp; q 2 P3 [ P4; p <a qgAn objet segment is of ompat shape if no prohibited assignments need to bemade in its segmentation. In pratie we found that inorporating the ompatshape prior greatly improves the robustness of the transistor gate segmentation.

3.5 Boundary termIn this setion we desribe the boundary terms Vpq that we use in Eqn. (1). Weassume that the intensity variation inside the transistor gate is smaller than thestrength of intensity edges on its border. Another fat that we use is that theintensity edge between a transistor gate and its bakground almost always goesfrom light to dark. We also use the boundary term to inorporate the ompatshape prior and to introdue a parameter bias in Vpq to enourage objet segmenttowards a larger boundary. This parameter helps to ounterat the well knownbias of [1℄ towards a shorter boundaries. Hene Vpq is:Vpq(Sp; Sq) = 8<:0 if Sp = Sqwpq if fp Sp; q  Sqg 62 ApK if fp Sp; q  Sqg 2 Ap ; (3)where Ap was de�ned in setion 3.4, the onstant K is prohibitively large4,and wpq = e��I22�2 � bias, where �I = maxf(Ip� Iq); 0g enourages the intensitytransition on segmentation border to be from light to dark. Parameter � an beregarded as a measure of the noise level in the image. It a�ets the segmentationdiretly and hene a ruial parameter that needs to estimated orretly. When�I > �, the weight wpq is typially small enough to allow a boundary. Weompute � as the average di�erene of the intensities of two adjaent pixels ina region around the objet seed. The size of this region is same as the smallestpossible objet size whih is known to us beforehand.Parameter bias implements bias to a larger segmentation boundary. Whenthe bias inreases the boundary ost dereases. The value of bias has large inu-ene on the segmentation results, and we automatially hoose an appropriatevalue from a range by using the \quality hek" as desribed in Se. 3.2.Now our energy funtion is fully spei�ed, to minimize it globally and exatlywith a graph ut, we just have to hek that it is submodular, aording to [9℄. Tobe submodular, the binary terms of E(S) have to satisfy: Bpq(0; 0)+Bpq(1; 1) �Bpq(1; 0) + Bpq(0; 1): The left hand-side is always 0, and the right hand-side iswpq +K, whih is always nonnegative sine K is hosen to be very large.4 It is enough to make K equal to the ost of E(S0) where S0 is any segmentation notontaining prohibited assignments.



83.6 Pieewise Segmentation

Fig. 3. Explains how the extension step works. The initial segment is outlined by blakand the next segments are outlined with white.
In our appliation, we use pieewise approah to segmentation. First, wesegment a piee of the transistor gate around the user provided seed, and ifrequired, extend it pieewise along the dominant orientation, by repeatedly andautomatially seleting a new objet seed and running the graph ut until thewhole transistor gate is segmented. Fig: 3 illustrates pieewise segmentation.There are two main reasons for performing pieewise segmentation. The �rstreason is that a transistor gate may not be ompat in shape, but rather onsistof several roughly ollinear ompat piees. The seond reason is omputationaleÆieny. There is a huge variability in transistor gate lengths, whih an rangefrom 10 pixels to a few thousand pixels. To segment the whole transistor gate, wewould have to onstrut the graph of size equal to the biggest possible transistorgate, whih would be too expensive if the atual transistor gate is medium/small.With pieewise segmentation, we run the graph ut on a series of muh smallergraphs, adapting to the atual length of the transistor gate.Our test to deide if the urrent segment has to be to be extended onsistsof measuring the dissimilarity between the intensity distribution of the urrentsegment and that of the region just beyond the end of the segment. If the testfails, then the segment is extended. For extending, a new seed is seleted whihlies inside the urrent segment, lose to the weak edge and approximately on theaxis of the transistor gate in the dominant orientation.4 ResultsFig: 4 shows segmentation results for the images in Fig:1. The entral dots arethe user entered seeds, and the other dots are the automatially hosen extensionseeds. We set � = 0:007,  = 0:4, and they are �xed for the appliation. Param-eters � and bias are estimated adaptively for eah image as already explained.The appliation is able to segment transistor gates eÆiently and with highauray. As we segment a transistor pieewise, we build relatively small 2Dgrid graph with 4-neighborhood onnetion. Hene the graph ut omputationsusing the max ow algorithm of [7℄ runs very fast. The appliation is implementedwith C++. On a P4, 2.8 GHz omputer it takes less than 2 seonds to segment atransistor of size 120x2500 pixels. Out of 100 random seletions (some inluding
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Fig. 4. Shows the segmentation results on the images displayed in 1.
very poor quality images with almost no ontrast on the transistor gate border),82 transistors were segmented aurately and 7 of them had the initial pieearound the seed segmented orretly but the extension failed. If we inlude onlythe relatively better quality images, the auray is 95%. This appliation isurrently being used by Semiondutor Insight In. for transistor segmentationreplaing their manual segmentation system.AknowledgementsWe would like thank Stephen Begg and Dale Carlson of Semiondutor Insightsfor developing interative appliation inorporating the method.Referenes1. Boykov, Y., Jolly, M.P.: Interative graph uts for optimal boundary and regionsegmentation. In: International Conferene on Computer Vision(ICCV). Volume 20.(2001) 105{1122. Gonzalez, Woods: Digital Image Proessing. Seond edn. Prentie Hall, BerlinHeidelberg New York (1996)3. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Ative ontour models. InternationalJournal of Computer Vision 2 (1998) 321{3314. Cohen, L.: On ative ontour models and ballons. Computer Vision, Graphis andImage Proessing 53 (1991) 211{2185. Osher, S., Sethian, J.: Fronts propagating with urvature dependent speed: Algo-rithm based on hamilton jaobi formulations. JOurnal of Computational Physis79 (1988) 12{496. Shi, J., Malik, J.: Normalized uts and image segmentation. In: IEEE Confereneon Computer Vision(ICCV). (1997) 731{7377. Boykov, Y., Kolmogorov, V.: An experimental omparison of min-ut/max-owalgorithms for energy minimization in vision. IEEE Transation on PAMI 26 (2004)8. Veksler, O.: Stereo orrespondene with ompat windows via minimum ratio yle.IEEE Transation on PAMI 24 (2001) 1654{16609. Kolmogorov, V., Zabih, R.: What energy funtion an be minimized via graph uts?IEEE Transation on PAMI 26 (2004) 147{159


