Animated Classic Mosaics from Video

Yu Liu and Olga Veksler

Department of Computer Science, University of Western Ontario
London, Ontario, Canada, N6A 5B7

yliu382@csd.uwo.ca, olga@csd.uwo.ca

Abstract. Generating artificial classic mosaics from digital images is
an area of NPR rendering that has recently seen several successful ap-
proaches. A sequence of mosaic images creates a unique and compelling
animation style, however, there has been little work in this area. We ad-
dress the problem of creating animated mosaics directly from real video
sequences. As with any animation, the main challenge is to enforce tem-
poral coherency between the frames. For this purpose, we develop a new
motion segmentation algorithm. Our algorithm requires only a minimal
help from the user. We pack the tiles into the discovered coherent motion
layers, using color information in all the frames in a global manner. Oc-
clusions and dis-occlusions are handled gracefully. We produce colorful,
temporally coherent and uniquely appealing mosaic animations. We be-
lieve that our method is the first one to animate classic mosaics directly
from video.

1 Introduction

Mosaics are composed of a large number of regularly shaped tiles, such as rect-
angles and squares, artfully arranged. Simulating classic mosaics from digital
images is one of the areas in non-photorealistic rendering that has been widely
investigated [TI2I3I415].

One of the reasons for popularity of NPR rendering in computer graphics is
that a stylized image can have a more profound impact on the user than the
original. This is perhaps even more true of an NPR animation [G[7/8[9]. Creating
animated mosaics manually is very labor intensive. However, there has been little
work on creating mosaic animations automatically or interactively [L0/4].

We develop a system for creating animated mosaics directly from video se-
quences. Our approach is inspired by [I0], who were the first to realize the unique
set of challenges for mosaic animation. In many NPR animation methods, in or-
der to facilitate temporal coherence, the primitives are allowed to deform, scale,
blend, etc. However, to stay faithful to the classic mosaic style, the tile primi-
tives cannot undergo any such transformations. Each individual frame must be
a convincing mosaic, while the whole sequence exhibits a convincing motion.

One way to achieve temporal coherency is to displace groups of tiles in a
consistent manner. For this purpose we develop a new motion segmentation
algorithm with occlusion reasoning. Our algorithm requires minimal help from

G. Bebis et al. (Eds.): ISVC 2009, Part II, LNCS 5876, pp. 1085-[I096] 2009.
© Springer-Verlag Berlin Heidelberg 2009



1086 Y. Liu and O. Veksler

Fig. 1. Several frames from “Walking” sequence, and the corresponding mosaic

the user. We pack the tiles into the discovered coherent motion layers, using color
information in all the frames in a global manner. Our tile packing algorithm
is based on the one for still mosaic [5], with several modifications to address
video input. Occlusions are handled gracefully. We produce colorful, temporally
coherent and uniquely appealing mosaic animations, see Fig.[Il We believe that
our method is the first one to animate classic mosaics directly from video.

2 Related Work

There are several approaches to still classic mosaic rendering from a digital
image. In order to obtain a visually pleasing mosaic, most methods agree on the
following basic principles. First, mosaic tiles should be placed at orientations
that emphasize perceptually important curves in an image. This is usually done
by placing the tile sides parallel to the important curves. Which curves are
important is often decided through user interaction or edge detection. The second
principle is to maximize the number of tiles, while avoiding overlap as much as
possible. This, combined with the first principle, implies that the tile orientations
should align with important boundaries and vary smoothly in the image, since
smoothly varying orientations allow a tighter packing. The last principle is that
the tile color distribution should reflect that of the underlying image.

There is a variety of techniques for classic mosaics [TI2ITT]. All of the above
have a number of heuristics steps, and their behavior may be hard to predict and
control. We base our animated mosaics on the still mosaic method in [5], which
is based on principled global optimization. They formulate an explicit objective
function that incorporates the desired mosaic properties. User interaction and
explicit edge detection are not required.

The main challenge to our animated mosaics is ensuring temporal consistency.
Stylizing each frame individually produces disturbing artifacts. Artifacts may be
more tolerable in the moving parts of the scene and could be regarded as a special
effect. However flickering artifacts are especially pronounced in the static regions
of the frame. Therefore most NPR methods seeking to stylize a video have to
deal with temporal consistency.



Animated Classic Mosaics from Video 1087

There are roughly two ways to approach temporal consistency. The first group
of methods treats a video as a space-time 3D volume [S/49]. Rather than direct-
ing 2D (flat) primitives in the direction of the scene motion, temporal coherency
is achieved by using volumetric (3D) rendering primitives to fill the 3D space-
time volume. The advantage is that motion estimation, which is a notoriously
hard computer vision problem, is avoided. This approach, however, is harder to
adapt to mosaic animation, since the cross sections of the 3D primitives must
be valid mosaic tiles.

The second group of methods is based on explicit computation of motion, typ-
ically based on optical flow [6I7]. The idea is to let the rendering primitive (brush
strokes, etc.) follow the motion field so that the primitives appear attached to
the scene objects. Our work falls into this first group.

We are aware of only two methods [T0/4] for mosaic animation. In [4], a moving
mosaic is created by packing 3D volumes with temporally repeating animated
shapes. This work is very interesting and produces appealing animations, how-
ever, it is far from our goal of rendering a real video in a classic mosaic style.

Our work is based on [I0]. They make an observation that many devices for
temporal coherence in NPR animation are based on the changes of primitive
renderings units (i.e. scale, blend, etc.), which is not appropriate for classic
mosaic animation. They argue that for classic mosaics specifically, one should
target coherent motion of group of primitives. However in their work they assume
that the motion is given by the user. The input to their algorithm is an animated
scene represented as a collection of 2D “containers”, with known correspondences
between containers in adjacent frames. We extend the work of [I0] to real video
sequences. Thus we must estimate the “containers” and their correspondence.

3 Energy Minimization with Graph Cuts

Many problems in vision and graphics can be stated as labeling problems. In a
labeling problem, one has a set of pixels P, which is often the set of all image
pixels, and a finite set of labels £. The task is to assign some label [ € L to
each image pixel. Let f, denote the label assigned to pixel p, and let f be
the collection of all pixel-label assignments. Typically there are two types of
constraints on pixels. Unary constraints, denoted by D, (1), reflect how likely is
each label I € L for pixel p. The lower the value of D,(l), the more likely is
label I for pixel p. Usually D,(l) are modeled from the observed data. Binary
constraints, denoted by Vp4(l1,l2), express how likely it is for two neighboring
pixels p and ¢ to have labels [ and s, respectively. Binary constraints usually
come from prior knowledge about the optimal labeling. An energy function is
formulated to measure the quality of f:

E(f) = Esmooth(f) + Edata(f)~ (].)



1088 Y. Liu and O. Veksler

Egata(f) is called the data term, and it sums up the unary constraints: Egqrq(f) =
Zpep D, (fp)- Esmooth is called the smoothness term, and it sums up the binary
constraints:
Esmooth = Z Wpgq - V;?q(fpu fq) (2)
{p.a}yeN

In Eq. @), N is a collection of neighboring pixel pairs, often the standard 4 or
8-connected grid. The choice of V}, reflects a priori knowledge about the desired
labeling. A frequent choice is Vpy(fp, fy) = min(K, |f, — f4|€), where K,C are
constants. If K = C = 1, the smoothness term corresponds to the famous
Potts model. Many commonly used V), are NP-hard to optimize, but there are
approximations based on graph cuts [12]. We use min-cut implementation of [I3].

4 Review of Still Classic Mosaic

We now review the static mosaic algorithm of [5]. They design an objective
function that incorporates the desired mosaic properties, such as: (i) tiles should
align with strong intensity edges; (ii) nearby tiles should have similar orienta-
tions; (iii) tiles should avoid crossing strong image edges; (iv) the gap space
should be minimal; (v) tiles should not overlap. User interaction and explicit
edge detection are avoided.

We start with the label set. Let I be the image to generate the mosaic from,
and let P be the collection of all pixels of I. For each p € P we wish to assign a
label which is an ordered pair: (vp, ¢,). Here v, € {0, 1} is the binary “visibility”
variable. If v, = 1, then a tile centered at p is placed in the mosaic. If v, = 0
then the mosaic does not have a tile centered at p. We assume that all tiles are
squares with a fixed side tSize.

The second part of the label, ¢, specifies the orientation of the tile centered
at p, if there is such a tile. If v, = 1 then ¢, has a meaning (i.e. tile orientation),
if v, = 0, the value of ¢, is not used. The set of tile orientations @ is discretized
into m angles, at equal intervals. Since tiles are rotationally symmetric, only the
angles in [0, 7) are needed. We set m = 32.

Let 7T (p, ¢p) denote the set of pixels covered by a tile centered at pixel p and
with orientation ¢,. The color of the tile is the average color of pixels it covers.

Let ¢ = {¢plp € P} and v = {v,|p € P}. A mosaic then is an ordered pair of
variables (v, ¢) s.t. v € {0,1}™ and ¢ € ", where n is the size of P. The energy
function for a mosaic (v, ¢) is formulated as:

E(v,¢) = Z(l —vp) + Z vp - Dp(op) + Z Vpa(Up: Vg, Pp, Pq)- (3)

peEP peEP {p.a}eN

The first sum in Eq. (@) minimizes the gap space. The second sum in Eq. (B
is the data term. Each D), (¢,) measures the quality of a tile with center at p and
with orientation ¢,. Dp(p)) is computed from the local area around p. Under a
good orientation ¢,, the sum of image gradients under the tile is small and there
is a strong intensity gradient around at least one tile edge. Multiplying D, (¢p)
by v, ensures that we measure the quality only of the tiles that are visible.



Animated Classic Mosaics from Video 1089

The last term in Eq. (@) is the smoothness term. The neighborhood system is:
N = {{p, q} | dist(p,q) < V2 tSz'ze} , where dist(p, q) is the Euclidian distance
between pixels p and ¢. This N is large enough to contain all pairs {p, ¢} s.t. if
we place tiles centered at p and ¢, they are either adjacent or overlapping. The
interaction term is:

0 ifv,=0o0rv, =0
w8‘|90p_§0q|mod(g) ifo,=v,=1

Voa(Pp, Pqs Vp, Vg) = and T(p, ) NT(q,0) =0 (4)
o0 if Vp =g =1

and T (p, pp) N T (q,¢q) # 0

where | | | |
_ _ ) 1¥p — ¥q if [pp —@q| <]
|SDP ‘pq|mod( %) { g _ I‘pp _ QOqI otherwise . (5)
The smoothness term serves two purposes. First, any finite energy labeling
does not have overlapping tiles. Second, adjacent tiles are encouraged to have
similar orientations. We only consider the orientations of neighboring tiles that
are actually placed in the mosaic. The modulo arithmetic in Eq. (f) reflects the
fact that rotation by angle ¢, gives the same result as rotation by angle ¢, + 7.
The energy in Eq. [3]) is too difficult to optimize in all variables simultaneously.
In [5], they use an incremental approach, based on the graph cuts [12], which
first optimizes the orientation and then the visibility variables.

5 Overview of Mosaic Animation

Fig. [ gives a schematic overview. We start with a sequence of m frames,
I, Is,...,I,,. We assume that the scene background is known and stationary.
However, we are interested in background replacement, since typical office scenes

rhdadd 4 £

(a) background subtrac- ) initial motion segm (c) user interaction
tion

, ' . $ || 8

A e £e

7§ il A

LU LU E EW am W
(d) corrected motion seg-  (e) still mosaic in key seg- (f) mosaic propagated
mentation ments

Fig. 2. Summary of the approach



1090 Y. Liu and O. Veksler

have boring backgrounds that do not produce appealing mosaics. Thus the first
step is background subtraction, Fig.

To ensure temporal coherence, we find groups of pixels that have common
motion. This is the task of motion segmentation. A group of pixels with coherent
motion is called a layer.

We develop motion segmentation algorithm for the whole sequence in a global
optimization framework, Fig. Let L be a layer of pixels with common mo-
tion throughout the whole sequence. If general motions are allowed, the “con-
tainers” corresponding to L in two different frames may undergo drastic changes
in scale, shear, etc. One has to come up with non-trivial strategies for filling
these corresponding “containers” with tiles such that each container is a valid
mosaic and the apparent motion between the frames is acceptable. In [10], they
explore two such strategies with different visual effects. Unlike [I0], we are al-
ready facing a formidable task of motion segmentation of a real video, so we
chose leave exploring the strategies from [10] as well as developing the new ones
for future work.

We assume that the motion of layer L between frame [; and [;y; is well
approximated by rotation and translation. Notice that between each individual
pair of frames, the translation and rotation parameters of L can be different.
With this restriction, the “containers” corresponding to layer L in frames I; and
I;4+1 have identical shape, except if there is an occlusion or out of frame motion.
Therefore, we also need to include occlusion detection as a part of our motion
segmentation. Under restriction to rigid layer motion, packing two corresponding
“containers” between two frames then becomes basically equivalent to moving
tiles from one container to another, following the computed motion, except parts
of a container may become occluded by another layer.

Automatic motion segmentation rarely produces error-free results. Therefore
we ask the user for corrections, Fig. 2(c)] We sample and present a portion of
frames to the user. If a part of an object was not segmented correctly, the user
finds a nearby frame where the same part was correctly segmented, and clicks on
this part. These user indicated correct segmentations are then propagated to the
rest of the sequence, Fig. During propagation, we also handle occlusions.

Finally we pack the tiles using the algorithm in Sec. ], with some adjustments
to take advantage of the full video sequence. First the tiles are placed into the
“key” segments indicated by user interaction, Fig. These segments are
likely to correspond to regions with higher image quality. Next the mosaics of
the key segments are propagated to the rest of the sequence, taking occlusions
into consideration. Lastly mosaic is placed in any segments that have not been
tiled yet, and we render the tiles with the corresponding image colors, Fig.

6 Detailed Description

6.1 Background Subtraction

Most indoor office scenes are dull in color, resulting in unimpressive mosaic back-
grounds. Thus we remove background and render the moving object in front of



Animated Classic Mosaics from Video 1091

a lively scene, rendered as a classic mosaic using [5]. Background subtraction is
a well studied area in computer vision [I14]. To get accurate background subtrac-
tion, we use global optimization, similar to that of [15].

6.2 Initial Motion Segmentation

Temporal coherency of the final animation depends most of all on the accuracy of
motion segmentation, which is a widely studied problem in computer vision [16].
Methods based on global optimization [I7JI8] produce more accurate results.
Our algorithm,particularly suitable for our application, is most closely related
to that of [17].

In [T7], motion segmentation is performed on a pair of frames at a time.
First a sparse set of feature points is matched across two frames. Then using
RANSAC [19], several motion models are fitted to the matched points. Next,
dense assignment of image pixels to motion layers is performed. The algorithm is
further iterated, refining motion models and reassigning pixels to motion layers.

For our application, we need motion layers for the whole sequence, not a pair
of frames. One solution is to track feature points throughout the whole sequence,
as in [I§], but the number of features that appear in all frames is limited.

Our solution is to first estimate pairwise motion models between two adjacent
frames, but then find correspondences between adjacent motion models. Global
motion models (i.e. those describing a motion from the first frame to the last)
are formed from the correspondences. Finally global motion segmentation is
performed for all frames at the same time, using the global motion models.

Let I, 15, ..., I, be the m input frames. We match feature points between
pairs of frames Iy and I441, for d = 1,..m — 1. Next we fit k£ motion models
using RANSAC between each pair of adjacent frames.

Let My for d = 1,...m — 1 be the set of motion models estimated between
frames I; and I;11. The initial number of models in each My is k. Let Mé stand
for the ith motion model in My, i.e. MY is the ith estimated motion model
between frame d and d + 1. Fig. Blis an oversimplified illustration for 3 frames
and k = 4.

We first perform dense motion segmentation between each adjacent pair of
frames independently, using the estimated motion models My ’s. Given a pair of
frames I; and I;11, the label set £ consists of the k estimated motion models in
My, with one label per motion model. To densely assign labels to pixels in frame
14, we perform graph cut optimization with the energy as in Eq. (). The data
terms for pixel p and label | measure how likely is p to have motion M Lli from
frame d to d + 1. The data term is based on the color difference between p in I
and the pixel in I, it corresponds to according to motion model M é. We use
the Potts smoothness term. Let S, S2, ..., S™~! be the resulting segmentations.
Here S corresponds to segmentation in the frame number d, and S € My, i.e.
S;l is the motion model label assigned to pixel p, out of the possible set of motions
M. Fig. Blillustrates a hypothetical result of pairwise motion segmentation.



1092 Y. Liu and O. Veksler

Fig. 3. Oversimplified example of pairwise motion segmentation. Four models are ex-
tracted between each pair of frames, i.e. & = 4. Different labels are illustrated by
different colors. Notice that after motion segmentation on frame pairs, we do not
know that the “red” model in frame 1 should correspond to the “green” model to
in frame 2 and to the “yellow” model in frame 3. In practice, motion correspondences
are not as easy to resolve as in this picture. Three global motion models extracted:
purple (combines M{ and M3) brown (combines M7 and M3), and blue (combines M;
and M3 ).

Initial motion segmentation finds groups of pixels with consistent motion be-
tween pairs of frames, but we need such pixel groups across the whole sequence.
Thus we perform global optimization across the whole sequence. Let 1,2, ...c be
the ¢ hypothetical global motion labels. Each individual global motion label [
should describe how pixels obeying global motion [ move from the first sequence
to the second, from second to the third, etc. We have motion models M; that
describe how pixels move from frame d to d + 1, but we do not know how these
same pixels move from frame d—+1 to d+2. That is, for a motion model in My, we
do not know the “corresponding” motion model in M411. We use the following
heuristic but simple procedure for determining which motion model in M} cor-
responds to motion model Mg. Consider the motion segmentations S, ...S™ 1,
performed between pairs of frames individually. Let R = {p € ’P|S§ = M3},
that is RY is the set of pixels that are labeled with motion i in frame d. Let us
warp pixels in R¢ to frame d + 1 using motion model M}, let W (RY) the set
of warped pixels. If at least 80% of pixels in W (RY) are assigned to the same
motion model, say model Mg+17 and if the size of W (RY) is equal to at least 80%
of all pixels in S4*! that are assigned motion model Mg+17 then we say that mo-

tion model M} corresponds to motion model M g 41+ In Fig. 3l the corresponding
motion models are indicated by the arrows with the same color. Occasionally
we need to combine two or three motion models to satisfy this condition, i.e.
we need to take several models in frame d so that pixels assigned to either of
these models make 80% of pixels assigned to the same motion in frame d + 1.
This happens because motion segmentation occurs at different levels of preci-
sion. For example, between frames d and d + 1, an arm could be fitted with two
motions, but between the next pair of frames, d + 1 and d + 2, the whole arm
is fitted with one motion. In such cases, we add new motion models to sets M¢



Animated Classic Mosaics from Video 1093

&
o

Fig. 4. User Interaction and motion segmentation correction

and M+ the model allowing for no arm splitting in M? (the added model
is simply a combination computed from the two motion models allowing the
split), and the motion model with arm split to M?*! (the new model is based
on warping the two “split” models from the previous pair of frames).

The procedure described in the previous paragraph creates many global mo-
tion labels by linking labels between pairs of frames into a single chain, see Fig.
Notice that chains can start after the first frame and end before the last frame,
allowing for appearance of new layers and disappearance of old layers.

With global motion labels, we can perform global layer segmentation. How-
ever, performed on the pixel level, the whole sequence does not fit into the
memory on 32-bit architecture. Therefore, we oversegment each frame into “su-
perpixels” using the segmentation algorithm of [20]. Optimization is performed
by assigning labels to superpixels, resulting in huge memory savings. The neigh-
borhood system is three-dimensional, with superpixels between the frames also
connected. Specifically, we connect a superpixel p in frame d to the closest su-
perpixel ¢ in frame d 4+ 1. This is justified because we expect the motions to be
relatively slow. Data terms are still based on color similarity. For a superpixel,
the data term is computed as the average of data terms for its pixels.

6.3 User Interaction

The initial results of motion segmentation are not likely to be accurate for all
frames. Therefore we ask the user for guidance.

We sample one fifth of the frames and show their motion segmentation to the
user. To correct segmentation, starting with the first frame that is not accurately
segmented, the user has to point out its correct segmentation in a nearby frame,
by a single click. Consider Fig.dl The middle pictures shows segmentation results
with gross errors due to occlusion, highlighted with a rectangle. The hands are
correctly segmented in the frame on the left.

6.4 Correction of Motion Segmentation

Let F',F? ...,F™ ! be the motion segmentation with global labels. Suppose
the user clicks on a group of pixels assigned a global label [ in frame i. Let G}
be this group of pixels, i.e. G is spatially contiguous, contains the pixel the user
clicked on and G} = {p € P|F} = I}. We fix the labels of pixels in G} to strongly
prefer label [ in the ith frame. That is we set the data penalties to be infinite for
all labels other than [ for pixels in G in the ith frame. Furthermore, we warp



1094 Y. Liu and O. Veksler

Fig. 5. Results on “Waving arms” sequence and “Overlapping arms” sequence

pixels in G! to the (i + 1)th frame according to the motion label I. Let W (G?)
be the set of warped pixels in frame i+ 1. We set wy,, (see Sec.[3) between pixels
in Gf and W(G?) to be large. Here p is a pixel in frame i and ¢ is the pixel in
frame 7 + 1 that ¢ gets warped to by the global motion model .

Now we are ready to talk about occlusion handling. The coefficient w,, is
also set in proportion to the color similarity between pixels p and ¢q. The more
similar are the colors, the higher is w,,. Weighting w,, in direct proportion
to color similarity helps us to handle occlusions automatically. Consider Fig. [
again. Let O be the group of pixels in the area where the left hand occludes the
right hand. Both the left hand pixels and the right hand pixels in the first frame
get connected by strong links to pixels in O. However, the links from the left
hand are stronger, since the left hand pixels are actually visible in the second
frame and their color similarity, on average, is stronger than that between the
right hand and pixels in O. Therefore pixels in O get assigned the correct label.

After the data terms and the neighborhood weights w,, are updated, the mo-
tion segmentation is recomputed again, propagating user corrections throughout
the whole sequence and resolving occlusions.



Animated Classic Mosaics from Video 1095

6.5 Mosaic Rendering

)

Now we are ready to pack tiles. We start with the “key” segments pointed
out by the user, since these are likely to correspond to image data of high
quality.

For a still mosaic, given a pixel p and orientation label ¢, we need to decide
on the penalty of placing tile with center at p and orientation ¢. This penalty
is modeled from the data around pixel p. For a video sequence, the penalty
should depend not just on the current frame, but on all the other frames in the
sequence. Let K be a “key” segment in frame I¢ that the user clicked on. If we
place a tile centered at p under orientation ¢, this tile will be propagated by
the global motion model throughout the whole sequence. Therefore, to model
the data penalty, we propagate the tile throughout the whole sequence (notice
its orientation will change in different frames) and compute the data penalty
in each frame of the sequence, using the same procedure in each frame as for
the still mosaic. The final data term for pixel p to have a tile centered at it
with orientation ¢ in frame I is the average of all the data terms from all the
frames.

After packing the key segments and propagating them throughout the se-
quence, we pack the empty regions. We start with the first frame, pack any
unprocessed regions and propagate them throughout the whole sequence using
the same algorithm as for the key segments. If there are any unprocessed regions
in the second frame (for example, because a new motion label appears), we re-
peat the procedure. We stop when the whole sequence is packed with tiles. The
final step is to paint the tiles with the colors of the underlying image.

7 Experimental Results

In Fig. [l we show the “Waking” sequences. Observe how each individual frame
of animation is a pleasing mosaic. This sequence contains significant occlusions,
and parts of the leg appear and disappear from the scene. Our system produces
a nice coherent animation, with correctly handled occlusions. Due to our re-
stricted motion assumption, the animated figure has a distinctive “puppet”-like
effect.

Fig. Bl shows two more video sequences. The “Waving arms” sequence is rela-
tively simple, with no significant occlusions. The motion of the torso is modeled
with two layers, creating an interesting visual effect. The “Occluding arms” se-
quence has significant overlap between the two arms, which is handled gracefully.
The torso and the head have motions very close to stationary. We decided to
fix the head and the body to be stationary which visually blends them into
the background, creating interesting “arms sticking out of the wall” effect. Our
results are best viewed from the animations on the web]]

! see http:/ /www. csd.uwo. ca/faculty/olga/ VideoMosaic/results. html



1096 Y. Liu and O. Veksler

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Hausner, A.: Simulating decorative mosaics. In: Proceedings of SIGGRAPH 2001,
pp. 573-580 (2001)

Elber, G., Wolberg, G.: Rendering traditional mosaics. The Visual Computer 19,
67-78 (2003)

. Blasi, G.D., Gallo, G.: Artificial mosaics. The Visual Computer 21, 373-383 (2005)
. Dalal, K., Klein, A.W., Liu, Y., Smith, K.: A spectral approach to npr packing.

In: NPAR 2006, pp. 71-78 (2006)

. Liu, Y., Veksler, O., Juan, O.: Simulating classic mosaics with graph cuts. In:

Yuille, A.L., Zhu, S.-C., Cremers, D., Wang, Y. (eds.) EMMCVPR, 2007. LNCS,
vol. 4679, pp. 55-70. Springer, Heidelberg (2007)

. Litwinowicz, P.: Processing images and video for an impressionist effect. In:

SIGGRAPH 1997, pp. 407-414 (1997)

. Hertzmann, A., Perlin, K.: Painterly rendering for video and interaction. In: NPAR

2000, pp. 7-12 (2000)

. Klein, A.W., Sloan, P.P.J., Finkelstein, A., Cohen, M.F.: Stylized video cubes. In:

SCA 2002, pp. 15-22 (2002)

. Wang, J., Xu, Y., Shum, H.Y., Cohen, M.F.: Video tooning. In: SIGGRAPH 2004.,

pp. 574-583 (2004)

Smith, K., Liu, Y., Klein, A.: Animosaics. In: SCA 2005, pp. 201-208. ACM,
New York (2005)

Battiato, S., Di Blasi, G., Gallo, G., Guarnera, G., Puglisi, G.: Artificial mosaics
by gradient vector flow. In: Proceedings of EuroGraphics (2008)

Boykov, Y., Veksler, O., Zabih, R.: Efficient approximate energy minimization via
graph cuts. IEEE transactions on PAMI 21, 1222-1239 (2001)

Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision. IEEE Transactions on PAMI 24,
137-148 (2004)

Elgammal, A.M., Harwood, D., Davis, L.S.: Non-parametric model for background
subtraction. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 751-767.
Springer, Heidelberg (2000)

Sun, J., Zhang, W., Tang, X., Shum, H.: Background cut. In: Leonardis, A., Bischof,
H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 628-641. Springer, Heidelberg
(2006)

Adelson, E., Weiss, Y.: A unified mixture framework for motion segmentation:
Incorporating spatial coherence and estimating the number of models. In: CVPR
1996, pp. 321-326 (1996)

Wills, J., Agarwal, S., Belongie, S.: What went where. In: CVPR, vol. I, pp. 37-44
(2003)

Xiao, J., Shah, M.: Motion layer extraction in the presence of occlusion using graph
cuts. PAMI 27, 1644-1659 (2005)

Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography,
pp. 726740 (1987)

Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation.
Int. J. Comput. Vision 59, 167-181 (2004)

Shi, J., Tomasi, C.: Good features to track. Technical report, Ithaca, NY (1993)



	Animated Classic Mosaics from Video
	Introduction
	Related Work
	Energy Minimization with Graph Cuts
	Review of Still Classic Mosaic
	Overview of Mosaic Animation
	Detailed Description
	Background Subtraction
	Initial Motion Segmentation
	User Interaction
	Correction of Motion Segmentation
	Mosaic Rendering

	Experimental Results



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




