
A New Algorithm for

Energy Minimization with Discontinuities

Yuri Boykov, Olga Veksler, and Ramin Zabih

Computer Science Department, Cornell University, Ithaca, NY 14853
yura@cs.cornell.edu, olga@cs.cornell.edu, rdz@cs.cornell.edu

Abstract. Many tasks in computer vision involve assigning a label (such
as disparity) to every pixel. These tasks can be formulated as energy min-
imization problems. In this paper, we consider a natural class of energy
functions that permits discontinuities. Computing the exact minimum
is NP-hard. We have developed a new approximation algorithm based
on graph cuts. The solution it generates is guaranteed to be within a
factor of 2 of the energy function’s global minimum. Our method pro-
duces a local minimum with respect to a certain move space. In this
move space, a single move is allowed to switch an arbitrary subset of
pixels to one common label. If this common label is α then such a move
expands the domain of α in the image. At each iteration our algorithm
efficiently chooses the expansion move that gives the largest decrease in
the energy. We apply our method to the stereo matching problem, and
obtain promising experimental results. Empirically, the new technique
outperforms our previous algorithm [6] both in terms of running time
and output quality.

1 Energy minimization in early vision

Many early vision problems require estimating some spatially varying quantity
(such as intensity, disparity or texture) from noisy measurements. Such quanti-
ties tend to be piecewise smooth; they vary smoothly at most points, but change
dramatically at object boundaries. Every pixel p ∈ P must be assigned a label
in some set L; for motion or stereo, the labels are disparities, while for image
restoration they represent intensities. The goal is to find a labeling f that assigns
each pixel p ∈ P a label fp ∈ L, where f is both piecewise smooth and consistent
with the observed data.

These vision problems can be naturally formulated in terms of energy mini-
mization. In this framework, one seeks the labeling f that minimizes the energy

Esmooth(f) + Edata(f).

Here Esmooth measures the extent to which f is not piecewise smooth, while Edata

measures the disagreement between f and the observed data. Many different
energy functions have been proposed in the literature, depending upon the exact
vision problem. The form of Edata is typically Edata(f) =

∑
p∈P Dp(fp), where

Dp measures how appropriate a label is for the pixel p given the observed data. In
the image restoration problem, for example, usually Dp(fp) = (fp − ip)

2, where
ip is the observed intensity of the pixel p.

The choice of Esmooth is a critical issue, and many different functions have
been proposed. For example, in regularization-based vision [2, 12, 15], Esmooth

makes f smooth everywhere. This leads to poor results at object boundaries. En-
ergy functions that do not have this problem are called discontinuity-preserving.
A large number of discontinuity-preserving energy functions have been proposed
(see for example [11, 14, 19]). Geman and Geman’s seminal paper [9] gave a
Bayesian interpretation of many energy functions, and proposed a discontinuity-
preserving energy function based on Markov Random Fields (MRF’s).

The major difficulty with energy minimization for early vision lies in the
enormous computational costs. Typically these energy functions have many local
minima (i.e., they are non-convex). Worse still, the space of possible labelings has
dimension |P|, which is many thousands. There have been numerous attempts
to design fast algorithms for energy minimization; we will review this area in
section 2. However, as a practical matter the computational problem remains
unresolved.

In this paper we address a class of discontinuity-preserving energy functions.
Let the neighborhood system N denote the set of pairs of adjacent pixels in P .
We consider functions of the form

EP (f) =
∑

{p,q}∈N
u{p,q} · δ(fp 6= fq) +

∑
p∈P

Dp(fp), (1)

where
δ(fp 6= fq) =

{
1 if fp 6= fq,
0 otherwise.

We allow Dp to be an arbitrary function, as long as it is non-negative and finite.1

This energy function is in some sense the simplest energy that preserves dis-
continuities. The smoothness term provides a penalty u{p,q} ≥ 0 for assigning
different labels to two adjacent pixels {p, q}. This penalty does not depend on
the labels assigned, as long as they are different. Such energy functions natu-
rally arise from a particular MRF that we call a generalized Potts model; this
derivation is given in [6]. We will therefore refer to the energy function EP given
in equation (1) as the Potts energy.

In early vision, there are a few energy functions whose global minimum can be
rapidly computed [6, 10, 13]. Unfortunately, we have shown in [6] that minimizing
the Potts energy is NP-hard, so it very likely requires exponential time. In this
paper we introduce a new approximation algorithm for this energy minimization
problem, and apply it to several vision problems. The key properties of our
algorithm are that it produces a local minimum in a certain move space, and
that the resulting labeling is guaranteed to be within a factor of 2 of the global
minimum of the Potts energy.

1Our results do not require that Dp be finite, but this assumption simplifies the
presentation considerably.

We begin with a brief survey of energy minimization methods in computer
vision. In section 3 we give an overview of our approach to energy minimization.
We define expansion moves and prove that a local minimum of the Potts energy
with respect to such moves is within a factor of two of the global minimum.
Section 4 gives the details of a graph cut technique that efficiently computes the
expansion move producing the largest decrease in the Potts energy. Intuitively,
this gives the direction of the steepest descent from a current solution. By using
this technique iteratively we follow the “fastest” way into a local minimum of
the Potts energy with respect to expansion move space. In section 5 we provide
some experimental results on the stereo matching problem.

Note that in our earlier work [6] we presented a similar greedy descent algo-
rithm for approximate Potts energy minimization based on swap moves. Strictly
speaking, expansion moves and swap moves are not directly comparable since
there are swap moves that are not expansion moves and vice versa. However,
we have both theoretical and experimental evidence that the expansion move
algorithm is superior. Theoretically, we will show in section 3.3 that a local min-
imum in terms of expansion moves is within a factor of 2 of the global minimum,
while no such result is available for the swap move algorithm. Experimentally,
the results in section 5 suggest that the expansion moves algorithm leads to a
better and faster optimization of the Potts energy.

2 Related work

Energy minimization is quite popular in computer vision, and a wide variety
of methods have been used. An exhaustive survey is beyond the scope of this
paper; however, we will briefly describe the energy minimization methods that
are most prevalent in vision.

2.1 Global energy minimization

The problem of finding the global minimum of an arbitrary energy function is
obviously intractable (it includes the Potts energy minimization problem as a
special case). As a consequence, any general-purpose energy minimization algo-
rithm will require exponential time to find the global minimum, unless P=NP.

Simulated annealing was popularized for vision by [9], and is the only general-
purpose global energy minimization method in widespread use. With certain
annealing schedules, annealing can be guaranteed to find the global minimum.
Unfortunately, the schedules that lead to this guarantee are extremely slow. In
practice, annealing is inefficient partly because at each step it changes the value
of a single pixel.

Graph cuts can be used to find the global minimum of certain energy func-
tions. These algorithms permit Dp to be arbitrary. [10] addressed the case of
|L| = 2. This result was generalized by [6, 13] to handle label sets of arbitrary
size, when the smoothness energy is of the form

∑
{p,q}∈N |fp−fq|. This smooth-

ness energy, unfortunately, leads to oversmoothing at object boundaries. In ad-

dition, there must be a natural isomorphism between the label set L and the
integers {1, 2, . . . , k}. This rules out some significant problems such as motion.

Another alternative is to use methods that have optimality guarantees in
certain cases. Continuation methods, such as GNC [4], are the best-known ex-
ample. These methods involve approximating an intractable (non-convex) energy
function by a sequence of energy functions, beginning with a tractable (convex)
approximation. At every step in the approximation, a local minimum is found
using the solution from the previous step as the starting point. There are cir-
cumstances where these methods are known to compute the optimal solution
(see [4] for details). Continuation methods can be applied to a large number of
energy functions, but except for these special cases nothing is known about the
quality of their output.

2.2 Local energy minimization

Due to the inefficiency of computing a global minimum, many authors have opted
for a local minimum. One problem with this is that it is difficult to determine the
cause of an algorithm’s failures. When an algorithm gives unsatisfactory results,
it may be due either to a poor choice of energy function, or to the fact the answer
is far from the global minimum. There is no obvious way to tell which of these is
the problem.2 Another issue is that local minimization techniques are naturally
sensitive to the initial estimate.

There are several ways in which a local minimum can be computed. By phras-
ing the energy minimization problem in continuous terms, variational methods
can be applied. These methods were popularized by Horn [12]. Variational tech-
niques use the Euler equations, which are guaranteed to hold at a local mini-
mum (although they may also hold elsewhere). A number of methods have been
proposed to speed up the convergence of the resulting numerical problems, in-
cluding (for example) multigrid techniques [18]. To apply these algorithms to
actual imagery, of course, requires discretization. An alternative is to use dis-
crete relaxation methods; this has been done by many authors, including [7, 16,
17].

It is important to note that a local minimum is defined relative to a set
of allowed moves. Most existing minimization algorithms find a local mini-
mum relative to “small” moves, which typically are defined in terms of the
L2 distance. To be precise, they attempt to compute a labeling f such that
f = arg min|f−f ′|<ε EP (f ′), for some small ε.

In [6] we described an algorithm for approximate minimization of the Potts
energy based on swap moves. For a fixed pair of labels α, β, this move swaps the
labels between a subset of pixels labeled α and another subset labeled β. The

2In the special cases where the global minimum can be rapidly computed, it is
possible to separate these issues. For example, [10] points out that the global minimum
of an Ising energy function is not necessarily the desired solution for image restoration.
[5, 10] analyze the performance of simulated annealing in cases with a known global
minimum.

algorithm in [6] is based on a graph cut technique that efficiently computes the
best α, β-swap move from a current solution. By iterating over all distinct pairs
α, β this technique enables the steepest descent search of the local minimum
of the Potts energy with respect to swap moves. The properties of such a local
minimum are based on the strength of swap moves.

In this paper we describe a new algorithm based on expansion moves. The
structure of the algorithm is similar to [6]. It is still the greediest descent into a
local minimum with respect to a certain move space. However, there are several
important differences. Most importantly, the new algorithm produces a local
minimum that is guaranteed to be within a factor of 2 from the global minimum.
Such a bound is not available for the swap move algorithm in [6]. Moreover, the
steepest descent in the new move space requires iterating over distinct labels, not
pairs of labels. Altogether this suggest that the new algorithm can potentially
produce faster and better solutions. The data we present in section 5 supports
this conclusion.

3 The expansion move algorithm

Here we describe the algorithm for approximate minimization of the Potts energy
EP based on expansion moves. In this section, we discuss the expansion moves,
which are best described in terms of partitions. We sketch the algorithm and list
its basic properties. Then we introduce the notion of a graph cut, which is the
basis for our method.

3.1 Partitions and move spaces

Any labeling f can be uniquely represented by a partition of image pixels

P = {Pl | l ∈ L}

where Pl = {p ∈ P | fp = l} is a subset of pixels assigned label l. Since there is
an obvious one to one correspondence between labelings f and partitions P, we
can use these notions interchangingly.

Given a label α, a move from a partition P (labeling f) to a new partition
P′ (labeling f ′) is called an α-expansion if Pα ⊂ P ′

α and P ′
l ⊂ Pl for any label

l 6= α. In other words, an α-expansion move allows any set of image pixels to
change their labels to α.

Note that a move which gives an arbitrary label α to a single pixel is an
α-expansion. As a consequence, the standard move space used in annealing is a
special case of our move space.

3.2 Algorithm and properties

The structure of the expansion move algorithm is shown in figure 1. We will call
a single execution of steps 3.1–3.2 an iteration, and an execution of steps 2–4

a cycle. In each cycle, the algorithm performs an iteration for every label in a
certain order that can be fixed or random. A cycle is successful if a strictly better
labeling is found at any iteration. The algorithm stops after the first unsuccessful
cycle since no further improvement is possible.

1. Start with an arbitrary labeling f
2. Set success := 0

3. For each label α ∈ L
3.1. Find f̂ = arg min EP (f ′) among f ′ within one α-expansion of f
3.2. If EP (f̂) < EP (f), set f := f̂ and success := 1

4. If success = 1 goto 2

5. Return f

Fig. 1: The expansion move algorithm.

The algorithm have a number of important properties.

– Obviously, a cycle takes |L| iterations. Note that a cycle in the swap move
algorithm [6] takes |L|2 iterations.

– The algorithm is guaranteed to terminate in a finite number of cycles, al-
though there is no bound beyond the trivial one of |L||P|. Nevertheless, in
the applications we have considered the algorithm stops after a few cycles.
Moreover, most of the improvements occur during the first cycle, as we will
show in section 5.

– Once the algorithm has terminated, the energy of the resulting labeling is a
local minimum with respect to an expansion move.

3.3 Optimality Guarantees

We now show that if f∗ is a local minimum in terms of expansion moves, then
EP (f∗) ≤ 2 · EP (fo), where fo is the optimal solution minimizing the Potts
energy EP . Let Po = {Po

α | α ∈ L} be a partition corresponding to fo so that

Po
α =

{
p ∈ P | fo

p = α
}

is a set of pixels assigned to α in the optimal solution. We can produce a labeling
fα within one α-expansion move from f∗ as follows:

fα
p =

{
α if p ∈ Po

α

f∗
p if p 6∈ Po

α

The key observation is that since f∗ is a local minimum in the expansion move
space then for any α ∈ L

EP (f∗) ≤ EP (fα). (2)

For a given label α ∈ L we can split the Potts energy of any labeling f into
three terms EP (f) = Eα

in(f) + Eα
bd(f) + Eα

ex(f) where

Eα
in(f) =

∑
{p,q}∈N
p,q∈Po

α

u{p,q} · δ(fp 6= fq) +
∑

p∈Po
α

Dp(fp)

Eα
bd(f) =

∑
{p,q}∈N

p∈Po
α,q 6∈Po

α

u{p,q} · δ(fp 6= fq)

Eα
ex(f) =

∑
{p,q}∈N
p,q 6∈Po

α

u{p,q} · δ(fp 6= fq) +
∑

p6∈Po
α

Dp(fp)

correspond to the parts of the Potts energy EP (f) concentrated at the pixels
inside Po

α, at the boundary of Po
α, and at the pixels outside of Po

α, correspond-
ingly.

Since f∗
p = fα

p for any p 6∈ Po
α then Eα

ex(f∗) = Eα
ex(fα). Thus, (2) implies

that for any α ∈ L
Eα

in(f∗) + Eα
bd(f∗) ≤ Eα

in(fα) + Eα
bd(f

α). (3)

Since fα
p = fo

p = α for any p ∈ Po
α then Eα

in(fα) = Eα
in(fo). Moreover,

Eα
bd(f

α) ≤
∑

{p,q}∈N
p∈Po

α,q 6∈Po
α

u{p,q} = Eα
bd(f

o).

Therefore, (3) implies that for any α ∈ L
Eα

in(f∗) + Eα
bd(f

∗) ≤ Eα
in(fo) + Eα

bd(f
o). (4)

Summing up inequality (4) over all labels α ∈ L we obtain

EP (f∗) +
∑

{p,q}∈B

u{p,q} · δ(f∗
p 6= f∗

q) ≤ EP (fo) +
∑

{p,q}∈B

u{p,q} (5)

where B = {{p, q} ∈ N | fo
p 6= fo

q } is a set of all pairs of neighboring pixels
disconnected in the optimal solution fo. Note that the summations on both
sides of (5) show up because each pair of pixels in B is encountered twice when
summing up the terms in (4) over α ∈ L. Finally, since

∑
{p,q}∈B u{p,q} ≤ EP (fo)

then (5) implies that EP (f∗) ≤ 2EP (fo).

3.4 Graph cuts

The key part of the algorithm is step 3.1, where graph cuts are used to efficiently
find f̂ . Let G = 〈V , E〉 be a weighted graph with two distinguished vertices called
the terminals. A cut C ⊂ E is a set of edges such that the terminals are separated
in the induced graph G(C) = 〈V , E − C〉. In addition, no proper subset of C

separates the terminals in G(C). The cost of the cut C is denoted by |C| and
equals the sum of its edge weights.

The minimum cut problem is to find the cut with smallest cost. This problem
can be solved very efficiently by computing the maximum flow between the
terminals, according to a theorem due to Ford and Fulkerson [8]. There are a
large number of fast algorithms for this problem (see [1], for example). The worst
case complexity is low-order polynomial; however, in practice the running time
is nearly linear.

Step 3.1 uses a single minimum cut on a graph whose size is O(|P|). The
graph is dynamically updated after each iteration. The next section describes
the details of our graph cut technique that allows efficient implementation of
step 3.1.

4 Finding the optimal expansion move

Given an input labeling f (partitioning P) and a label α, we wish to find a
labeling f̂ that minimizes EP over all labelings within one α-expansion of f .
This is the critical step in the algorithm given at the bottom of figure 1. Our
technique is based on computing a labeling corresponding to a minimum cut on
a graph Gα = 〈Vα, Eα〉. The structure of this graph is determined by the current
partitioning P and by the label α. The graph dynamically changes after each
iteration.

This section is organized as follows. First we describe the construction of
Gα for a given f (or P) and α. We show that cuts C on Gα correspond in a
natural way to labelings fC which are within one α-expansion move of f . Then,
based on a number of simple properties, we define a class of elementary cuts.
Theorem 1 shows that elementary cuts are in one to one correspondence with
the set of labelings that are within one α-expansion of f , and also that the cost
of an elementary cut is |C| = EP (fC). A corollary from this theorem states our
main result that the desired labeling f̂ equals fC where C is a minimum cut on
Gα.

The structure of the graph is illustrated in Figure 2. For legibility, this figure
shows the case of 1D image. In fact, the structure of Gα will be the same for
any image. The set of vertices includes the two terminals α and ᾱ, as well as all
image pixels p ∈ P . In addition, for each pair of neighboring pixels {p, q} ∈ N
separated in the current partition (i.e. fp 6= fq) we create an auxiliary vertex
a{p,q}. Auxiliary nodes are introduced at the boundaries between partition sets
Pl for l ∈ L. Thus, the set of vertices is

Vα = α ∪ ᾱ ∪ P ∪

 ⋃

{p,q}∈N
fp 6=fq

a{p,q}

 .

Each pixel p ∈ P is connected to the terminals α and ᾱ by edges tαp and tᾱp ,
correspondingly. For brevity, we will refer to these edges as t-links (terminal

α−ta
α−tq

t

{p,a}e

tα
q tα

s

α−tr

2P

e{q,r}

e{a,q}

Pα1P

sbrqa

α−

α

α
p

p

Fig. 2: An example of the graph Gα for a 1D image. The set of pixels in the image
is P = {p, q, r, s} and the current partition is P = {P1,P2,Pα} where P1 = {p},
P2 = {q, r}, and Pα = {s}. There are two auxiliary nodes a = a{p,q}, b = a{r,s}
introduced between neighboring pixels separated in the current partition. Auxiliary
nodes are added at the boundary of sets Pl.

links). Each pair of neighboring pixels {p, q} ∈ N which is not separated by the
partition P (i.e. fp = fq) is connected by an edge e{p,q} which we will call an
n-link (neighborhood link). For each pair of neighboring pixels {p, q} ∈ N such
that fp 6= fq we create a triplet of edges

E{p,q} =
{
e{p,a}, e{a,q}, tᾱa

}

where a = a{p,q} is the corresponding auxiliary node. The n-links e{p,a} and
e{a,q} connect pixels p and q to a{p,q} and the t-link tᾱa connects the auxiliary
node a{p,q} to the terminal ᾱ. Finally, we can write the set of all edges as

Eα =

 ⋃

p∈P
{tαp , tᾱp }

 ∪

 ⋃

{p,q}∈N
fp 6=fq

E{p,q}

 ∪

 ⋃

{p,q}∈N
fp=fq

e{p,q}

 .

The weights assigned to the edges are shown in the table below.

edge weight for all

|tαp | Dp(α)
p ∈ Pα

|tᾱp | ∞

|tαp | Dp(α)
p 6∈ Pα

|tᾱp | Dp(fp)

|e{p,a}| = |e{a,q}| = |tᾱa | u{p,q} {p, q} ∈ N , fp 6= fq

|e{p,q}| u{p,q} {p, q} ∈ N , fp = fq

Any cut C on the graph Gα must sever (include) exactly one t-link for any
pixel p ∈ P : if neither t-link were in C, there would be a path between the
terminals; while if both t-links were cut, then a proper subset of C would be a
cut. Thus, any cut includes either tαp or tᾱp for each pixel p ∈ P . This defines a
natural labeling fC corresponding to a cut C on Gα. Formally,

fC
p =

{
α if tαp ∈ C
fp if tᾱp ∈ C ∀p ∈ P . (6)

In other words, a pixel p is assigned label α if the cut C severs t-link tαp , while
p is assigned its old label fp if C severs tᾱp . The terminal α stands for the new
label and the terminal ᾱ stands for the old labels assigned to pixels in the initial
labeling f .

Lemma 1. A cut C on Gα corresponds to a labeling fC which is one α-expansion
away from the original labeling f .

Proof. A cut C cannot sever t-links tᾱp for any pixel p ∈ Pα due to the infinite
cost. Thus, fC

p = α for any p ∈ Pα. For any pixel p 6∈ Pα the value of fC
p can be

either α or fp. ut
It is easy to show that a cut C severs an n-link e{p,q} between neighboring

pixels {p, q} ∈ N such that fp = fq if and only if C leaves the pixels p and q
connected to different terminals. Formally, for any cut C
Property 1. If tᾱp , tᾱq ∈ C then e{p,q} 6∈ C.
Property 2. If tαp , tαq ∈ C then e{p,q} 6∈ C.
Property 3.1 If tᾱp , tαq ∈ C then e{p,q} ∈ C.
Property 3.2 If tαp , tᾱq ∈ C then e{p,q} ∈ C.

The first two properties follow from the requirement that no proper subset of C
should separate the terminals. Properties 3.1 and 3.2 also use the fact that a cut
has to separate the terminals.

These properties are illustrated in Figure 3. The following lemma is a conse-
quence of properties 1–3 above and equation 6.

α
p tα

qt

{p,q}e
qp

α

cut

α
_

tpα tqα
_ _

α

{p,q}

tα
qt

e
qp

α
p

cut

α
_

tp tqα
α

__

α
p tα

qt

{p,q}e
qp

α

cut

α
_

tpα tqα
__

Property 1 Property 2 Property 3.1 (3.2)

Fig. 3: Properties of a cut C on Gα for two pixels p, q ∈ N such that fp = fq . Dotted
lines show the edges cut by C and solid lines show the edges remaining in the induced
graph Gα(C) = 〈Vα, Eα − C〉.

Lemma 2. If {p, q} ∈ N and fp = fq then any cut C on Gα satisfies

|C ∩ e{p,q}| = u{p,q} · δ(fC
p 6= fC

q).

Consider now the set of edges E{p,q} corresponding to a pair of neighboring
pixels {p, q} ∈ N such that fp 6= fq. In this case, there are several different
ways to cut these edges even when the pair of severed t-links at p and q is fixed.
However, a minimum cut C on Gα is guaranteed to sever the edges in E{p,q}
depending on what t-links are cut at the pixels p and q.

The rule for this case is described in properties 4–6 below. Assume that
a = a{p,q} is an auxiliary node between the corresponding pair of neighboring
pixels. Then a minimum cut C on Gα satisfies the following properties.

Property 4. If tᾱp , tᾱq ∈ C then C ∩ E{p,q} = tᾱa .
Property 5. If tαp , tαq ∈ C then C ∩ E{p,q} = ∅.
Property 6.1 If tᾱp , tαq ∈ C then C ∩ E{p,q} = e{p,a}.
Property 6.2 If tαp , tᾱq ∈ C then C ∩ E{p,q} = e{a,q}.

The first property results from the fact that no subset of C is a cut. The others
follow from the minimality of |C| and the fact that e{p,a}, e{a,q} and tᾱa have
identical weights. These properties are illustrated in figure 4.

Lemma 3. If {p, q} ∈ N and fp 6= fq then the minimum cut C on Gα satisfies

|C ∩ E{p,q}| = u{p,q} · δ(fC
p 6= fC

q).

Proof. The equation follows from properties 4-6 above and equation (6). Note
that fp 6= fq implies that α is the only common label that a cut on Gα can
assign to p and q using our convention in (6). That is, fC

p = fC
q if and only if

both fC
p = α and fC

q = α. ut

p

α−tq

α

p

t

q

q

−
tp

e{p,a} e{a,q}

α−ta

αt
α

α−

a

α

cut

p

α−tq

α

p

t q
α

−
tp

e{a,q}e{p,a}

α−ta

t
α

α−

a q

α

cut

α
p

αt

t

−

q

q

α

α−tp

e{a,q}

α−ta

t
α

α−

ap q

cut

Property 4 Property 5 Property 6.1 (6.2)

Fig. 4: Properties of a minimum cut C on Gα for two pixel p, q ∈ N such that fp 6= fq .
Dotted lines show the edges cut by C and solid lines show the edges in the induced
graph Gα(C) = 〈Vα, Eα − C〉.

Note that the penalty u{p,q} is imposed whenever fC
p 6= fC

q . This is exactly
what the auxiliary pixel construction was designed for. We had to develop a
special trick for the case when the original labels for p and q do not agree
(fp 6= fq) in order to get the same effect that lemma 2 establishes for the simpler
situation when fp = fq.

Properties 1–3 hold for any cut, and properties 4–6 hold for a minimum
cut. However, there can be other cuts besides the minimum cut that satisfy all
six properties. We will define a elementary cut on Gα to be a cut that satisfies
properties 1–6.

Theorem 1. Let the graph Gα be constructed as above for a given f and α.
Then there is a one to one correspondence between the set of all elementary cuts
on Gα and the set of all labelings within one α-expansion of f . Moreover, for
any elementary cut C we have |C| = EP (fC).

Proof. We first show that an elementary cut C is uniquely determined by the
corresponding labeling fC . The label fC

p at the pixel p determines which of
the t-links to p is in C. Properties 1-3 show which n-links e{p,q} between pairs
of neighboring pixels {p, q} such that fp = fq should be severed. Similarly,
properties 4-6 determine which of the links in E{p,q} corresponding to {p, q} ∈ N
such that fp 6= fq should be cut.

We now compute the cost of an elementary cut C, which is

|C| =
∑
p∈P

|C ∩ {tαp , tᾱp }| +
∑

{p,q}∈N
fp=fq

|C ∩ e{p,q}| +
∑

{p,q}∈N
fp 6=fq

|C ∩ E{p,q}|. (7)

It is easy to show that for any pixel p ∈ P we have |C ∩ {tαp tᾱp }| = Dp(fC
p).

Lemmas 2 and 3 hold for elementary cuts, since they were based on properties
1-6. These two lemmas give us the second and the third terms in (7). Thus, the

total cost of a elementary cut C is

|C| =
∑
p∈P

Dp(fC
p) +

∑
{p,q}∈N

u{p,q} · δ(fC
p 6= fC

q) = EP (fC).

Therefore, |C| = EP (fC). ut
Our main result is a simple consequence of this theorem, since the minimum

cut is an elementary cut.

Corollary 1. The optimal α-expansion move from f is f̂ = fC where C is the
minimum cut on Gα.

5 Experimental results

In this section we apply our method to the stereo matching problem. We compare
our method with simulating annealing, using real image pairs, including one with
dense ground truth. For Dp we use the method of [3] to reduce the effects of
image sampling. We select u{p,q} using the information present in a single image,
as described in [6].

We experimented with several variants of simulated annealing, including both
the standard (Metropolis) sampler and the Gibbs sampler. Our comparative data
uses the annealing variant and the choice of cooling schedule that best minimized
the energy. Simulated annealing is quite sensitive to the starting point, so we
initialized it using the results of normalized correlation. Our methods give very
similar answers regardless of the starting point, but we used the same starting
point as annealing to make the comparison fair. All running times are given in
seconds, on a 200 MHz Pentium Pro.

Figure 5(a) shows the left image of a real stereo pair where the ground truth
is known at each pixel. We obtained this image pair from the University of
Tsukuba Multiview Image Database. The ground truth is shown in figure 5(b).
Our results are shown below, both for the expansion move algorithm presented
in this paper and the swap move algorithm introduced in [6]. For comparison,
we also show the results from simulated annealing, as well as from normalized
correlation (using the window size that minimizes the number of errors). Figure 7
shows the performance of algorithms as a function of time, both in terms of
energy and in terms of accuracy with respect to the ground truth.

Figure 6 shows the performance of expansion move algorithm on the CMU
meter image, along with the results of simulated annealing. The performance in
terms of energy is similar to the results shown in figure 7(a).

Acknowledgements

We thank J. Kleinberg, D. Shmoys and E. Tardos for insightful remarks on
the content of this paper. We are also grateful to Y. Ohta and Y. Nakamura
for supplying the ground truth imagery from the University of Tsukuba. This
research has been supported by DARPA under contract DAAL01-97-K-0104,
and by a grant from Microsoft.

(a) Left image (b) Ground truth (c) Simulated annealing

(d) Swap move method (e) Expansion move method (f) Normalized correlation

Fig. 5: Performance on real imagery with ground truth

(a) Left image (b) Expansion move algorithm (c) Simulated annealing

Fig. 6: CMU meter imagery results

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1 10 100 1000 10000
Time

E
n

er
g

y
Simulated annealing Swap move algorithm algorithm Expansion move algorithm

0%

5%

10%

15%

20%

25%

30%

1 10 100 1000 10000

Time

E
rr

or
s

Simulated annealing Swap move algorithm Expansion move alg

Fig. 7: Performance comparison with simulated annealing, on the imagery shown in
figure 5(a). Comparison is done in terms of energy (top) and accuracy with respect to
the ground truth (bottom). Each data point for our methods corresponds to a cycle.

References

1. Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows:
Theory, Algorithms, and Applications. Prentice Hall, 1993.

2. Stephen Barnard. Stochastic stereo matching over scale. International Journal of
Computer Vision, 3(1):17–32, 1989.

3. Stan Birchfield and Carlo Tomasi. A pixel dissimilarity measure that is insen-
sitive to image sampling. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20(4):401–406, April 1998.

4. A. Blake and A. Zisserman. Visual Reconstruction. MIT Press, 1987.
5. Andrew Blake. Comparison of the efficiency of deterministic and stochastic al-

gorithms for visual reconstruction. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 11(1):2–12, January 1989.

6. Yuri Boykov, Olga Veksler, and Ramin Zabih. Energy minimization with disconti-
nuities. In review. Available from http://www.cs.cornell.edu/home/rdz. An earlier
version of this paper appeared in CVPR ’98.

7. P.B. Chou and C.M. Brown. The theory and practice of Bayesian image labeling.
International Journal of Computer Vision, 4(3):185–210, 1990.

8. L. Ford and D. Fulkerson. Flows in Networks. Princeton University Press, 1962.
9. S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the

Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 6:721–741, 1984.

10. D. Greig, B. Porteous, and A. Seheult. Exact maximum a posteriori estimation for
binary images. Journal of the Royal Statistical Society, Series B, 51(2):271–279,
1989.

11. W. Eric L. Grimson and Theo Pavlidis. Discontinuity detection for visual surface
reconstruction. Computer Vision, Graphics and Image Processing, 30:316–330,
1985.

12. B. K. P. Horn and B. Schunk. Determining optical flow. Artificial Intelligence,
17:185–203, 1981.

13. H. Ishikawa and D. Geiger. Segmentation by grouping junctions. In IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 125–131, 1998.

14. David Lee and Theo Pavlidis. One dimensional regularization with discontinuities.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(6):822–829,
November 1988.

15. Tomaso Poggio, Vincent Torre, and Christof Koch. Computational vision and
regularization theory. Nature, 317:314–319, 1985.

16. A. Rosenfeld, R.A. Hummel, and S.W. Zucker. Scene labeling by relaxation oper-
ations. IEEE Transactions on Systems, Man, and Cybernetics, 6(6):420–433, June
1976.

17. R.S. Szeliski. Bayesian modeling of uncertainty in low-level vision. International
Journal of Computer Vision, 5(3):271–302, December 1990.

18. Demetri Terzopoulos. Image analysis using multigrid relaxation methods. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 8(2):129–139, 1986.

19. Demetri Terzopoulos. Regularization of inverse visual problems involving dis-
continuities. IEEE Transactions on Pattern Analysis and Machine Intelligence,
8(4):413–424, 1986.

