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Abstract—Radical prostatectomy is performed on approxi-
mately 40% of men with organ-confined prostate cancer. Patho-
logic information obtained from the prostatectomy specimen
provides important prognostic information and guides recommen-
dations for adjuvant treatment. The current pathology protocol
in most centers involves primarily qualitative assessment. In this
paper, we describe and evaluate our system for automatic prostate
cancer detection and grading on hematoxylin & eosin-stained
tissue images. Our approach is intended to address the dual
challenges of large data size and the need for high-level tissue
information about the locations and grades of tumors. Our system
uses two stages of AdaBoost-based classification. The first provides
high-level tissue component labeling of a superpixel image parti-
tioning. The second uses the tissue component labeling to provide
a classification of cancer versus noncancer, and low-grade versus
high-grade cancer. We evaluated our system using 991 sub-images
extracted from digital pathology images of 50 whole-mount tissue
sections from 15 prostatectomy patients. We measured accuracies
of 90% and 85% for the cancer versus noncancer and high-grade
versus low-grade classification tasks, respectively. This system
represents a first step toward automated cancer quantification on
prostate digital histopathology imaging, which could pave the way
for more accurately informed postprostatectomy patient care.
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I. INTRODUCTION

P ROSTATE cancer (PCa) is the most common noncuta-
neous cancer among men and radical prostatectomy, in

which the entire prostate is surgically removed, is performed
on approximately 40% of men with organ-confined PCa [1].
The postprostatectomy pathologic assessment of the resected

specimen by the pathologist yields crucial prognostic informa-
tion that predicts surgical success and guides recommendations
for adjuvant therapy [2]. Each tumor is assessed for its location
within the prostate, volume, degree of differentiation (using the
Gleason grading system [3]), extension into the seminal vesi-
cles [termed as seminal vesicle invasion (SVI)] or beyond the
prostate [termed as extra-prostatic extension (EPE)], and exis-
tence at the surgical resection margin [termed as a positive sur-
gical margin (PSM)]. The prognosis of a patient is known to
be related to the volumes and Gleason grades of the tumors ob-
served in the resected specimen, as well as on SVI, EPE, and
PSM status [2]. Adjuvant therapies such as radiation or hor-
mone therapy may be considered for individuals with adverse
pathology features.
Tumor volume and EPE status, in particular, are challenging

to report quantitatively, and substantial inter-observer vari-
ability has been reported in the methods used clinically to make
these assessments [4], [5]. The advent of high-resolution (e.g.,
0.25 m/pixel) whole-slide scanners is fostering a transition
to a digital pathology workflow, similar to the transition from
light-box viewing of film images to digital imaging in radi-
ology. This transition opens the possibility for the integration
of computational tools into the digital pathology workflow in
order to enable quantitative assessments and reporting in a clin-
ically feasible fashion. In the postprostatectomy prostate cancer
setting, the quantitative reporting of tumor grade, location,
volume, SVI, EPE, and PSM status depends on an accurate
classification of each local tissue region as being cancerous or
benign.
Prostate cancer detection on H&E-stained prostate tissue im-

ages and assessment of cancer grade are challenging due to the
complexity of appearance of normal tissue and cancerous tissue
of different grades, as illustrated in Fig. 1(a)–(c). To perform this
task accurately, experts employ high-level knowledge regarding
the expected morphologic, geometric, and color attributes of
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Fig. 1. (a) Sample contoured prostate histopathology image (brown: G3; gray:
G4; dark green: G3+4; purple: G4+3; blue: Atrophy; cyan: EPE; light green:
PIN). (b) Zoomed according to the large rectangle in (a). (c) Zoomed region ac-
cording to the small rectangle in (a). (d) Sample of manually labeled superpixels
(dark green: epithelial nuclei; light green: epithelial cytoplasm; light purple:
stroma; dark purple: secretions; cyan: lumen).

normal and cancerous tissues. Another challenge to this assess-
ment pertains to the sizes of the tissue structures that need to be
examined, relative to the usual size of a human prostate. Pathol-
ogists frequently assess prostate tissue at a magnification corre-

sponding to a pixel size of 0.5 m/pixel in a scanned image. To
illustrate a typical data size encountered, each prostate section
can be approximately 4 cm 3 cm in size, yielding an image of
80 000 60 000 pixels. With approximately 2–6 such images
obtained from each prostate, tens of billions of RGB values are
usually obtained in total. Thus, this classification problem poses
the dual challenges of the need for high-level tissue information
and the processing of very large data sets.
To address these challenges, in this paper, we describe and

quantitatively evaluate a software system for automatic prostate
cancer detection on H&E-stained prostate tissue images. We
preprocess all H&E-stained prostate tissue images by automat-
ically partitioning each image into a set of nonoverlapping su-
perpixel regions using the method proposed in [6]. Pixels within
each superpixel are similar in color and texture, and superpixel
boundaries are alignedwith intensity edges in the image. The su-
perpixel partitioning provides a decrease in data size of several
orders of magnitude while encoding potentially useful morpho-
metric, geometric, and appearance information within the super-
pixels themselves. After superpixel partitioning, our system em-
ploys a two-stage classification. The first classification stage as-
signs to each superpixel a tissue component label (e.g., stroma,
lumen, epithelial nuclei) having semantic meaning to an ex-
pert pathologist based on morphometric, geometric, and appear-
ance information contained within and around each superpixel.
Thus, we compute higher-level tissue information from the low-
level image pixels. The second stage classifies image regions
(each containing multiple labeled superpixels) as either low-
grade cancer, high-grade cancer, or noncancer based on local
histograms of tissue component labels within each sub-region.
To the best of our knowledge, our manuscript describes the first
application of a superpixel algorithm to the problem domain of
prostate histopathology image analysis. Our results demonstrate
that the superpixel image partitioning and superpixel features
are inherently suited to the problem at hand.
Specifically, we hypothesize that 1) an AdaBoost classifier

trained on morphometric, geometric, and appearance attributes
of superpixels will classify superpixels into tissue components
with an accuracy of %; 2) an AdaBoost classifier trained
on tissue component histograms of superpixel labels will clas-
sify 0.3 mm 0.3 mm image sub-regions as cancer or non-
cancer with an accuracy of % and a false negative rate of

%; and 3) an AdaBoost classifier trained on tissue compo-
nent histograms of superpixel labels will classify 0.3 mm 0.3
mm cancerous image sub-regions as high-grade (Gleason 4) or
low-grade (Gleason 3) cancer with an accuracy of % and a
false negative rate of % for high-grade cancer detection.

II. RELATED WORK

There has been a substantial research focus on the problem
of automatically detecting and grading prostate cancer on dig-
ital histopathology imaging; these research efforts have yielded
valuable insights into the nature of this problem. The common
approach is to compute feature information from the images,
and then train a classifier to distinguish cancer from noncancer,
or to distinguish cancers of different grades, based on the com-
puted features.
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Within the context of the prior work, we distinguish between
low-level and high-level features. Low-level features contain
information about local distributions of pixel intensities, color
and texture, intensity edges and their local orientations. Such
features can be directly computed from images using standard
image processing techniques, but have little or no semantic
meaning to a pathologist. High-level features contain structural
information about the content present in the image, such as
tissue components (e.g., glands, lumina, stroma, nuclei), their
shape, color, size, and geometric arrangement. These features
have semantic meaning to a pathologist and are used in practice
to guide the assessment [7]. In the following summary, we clas-
sify previously developed methods according to this distinction
between low- and high-level features.
The majority of methods relying on low-level features utilize

a multi-scale/multi-resolution approach and resort to machine
learning techniques to train a classifier [8]–[12]. Doyle et al.
[8] employed decision trees and trained a multi-scale Adaboost
classifier to classify image pixels as either cancer or noncancer
based on 600 texture features. When tested on 22 images from
22 subjects, their method obtained 88% overall accuracy. Sim-
ilarly, Doyle et al. [9] trained a multi-resolution Bayesian clas-
sifier with AdaBoost and tested on 100 biopsy cores from 58
subjects, obtaining 74% pixel accuracy in the cancer versus non-
cancer classification task. Diamond et al. [10] calculated mor-
phological and texture characteristics on samples from 12 sub-
jects to distinguish cancer from noncancer images with 79% ac-
curacy; they noted that long processing times were problematic.
Huang et al. [11] found that multi-scale fractal dimension fea-
tures were useful for prostate cancer grading, with 90%–94%
classification accuracy; the number of subjects in their study,
the origin of the tissue (biopsy or surgical specimen), and the
false positive/negative rates were not specified. Khurd et al.
[12] demonstrated that multi-scale texton characterization of
the tissue images can be helpful to prostate cancer grading, ob-
taining 94% accuracy; the number of subjects in their study was
not specified.
Several recent methods aimed to extract high-level structural

information from the histopathology images [13]–[15]. Ideally,
such high-level features should correspond to the information
assessed by pathologists. In a paper focused on automated
cancer grading, Doyle et al. [13] computed a set of graph-based
features relying on manually labeled gland and nucleus centroid
locations. Their automated grading experiment used 11 grade
3 and 7 grade 4 images and yielded an accuracy of 76.9% in
distinguishing the two grades; the number of subjects in their
study was not specified. This same research group reported in
[14] improved results of 80% accuracy on a data set consisting
of 16 grade 3 and 11 grade 4 images using a method intended
to automate the selection of gland and nucleus centroids. The
authors indicated that evaluation of their method on a larger
data set is the subject of future work; the number of subjects
in this study was not specified, and it is not clear if this was a
superset of the data set used in [13]. Arif et al. [15] have also
developed a method intended for automated nucleus extraction,
with the ultimate aim of potentially supporting computer-aided
diagnosis on prostate histopathology in the future. It is not clear
how to generalize the methods in [14], [15] to other prostate

tissue components (e.g., stroma, epithelium cytoplasm, intra-
luminal secretions, etc.), which are often used by pathologists
for assessment.
Several other methods explored the utility of high-level fea-

tures for automatic prostate histopathology assessment. Wittke
et al. [16] manually segmented input images into epithelium,
lumen, and stroma, and used derived features to distinguish low-
from high-grade cancer; they reported 67% accuracy on images
from 78 subjects. Xu et al. [17] used thresholding in the hue-sat-
uration-intensity color space to segment the lumen and nuclei
prior to support vector machine-based classification of high-
grade versus low-grade cancer, and reported 75% accuracy. The
number of subjects used was not specified. Nguyen et al. [18]
perform K-means in the RGB space to distinguish between nu-
clei, stroma, lumen, and cytoplasm prior to segmentation and
two-/three-way classification based on structural and contex-
tual information. They experiment on 48 900 1500 pixel im-
ages from 20 patients with manual labeling of 525 artefacts,
931 normal glands and 1375 cancer glands, and report

% accuracy on gland versus artefact classification,
% accuracy on normal gland versus cancer gland classifi-

cation, and % accuracy on a three-way artefact versus
normal gland versus cancer gland classification. Farjam et al.
[19] demonstrated that explicit incorporation of knowledge spe-
cific to the domain of prostate histopathology assessment into
a procedure for the segmentation of the images into stroma,
lumen, and nuclei and subsequent computation of domain-spe-
cific features can yield more than 95% accurate classification of
cancer grades. The number of subjects used was not specified.
Most relevant to our work is the method of Tabesh et al. [20]

developed by Aureon Laboratories Inc. The authors took a hy-
brid low-level/high-level approach and investigated the utility
of color, texture, and morphometric features for distinguishing
cancer from noncancer and low-grade from high-grade cancer
on tissue microarray cores. This method achieved 97% accuracy
for the cancer versus noncancer classification task when tested
on a set of 367 images and 81% accuracy for the high-grade
versus low-grade classification when tested on a set 218 im-
ages, respectively. The method was applied to relatively large
1600 1200 images, while some of the images were reported
to have as little as 5% of the area covered by cancer, making
direct tumor volume quantification difficult. Furthermore, the
approach required approximately 30 min of processing time
for each 1600 1200 image; pathologists wishing to use the
(now closed) company’s analysis services were to physically
ship biopsy samples for offline analysis.
Methods using low-level features along with multi-scale/

multi-resolution approaches may result in the extraction of fea-
tures which, although not directly meaningful to a pathologist,
may correlate to high-level structures of pathological interest.
The results of the described previous work, however, point to
the idea that designing methods that directly extract high-level
information from the image data may be beneficial to the task
of automated prostate cancer detection and classification.
Although previous work has made important discoveries and

strides toward a practically useful solution to this problem, a
clinically-adopted solution remains elusive. Also, the lack of a
standardized data set for this problem challenges the direct per-
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Fig. 2. Overview of the tissue classification method. Given a set of training
images (a), each image is preprocessed (b) by automatically computing a su-
perpixel partition (f) and the superpixel features (g). (For a description of the
features see Table I and Fig. 4.) Training superpixels are manually labeled with
the tissue component labels (c) and used to train an Adaboost classifier (d). After
training, given a new input image (e), the same preprocessing (f, g) is performed.
The trained adaboost classifier (d) is then used to classify image superpixels and
assign each superpixel a tissue component label (h).

formance comparison of methods. For a system to be clinically
adopted, it may be beneficial: 1) to classify tissue based on at-
tributes that are used by and therefore intuitive to pathologists,
improving their confidence in the software system; 2) to be ro-
bust and general via the avoidance of direct incorporation of
potentially brittle domain-specific knowledge into the design of
the system (as opposed to using expert labeling for training);
and 3) to be evaluated on a data set with well-known subject
characteristics and a fully described reference standard. Our
proposed approach meets all three criteria. Without incorpo-
rating any domain-specific knowledge, our approach provides a
fully automatic partitioning of the image into intermediate-size
superpixel regions and assigns to each superpixel one of nine
high-level tissue component labels having semantic meaning
to pathologists. Our system for prostate cancer detection and
grading based on these higher-level labels was evaluated against
a well-described reference standard data set, and with appro-
priate statistical inferences to account for the size of the data set
and variability of performance of our system.

III. METHODS

Our approach consists of two main components. The first
assigns each image pixel a high-level tissue component label
based on a superpixel partitioning and low-level superpixel fea-
tures. The second classifies image sub-regions as cancer or non-
cancer, and as high-grade or low-grade cancer, based on high-
level tissue component information. These two components are
described in the following subsections.

A. Tissue Component Classification

The objective of tissue component classification is to assign
to each image pixel a tissue component label having semantic

Fig. 3. Illustration of the superpixel algorithm [6]. Each pixel is assigned a
label corresponding to one of the patches that overlap with it (left). The la-
bels are stitched so that the boundaries between labels align with the intensity
edges in the image and so that the intensities within each label are homogeneous
(right). The optimal stitching is found automatically using an energy minimiza-
tion framework.

meaning to an expert pathologist. We used nine tissue compo-
nent labels: stroma, lumen, epithelial nucleus, epithelial cyto-
plasm, lymphocyte, red blood cell (RBC), intraluminal secre-
tions, corpus amylaceum, and other. Fig. 2 shows a general
overview of the tissue component classification method. It is
based on three main steps: 1) automatic tessellation of the image
into superpixels using a graph-cut based method [6], 2) extrac-
tion of superpixel appearance, morphometric and geometric fea-
tures, and 3) classification of superpixels into nine tissue com-
ponent classes based on the extracted features usingModest Ad-
aBoost [21]. Each of these components is described in the fol-
lowing subsections.
1) Superpixels: There exist several methods to compute

superpixels, such as mean shift [22], graph-based [23], and
normalized cuts [24]. We chose the efficient graph-cut based
method in [6] since it proposed a principled approach to com-
pute superpixels with regular shapes and sizes in an energy
minimization framework. Superpixels with regular shapes are
less likely to straddle object (tissue component) boundaries,
since such boundaries are mostly smooth. Moreover, by con-
trolling the maximum size of each superpixel, we can influence
the overall error in superpixel tessellation, where error is
defined to be a superpixel split between two objects (tissue
components).
The basic superpixel algorithm is illustrated in Fig. 3. An

image is covered with overlapping square patches of fixed size
(Fig. 3 left). Each pixel is contained in several patches, and we
need to assign each pixel to one of the patches, thereby pro-
ducing a superpixel tessellation. If two nearby pixels are as-
signed to the same patch, there is no penalty. If they belong to
different patches, then there is a discontinuity penalty to pay.
We set this penalty to be inversely proportional to the image
gradient between these pixels. This encourages smoother, regu-
larized boundaries that are well aligned with the intensity edges
present in the image.
Let us state the superpixel tesselation problem formally as a

labeling problem, which is solved with the graph-cut optimiza-
tion approach [25]. Given a set of pixels and a finite set of
labels , the task in a labeling problem is to assign a label
to each . In our case, let the patches be numbered with
consecutive integers , where is the total number of
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patches. The th patch is identified with an integer label , and
therefore the set of all possible labels is .
Let denote the label assigned to pixel , and let be the

collection of all label assignments. There are two types of con-
straints. Unary constraints express how likely is a label
for pixel . Let be the set of the pixels in patch .
Label can be assigned only to pixels in . Therefore, the
data term is defined as

(1)

Binary constraints express how likely labels and
are for neighboring pixels and . Based on [26], we use Potts
model

(2)

with from [27]

Here, is the color of pixel , and is the Euclidean
distance between and . The coefficients are inversely
proportional to the gradient magnitude between and , encour-
aging discontinuities to coincide with intensity edges.
An energy function that combines the unary and binary con-

straints is

(3)

In (3), the second sum is over eight-connected neighborhood
system . This energy is NP-hard to optimize, and we use the
expansion algorithm from [25], which has factor of 2 approxi-
mation. To compute max-flow/min-cut, we use [28].
The initial labeling is set to a random labeling with finite en-

ergy. Even though the number of labels is quite large, the ex-
pansion algorithm is very efficient because expansion on label
is performed only for pixels in .
With as defined in (1), the data term in (3) is equal for all

finite energy labelings, and we set in (3) since it has no
effect on optimization.
The maximum superpixel size is equal to the patch size.

Small superpixels are discouraged because they contribute
a higher discontinuity penalty, since longer boundaries are
required. Thus, the sizes of the superpixels are also regularized.
A sample partitioning result is shown in Fig. 3, right. This
basic algorithm can be extended to other formulations, which
allow a trade-off between a less regular spatial tessellation
but more accurate boundaries or better efficiency. A complete
description of this superpixel algorithm can be found in [6].
2) Superpixel Features: Scale invariant feature transform

(SIFT) is a commonly used image texture descriptor [29] that
summarizes the distribution of local intensity gradients around
each point of interest. Our use of SIFT features was based on
the observation that different tissue components appear to have
different spatial organizations of image gradients. For example,
nuclei are consistently bright in the middle, with a circumferen-
tial gradient transitioning to a darker perimeter, whereas stroma

has weaker gradients but more variable gradient orientation de-
pending on the predominant orientation of the tissue in the local
area.
We, therefore, computed a spatially dense set of SIFT descrip-

tors for each of the images in our training set using the code
provided by [30]. This resulted in a 128-feature vector per
image pixel , where is the image domain. We
reduce the space of all possible local textures by clustering all
SIFT descriptors from all training images into a set of SIFT rep-
resentatives using K-means, similarly to [31]. Based on
the results of our preliminary experiments we selected
(varying K between 80 to 120 did not affect the results signifi-
cantly). We then labeled each image pixel with the index
of the closest SIFT representative, namely

Next, we applied superpixel partitioning [6] to all the images
in our training set. Each superpixel was then represented as a
set of appearance, morphometry and geometry features. The ap-
pearance features describe the distribution of the color/intensity
within each superpixel, including five-bin per-channel inten-
sity histograms. The morphometry features describe the shape,
size, and relative aspect ratio of each superpixel. Finally, the
geometry features describe the distribution of the local gradi-
ents within superpixels and the immediate neighborhood. To
that end, we used K-bin histograms over SIFT representative
labels within each superpixel. Using a histogram over SIFT
labels further reduces the dimensionality (as opposed to using
all SIFT descriptors within a superpixel), summarizing the dis-
tribution of local gradients over all points in a superpixel and
its neighborhood. The number K determines the size of the his-
togram that is used as a part of the superpixel feature vector. See
Table I for the full description of the features.
It is commonly assumed that spatial relationships between

local appearances play an important role in classification of un-
derlying structure in histopathology. Therefore, for each super-
pixel we also encoded its contextual spatial information. In ad-
dition to characterizing the appearance and shape of each su-
perpixel, we also characterized the appearance of the neigh-
borhood around each superpixel. Let be a superpixel.
Let be the centroid of the superpixel and be a radius in
pixels, corresponding to m, re-
spectively. We defined three rings of neighborhood

Because our superpixels are approximately 10 pixels in diam-
eter, we selected the numbers 10, 20, and 30 to roughly cor-
respond to one, two, and three layers of superpixel neighbors,
respectively. We then computed color histograms (the last row
in Table I) within these neighborhood rings and appended those
histograms to the feature vector of each superpixel (adding total
of 15 spatial appearance features for each superpixel).
Fig. 4 shows an illustration of the neighborhoods for a su-
perpixel and the construction of its feature vector.
3) Using Adaboost for Classifying Superpixels: We used

an Adaptive Boosting (AdaBoost) machine learning frame-
work [32] to learn the superpixel descriptors characterizing
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TABLE I
SUMMARY OF THE FEATURES USED TO DESCRIBE EACH SUPERPIXEL

Fig. 4. Superpixel features: illustration of the ring neighborhoods.

each tissue component type based on the features described
above. AdaBoost is a meta-algorithm; it can be used in con-
junction with many different weak classifiers to improve their
performance. Specifically, we use Real AdaBoost [21] that
utilizes simple decision trees as weak learners. We trained
nine binary classifiers, one per tissue component type. Each
component-specific binary classifier assigns each superpixel
either the “class” or “nonclass” label for that component type
(e.g., “stroma” or “not stroma”), along with a confidence value.
The outcome of the nine binary classifiers was combined into
one multi-label classifier by choosing the component label with
the highest confidence.

B. Prostate Cancer Detection and Classification

Below, we describe our method for prostate tissue classifica-
tion. This method relies on the tissue component classification
described in Section III-A as a preprocessing step.
We assume that for each image, a superpixel partition is com-

puted, features are extracted and each superpixel is classified as
a specific tissue component type. We then counted the number
of pixels in the image labeled with each tissue component and
compute a nine-bin tissue component histogram per image. We
used tissue component histograms as feature vectors for cancer
detection. Namely, we considered the task of binary “cancer”
versus “noncancer” classification using boosted decision trees
(Modest AdaBoost) [21].
We further focused on cancer tissue classification problem

and considered the task of binary “high-grade” versus “low-
grade” classification, again using tissue component histograms
as feature vectors and Modest AdaBoost [21].

IV. EXPERIMENTS

A. Materials

The image data for our experiments was acquired as part
of a study that was approved by the research ethics board of
our institution; written informed consent was obtained from all
subjects. All subjects were suitable for and consented to rad-
ical prostatectomy, and had histologically confirmed prostate
cancer (clinical stage T1 or T2). For each of 15 subjects, fol-
lowing radical prostatectomy, the resected prostate was fixed in
10% buffered formalin for 48 h. Each specimen was then trans-
versely sliced into 4.4-mm-thick sections. The sections were
processed using standard paraffin embedding, yielding whole-
mount H&E-stained microscope slides, each containing a single
4- m-thick section of tissue taken from each paraffin block face.
The slides were digitized using a ScanScope GL (Aperio Tech-
nologies, Vista, CA, USA) bright field slide scanner. The ac-
quired images were 24-bit color with isotropic 0.5 m pixels.
From each subject, between 2 and 5 (median 3) whole-mount
sections were obtained; 50 such sections were obtained in total.
A physician (Gaed) trained by two genitourinary pathologists

(Moussa and Gómez) assessed each image using the ScanScope
ImageScope v11.0.2.725 software (Aperio Technologies, Vista,
CA, USA) and contoured every tumor focus, as well as any
identified areas of benign prostatic hyperplasia (BPH), atrophy
(ATR), and prostatic intraepithelial neoplasia (PIN) using a
Cintiq 12WX pen-enabled display (Wacom Co. Ltd., Saitama,
Japan). Tumor areas were classified as either Gleason grade

or .
referred to a region that contained a mixture of Gleason grade 3
and Gleason grade 4 cancer, with more than 50% of the region
comprising Gleason grade 3. referred to a region that
contains a mixture of Gleason grade 3 and Gleason grade 4
cancer, with more than 50% of the region comprising Gleason
grade 4. No Gleason grade 5 was observed in our data set. An
illustrative example of this contouring is provided in Fig. 1.
Contouring was performed at the highest image resolution,
with the objective of generating contours enclosing regions
consisting purely of the designated label (e.g., a “G4” contour
is intended to contain only tissue that is cancerous with Gleason
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TABLE II
NUMBER OF SUB-IMAGES PER PROSTATE TISSUE TYPE IN THE DATA SET

USED FOR PROSTATE CANCER DETECTION AND CLASSIFICATION

TABLE III
NUMBER OF SUB-IMAGES PER PROSTATE TISSUE TYPE IN THE DATA SET

USED FOR TISSUE COMPONENT CLASSIFICATION EXPERIMENT

grade 4, devoid of normal tissue or cancer of other grades).
Contouring and assessment in this fashion required approx-
imately 70 h of operator time per subject; Fig. 1(b) and (c)
provides an illustration of the attention to detail applied to this
contouring task. All contours and assessments were performed
by the trained physician (Gaed) and verified by a genitourinary
pathologist (Moussa or Gómez).
From these images, we extracted 991 0.3 mm 0.3 mm sub-

images sampled onto a 301 pixel 301 pixel grid (i.e., the pixel
size was approximately 1 m 1 m). Each sub-image resided
entirely within one of the contoured regions of interest and thus
inherited a corresponding label. Table II summarizes the distri-
bution of sub-image labels in this set. This data set was used for
the prostate cancer detection and classification experiment de-
scribed in Section IV-C.
Our decision to classify small (0.3 mm 0.3 mm) sub-im-

ages rather than large regions is motivated by the pathologist’s
objective of characterizing Gleason grade heterogeneity within
larger regions such as tumors. By classifying each sub-image
as cancer or noncancer, and each cancerous sub-image as low-
grade or high-grade cancer, one can then examine the proportion
of high-grade and low-grade sub-image classifications within
tumors to characterize the overall aggressiveness of each tumor.
From the data set described in Table II, we extracted a subset

described in Table III for use in the tissue component classifi-
cation experiment described in Section IV-B. For each of these
images, we performed a superpixel partitioning as described in
Section III-A1. A custom user interface developed in-house was
used by a physician (Gaed) trained by two genitourinary pathol-
ogists (Moussa and Gómez) to label a portion of superpixels in
each image in the set. Each labeled superpixel was given one
of the following nine tissue component labels: stroma, lumen,
epithelial nucleus, epithelial cytoplasm, lymphocyte, red blood
cell, secretion, corpus amylaceum, other. For superpixels con-
taining tissue falling into more than one of the preceding cate-
gories, the physician applied the label representing the majority
of the superpixel’s contents. A total of 63 926 superpixels were

manually labeled in this fashion. A sample of such a manual la-
beling is provided in Fig. 1(d).

B. Tissue Component Classification

Because classification of tissue into components (stroma,
lumen, epithelial nucleus, epithelial cytoplasm, lymphocyte,
red blood cell, secretion, corpus amylaceum, other) is an inte-
gral part of our overall method for prostate cancer detection and
classification, our first experiment evaluates tissue component
classification in isolation from the other components of our
system. We performed 10 repeated subsampling cross-valida-
tion trials using the 63 926 manually-labeled superpixels from
the data set described in Table III. In each trial, we randomly
split the set of labeled superpixels into a training set comprising
80% of the labeled superpixels, and a test set comprising the
remaining 20%. We performed a superpixel partitioning, as
described in Section III-A1. For all superpixels, we calculated
superpixel features, as described in Section III-A2. We then
performed superpixel classification using AdaBoost, as de-
scribed in Section III-A3. AdaBoost requires two parameters:
the maximal depth for tree learners and the maximal number
of iterations. In this experiment, we used the default

and (the number of features per superpixel). For each
of the 10 trials, nine binary AdaBoost classifiers (one per each
tissue component type) were trained and tested, resulting in
nine confidence values (one per label) for each superpixel in
the test set. Each superpixel then was assigned the label having
the largest confidence value.
We measured the mean standard deviation of the multi-

class classification error (the number of incorrectly labeled su-
perpixels in the test set, divided by the total number of super-
pixels in the test set) across the 10 trials as well as the confusion
matrix for each trial. As a qualitative assessment of the tissue
component labeling, we calculated a set of histograms showing
the distribution of tissue components (stroma, lumen, epithelial
nucleus, epithelial cytoplasm, lymphocyte, red blood cell, secre-
tion, corpus amylaceum, other) within each prostate tissue type
(Atrophy, PIN, BPH, G3, G3+4, G4+3, G4). This was done in
order to evaluate the agreement of these observed distributions
against pathologists’ knowledge of the expected distributions.
As a further qualitative assessment of the tissue component la-
beling, we also rendered a set of images with classifier outputs
color-coded, to compare the resulting superpixel labeling to the
visible tissue components in the H&E-stained test images. Fi-
nally, to test hypothesis (1) (Section I), that our method will clas-
sify superpixels into tissue components with accuracy of %,
we performed a one-tailed t-test of the null hypothesis that the
mean multiclass classification error .

C. Prostate Cancer Detection and Classification

This section describes two experiments. The first is on
prostate cancer detection; the classification of sub-images
as containing cancerous tissue, or noncancerous tissue
(Section IV-C1). The second is on prostate cancer classification;
the classification of cancer-containing sub-images as containing
high-grade cancer, or low-grade cancer (Section IV-C2). Both
experiments were conducted using the 991-sub-image data set
described in Table II. A superpixel partitioning was computed
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for each sub-image, as described in Section III-A1. The number
of superpixels per sub-image was recorded in order to mea-
sure the reduction in data size achieved by this partitioning.
Each superpixel was then represented by a set of features, as
described in Section III-A2, and one of the nine tissue com-
ponent labels was applied to each superpixel, as described in
Section III-A3. A tissue component histogram was computed
for each sub-image and used for training and testing of a Modest
AdaBoost classifier, as described in Section III-B. To evaluate
classifier performance, we computed the false positive (FP),
false negative (FN), true positive (TP), true negative (TN), and
accuracy (TP + TN) rates.
1) Prostate Cancer Detection: This experiment evaluated

the ability of a Modest AdaBoost classifier to classify sub-im-
ages as containing cancer or noncancer, based on tissue compo-
nent histograms. We performed 10 repeated subsampling cross-
validation trials using the 991 sub-images in the data set de-
scribed in Table II. In each trial, we randomly split the set of
labeled superpixels into a training set comprising 80% (792) of
the sub-images, and a test set comprising the remaining 20%
(199). For this experiment, each sub-image in the data set was
labeled as cancer (“positive”) or noncancer (“negative”). Any
sub-image having a label of Atrophy, BPH, or PIN was desig-
nated as noncancer. Any sub-image having a label of

, or G4 was designated as cancer.
Since, in the clinical workflow, a failure to detect cancer may

result in the denial of necessary postprostatectomy treatment, it
may be beneficial to tune the classifier to achieve a decreased
FN rate, even if compromising in terms of an increased FP rate.
Depending on the classifier at hand, this can be done by either
skewing the error cost matrix, or by using unbalanced class
probability priors, or both. In these experiments, due to the
relatively lower number of positive data points, we implicitly
skewed the error cost matrix by artificially augmenting the
training set with an additional number of duplicates for
each positive sub-image in the set. This way, during classifier
training, each FN error carried heavier weight and was counted
times compared to FP errors. Therefore we explicitly biased

the classifier toward obtaining a lower FN rate by preferring FP
errors over FN errors. We varied the number of duplicates used
in training in order to observe how the classification results
changed as a function of number of duplicates. To this end,
each of the cross-validation experiments was performed five
times, one for each .
We performed the following measurements for all values of
. We measured the mean standard deviation (where ap-
plicable) of the classification error across all cross-validation
trials. Classification error was calculated as the number of in-
correctly labeled sub-images in the test set, divided by the
total number of sub-images in the test set. In addition to the
FN and FP rates, we measured the TP and TN rates. We also
plotted a precision-recall curve showing the mean TN versus
mean TP (averaged across all trials) as a function of in order
to visualize the trade-off resulting from increasing the number
of positive duplicates in the data set. To test hypothesis (2)
(Section I), that our method will classify sub-images as cancer
or noncancer with accuracy of % and a false negative

rate of %, we performed one-tailed t-tests of the null hy-
potheses that the mean classification error and that the
FN rate .
2) Prostate Cancer Classification: This experiment eval-

uated the ability of a Modest AdaBoost classifier to classify
cancer-containing sub-images as containing high-grade cancer
or low-grade cancer, based on tissue component histograms. It
was conducted identically to the prostate cancer detection ex-
periment described in Section IV-C1, with the exception of the
following details. We performed a leave-one-out cross-valida-
tion experiment using the 120 G3 and G4 sub-images in the
data set described in Table II. Leave-one-out cross-validation
was performed due to the relatively small size of the data set
for this experiment. For this experiment, each sub-image in the
data set was labeled as low-grade cancer or high-grade cancer.
Sub-images having a label of G3 were designated as low-grade
cancer. Sub-images having a label of G4 were designated as
high-grade cancer. In this experiment, for purposes of com-
puting TP, TN, FP, and FN, high-grade cancer was considered as
“positive” and low-grade cancer as “negative.” To test hypoth-
esis (3) (Section I), that our method will classify sub-images as
high-grade or low-grade cancer with accuracy of % and a
false negative rate of % for high-grade cancer detection, we
performed one-tailed t-tests of the null hypotheses that the mean
classification error and that the FN rate .

V. RESULTS

A. Tissue Component Classification

This section reports the results of the tissue component
classification experiment described in Section IV-B. The mean
standard deviation of the multiclass error rate over 10

trials was . The data passed a one-sample Kol-
mogorov–Smirnoff test of normality . A
one-tailed t-test of the null hypothesis that the mean multiclass
classification error yielded a p-value of . As
this test involved 10 samples generated via cross-validation,
a Bonferroni-corrected of was used. This
null hypothesis was therefore rejected and thus we assert that
hypothesis (1) (Section I) is true. The Bonferroni-adjusted
95% confidence interval on the mean classification error was
found to be (0.1598, 0.1687). This confidence interval suggests
that a mean classification error of , corresponding to an
accuracy of %, can be expected from the tested method.
Fig. 5 shows a classification confusion matrix for one of the

cross-validation trials. The rows represent the actual tissue com-
ponent labels and the columns represent the labels predicted by
the Real AdaBoost classifier (Section IV-B). A cell repre-
sents the frequency of an event whereby a superpixel with the
actual label was classified as label . The diagonal elements
of the confusion matrix depict the classification accuracy for
each label. Each off-diagonal matrix element shows the
rate of error whereby the label was misclassified and assigned
the label . The rows of the matrix are normalized to sum to
one. The numbers on the left of the figure show frequencies of
each label in the test set. As can be seen in the matrix, the pro-
portions of correct classifications are above 0.8 for most of the
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Fig. 5. Confusion matrix for the tissue component classification: Actual labels
are the rows, predicted labels are the columns. A cell represents the fre-
quency of an event whereby a superpixel with the actual label was classified
as label . The rows of the matrix are normalized separately for each label (row)
to sum to one. The numbers on the left of the figure represent the frequency of
each label in the test set.

tissue component labels, with the “other” label having a con-
founding effect.
Fig. 6 shows the frequency of occurrence of each tissue com-

ponent in each prostate tissue type, obtained by running our clas-
sifier on the 991 subimages in the data set described in Table II.
For example, the amount of lumen is lower in cancer, compared
to noncancer. The amount of lumen decreases and the amount of
epithelial nuclei increases as a function of Gleason grade. Cor-
pora amylacea are mostly present in Atrophy, BPH, and PIN,
but not as much in the cancerous tissue.
Fig. 7 show examples of test images with color-coded tissue

component labels superimposed on each original image. There
are seven rows, one for each prostate tissue type. We show ex-
amples of four test images for each tissue type.
To mitigate the potential bias involved in training and testing

on neighbouring superpixels in our cross validation experiment,
we repeated the experiment with leave-one-patient-out cross
validation. Due to the uneven distribution of tissue component
labels among patients in the training set, this experiment was
especially challenging to the classifier as it was trained on an
incomplete set of labels in some folds, artificially degrading
its performance. As this is a nine-way classification, the ex-
pected error rate arising from chance performance is not 0.5 but
rather is 0.89 (i.e., 8/9). We recorded a mean std error rate of

, illustrating that the performance of the classifier is
substantially better than chance even with incomplete training
data. Note that for the subsequent cancer detection and classifi-
cation experiments (Section V-B) we use tissue component clas-
sifier that was trained on all available labeled images described
in Table III. Therefore, the kind of cross validation performed
for the evaluation of the tissue component classification exper-
iment has no effect on the performance of the cancer detection
and classification experiments described next (Section V-B).

B. Prostate Cancer Detection and Classification

The experiments described in Section IV-C were conducted
on a Microsoft Windows (Redmond, WA, USA) platform

Fig. 6. Top: Distribution of tissue component labels per prostate tissue type.
Bottom: The histograms are reorganized and for each tissue component we show
how its relative proportion varies across different prostate tissue types.

based on the Intel Xeon E5645 processor (Intel Corporation,
Inc., Santa Clara, CA, USA). The software implementation
comprises a combination of C++ and Matlab 7.12.0 (The
Mathworks, Inc., Natick, MA, USA) code. The implementation
was developed as a platform to support research and is not op-
timized for speed or parallel processing; we observe substantial
room for improvement of our implementation in these areas.
Nevertheless, for the experiments described in Section IV-C,
each test sub-image was classified by this platform in under 2
min, including all necessary steps (superpixel partitioning, cal-
culation of features, and AdaBoost classification). Since each
sub-image is independently classified, this system is inherently
highly parallelizable. The mean std number of superpixels per
sub-image for the data set described in Table II was .
1) Prostate Cancer Detection: This section reports the re-

sults of the prostate cancer detection experiment described in
Section IV-C1. See Table IV, first row for the mean standard
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Fig. 7. Tissue component classification superimposed over several example
test images.

deviation of the error rate (FP+FN)/(FP+FP+TN+TP) over 10
trials as a function of number of duplicates used in training.
The data (aggregated over all ) passed a

TABLE IV
CANCER CLASSIFICATION AND DETECTION RESULTS: MEAN FN+FP STD
AND MEAN FP STD AS A FUNCTION OF NUMBER OF DUPLICATES

USED IN TRAINING. NOTE THAT CANCER CLASSIFICATION
EXPERIMENT IS LEAVE-ONE-OUT CROSS-VALIDATION AND

THEREFORE DOES NOT HAVE MEAN AND STD

one-sample Kolmogorov–Smirnoff test of normality
. A one-tailed t-test of the null hypothesis that the

mean classification error yielded a p-value of 0.0003. As
this test involved 50 samples generated via 10 cross-validation
trials for each value of , a Bonferroni-corrected of

was used. The null hypothesis was therefore rejected. The
Bonferroni-adjusted 95% confidence interval on the mean clas-
sification error was found to be (0.0780, 0.0994). This confi-
dence interval suggests that a mean classification error of not
more than , corresponding to an accuracy of %, can
be expected from the tested method.
Table IV, also reports the mean standard deviation of the

FN/(FN+TP) rate over 10 trials. The data (aggregated over all
) passed a one-sample Kolmogorov–Smirnoff test of normality

. A one-tailed t-test of the null hypoth-
esis that the mean false negative rate yielded a p-value
of . As this test involved 50 samples generated via 10
cross-validation trials for each value of , a Bonferroni-cor-
rected of was used. The null hypothesis was
therefore rejected. The Bonferroni-adjusted 95% confidence in-
terval on the mean FN rate was found to be (0.04, 0.12). This
confidence interval suggests that a mean FN rate of not more
than % can be expected from the tested method. Based on
the rejection of both of the above null hypotheses, we assert that
hypothesis (2) (Section I) is true.
Fig. 8–10 show the mean standard deviation over 10

trials of FN, FP, and accuracy (TP+TN) rates, respectively,
as a function of the number of duplicates used for each
positive (cancer) example in the training. Fig. 11 shows the
recall-precision curve.
Table V shows the distribution of classification errors across

prostate tissue types as a function of the number of duplicates
used in the training data set. For each experiment corresponding
to and prostate tissue type, we show the
proportion of the images with this type classified as cancer (C)
or noncancer (NC), averaged over 10 cross-validation trials. As
the number of positive (cancer) duplicates used in training in-
creases, the number of cancer imagesmisclassified as noncancer
decreases. The higher the grade of cancer, the faster the FN rate
decreases. (Standard deviations can be seen in Fig. 8–10 and are
omitted from Table V for clarity.)
2) Prostate Cancer Classification: This section reports the

results of the prostate cancer classification experiment described
in Section IV-C2. See Table IV, second row for the error rate
(FP+FN)/(FN+FP+TP+TN) of the leave-one-out cross valida-
tion classification as a function of number of duplicates used
in training. The data (aggregated over all ) passed a one-sample
Kolmogorov–Smirnoff test of normality .
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Fig. 8. Cancer detection average false negative rate: FN/(FN+TP) as a function
of the number of duplicates used for each cancer image in training.

Fig. 9. Cancer detection average false positive rate: FP/(FP+TN) as a function
of the number of duplicates used for each cancer image in training.

A one-tailed t-test of the null hypothesis that themean classifica-
tion error yielded a p-value of 0.005. As this test involved
five samples generated via one leave-one-out cross-validation
for each values of , a Bonferroni-corrected of
was used. The null hypothesis was therefore rejected. The Bon-
ferroni-adjusted 95% confidence interval on the mean classifi-
cation error was found to be (0.0514, 0.1486). This confidence
interval suggests that a mean classification error of not more
than , corresponding to an accuracy of %, can be ex-
pected from the tested method.
Table IV also reports the FN/(FN+TP) error rate in the

leave-one-out cross validation classification. The data (ag-
gregated over all ) passed a one-sample
Kolmogorov–Smirnoff test of normality .
A one-tailed t-test of the null hypothesis that the mean FN rate

yielded a p-value of . As this test involved five
samples generated via one leave-one-out cross-validation for

Fig. 10. Cancer detection average accuracy rate: (TP+TN)/(FN+TP+FP+TN)
as a function of the number of duplicates used for each cancer image in
training.

Fig. 11. Cancer detection recall-precision rate curve: average TN versus av-
erage TP as a function of the number of duplicates used for each cancer image
in training.

TABLE V
AVERAGE CONFUSION MATRIX AS A FUNCTION OF NUMBER OF DUPLICATES
USED IN TRAINING. FOR EACH EXPERIMENT AND PROSTATE TISSUE TYPE, WE
SHOW THE PROPORTION OF THE IMAGES WITH THIS TYPE CLASSIFIED AS
CANCER (C) OR NONCANCER (NC), AVERAGED OVER 10 TRIALS. NUMBERS

IN BOLD SHOW THE PROPORTION OF IMAGES CLASSIFIED CORRECTLY

each value of , a Bonferroni-corrected of
was used. The null hypothesis was therefore rejected. The
Bonferroni-adjusted 95% confidence interval on the mean FN
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Fig. 12. Cancer classification: The rate of high grade cancer images classified
as low grade FN/(FN+TP), as a function of the number of duplicates used for
each high-grade cancer image in training.

Fig. 13. Cancer classification: The rate of low grade cancer images classified
as high grade (FP/(FP+TN), as a function of the number of duplicates used for
each high-grade cancer image in training.

rate was found to be (0.04, 0.05). This confidence interval
suggests that a mean FN rate of not more than % can be
expected from the tested method. Based on the rejection of
both of the above null hypotheses, we assert that hypothesis (3)
(Section I) is true.
Fig. 12–14 show the FN, FP, and accuracy (TP+TN) rates,

respectively, as a function of the number of duplicates used for
each positive (high grade) image in the training computed with
leave-one-out cross-validation. Fig. 15 shows the recall-preci-
sion curve.

VI. DISCUSSION

The focus of this work was to evaluate the accuracy of
the proposed system for cancer detection and classification.

Fig. 14. Cancer classification accuracy rate: (TP+TN)/(FN+TP+FP+TN) as a
function of the number of duplicates used for each high-grade cancer image
in training.

Fig. 15. Cancer classification recall precision rate curve: TN versus TP as a
function of the number of duplicates used for each high grade cancer image
in training.

Although speed was measured, a high-speed algorithm/imple-
mentation was out of the scope of this work and there exists
substantial room for speed improvement in both the tuning
of the algorithm and the optimization of the implementation.
A high-speed implementation will leverage a key strength of
our approach, which is the independent classification of each
sub-image; in principle, with sufficient parallel processors, an
entire slide could be processed in the same amount of time as a
single sub-image. With the advent processing-dedicated GPUs
with ever-growing numbers of processors (currently on
a single adapter), a parallel implementation of this algorithm at
the pathologist’s desk becomes ever more feasible.
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A. Tissue Component Classification

Many computer vision applications (e.g., [33]–[40]) have
benefited from representing an image as a collection of su-
perpixels. A superpixel is considered to be a perceptually
meaningful, atomic, arbitrarily-shaped image subregion whose
borders are intended to be better aligned with intensity edges
than those of a rectangular region. Usually, a superpixel con-
tains pixels that are similar in color and texture. Such pixels
are likely to belong to the same physical world object or, in
our case, the same tissue component. Superpixel partitioning
of an image reduces data dimensionality and can naturally be
used for computing features that need spatial support [6]. To
the best of the authors’ knowledge, this work represents the
first application of a superpixel partitioning to the problem of
prostate pathology image classification. In this work, the super-
pixel partitioning provided more than an order of magnitude
reduction in the number of elements to be processed within
each sub-image, from pixels to a mean
of 1396 superpixels per sub-image ( -fold reduction in
data size). Morphometric, geometric, and appearance features
computed based on the superpixel partitioning provided our
tested classifier with the necessary data to accurately assign to
each superpixel a higher-level tissue component label having
semantic meaning to an expert pathologist. This result points
to the suitability of the superpixel partitioning to this problem
domain.
For classification, we chose to use AdaBoost as it is com-

monly used in computer vision, data mining, pattern recogni-
tion, and medical imaging applications (e.g., [41]–[46]) for its
relative simplicity and speed. We observed that this classifier
provided useful accuracy in tissue component labeling of su-
perpixels, with the exception of an observed confounding effect
of the “other” label (Fig. 5). Further inspection revealed that the
“other” label accounted for several additional, infrequently oc-
curring, tissue subtypes of heterogeneous appearance. For ex-
ample, it includes superpixels lying in the empty space sur-
rounding glands, covering cristalloids or blood vessel walls. The
main reason for the relatively high error rate for the “other” label
is the low frequency of these sub-types in the training and test
data, high variability of appearance and the lack of higher level
information that allows for distinguishing e.g., the space sur-
rounding gland from lumen (both uniformly white), or vessel
walls from stroma (both red). We observed (Fig. 6) that the pro-
portions of tissue component labels for each prostate tissue type
correspond to expected distributions based on expert knowl-
edge. For example, it is known that the ratio of stroma to ep-
ithelial nuclei decreases with increasing Gleason grade, and this
is reflected in Fig. 6. The decrease in lumen with increasing
Gleason grade shown in Fig. 6 is also anticipated as a conse-
quence of more advanced cancer.

B. Prostate Cancer Detection and Classification

The results of our prostate cancer detection and classification
experiments can be interpreted in the context of our reference
standard data set, which contained meticulously drawn manual
contours [e.g., Fig. 1(a)–(c)] verified by a minimum of two ex-
perts. The quality of this data set contributed to the effectiveness
of classifier training and validity of testing.

The results of our work demonstrate the ability of the trained
classifiers to imitate the judgements of the specific observer re-
garding cancer versus noncancer and low-grade versus high-
grade classification, based on the annotations provided by the
observer for the training data. From the standpoint of creating
a tool that may ultimately be useful to a pathologist in clinical
practice, it remains to be seen whether an ideal system should
be separately trained to mimic the idiosyncrasies of each in-
dividual pathologist, or whether the performance of an ideal
system should somehow reflect the performance of pathologists
in general. A separate study involving multiple observers in the
training and test sets could elucidate the performance of our fea-
tures and classifiers and compare the results to measured intra-
and inter-observer variability in human experts.
1) Prostate Cancer Detection: In our cancer detection ex-

periment, we noted a general improvement in FN rate with in-
creasing , without a deleterious concomitant increase in FP rate
(Table V). However, this is not true for PIN; with increasing ,
the accuracy for PIN images decreases rapidly with a high FP
rate for PIN images. In fact, at , PIN images are clas-
sified as cancer 55% of the time and as noncancer 45% of the
time. Upon reflection, this result is unsurprising on account of
the fact that PIN is widely considered to be tissue in a precan-
cerous state; not quite cancer, but certainly abnormal and with
a predisposition to become cancerous. This leads to the obser-
vation that PIN images may not in fact be correctly classifiable
as either cancer or noncancer, and our overall FP rate for cancer
may be improved by placing PINwithin a distinct third category.
2) Prostate Cancer Classification: The results of our cancer

classification experiment should be interpreted in the context
of the relatively small number of images in the data set (99
low-grade and 21 high-grade). We restricted the data set for this
experiment to only the sub-images having pure G3 or G4 tissue
type, excluding the and sub-images. Of the total
of 991 sub-images in our data set (Table II), the 178 sub-images
containing cancer could potentially be used for this experiment,
with the remaining 813 noncancer images being relevant only
to the cancer versus noncancer experiment (Section V-B1). Of
these 178 sub-images, came from within homo-
geneous tumors consisting purely of Gleason 3 and Gleason 4
cancer. Since these small (0.3 mm 0.3 mm) sub-images were
drawn from homogeneous tumors, it is reasonable to assign to
each sub-image a gold standard label of Gleason 3 (low grade)
or Gleason 4 (high grade); the homogeneity of the tumors sup-
ports the correctness of this gold standard labeling. However, 58
sub-images came from within heterogeneous tumors
consisting of a mixture of Gleason 3 and Gleason 4 cancer. Due
to the small size (0.3 mm 0.3 mm) of our sub-images, one
sub-image drawn from such a heterogeneous tumor is reason-
ably expected to consist purely of either Gleason 3 (low grade)
or Gleason 4 (high-grade) cancer, but due to heterogeneity of
the tumor from which the sub-image was extracted, there is
no way to determine the correct golden standard label against
which to compare classifier output. This is the reason that these
58 sub-images were not used for this experiment and the re-
maining 120 images were retained. This issue does not disrupt
the prostate cancer detection experiment, since G3+4 and G4+3
sub-images uniformly contain cancer.
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We also observed oscillation in the precision recall curve
(Fig. 15) for this experiment (as compared with the precision
recall curve for the prostate cancer detection experiment shown
in Fig. 11). This fluctuation effect is possibly attributable to the
relatively small size of our data set. Nevertheless, we did ob-
serve a reduction in the FN rate for high-grade cancer without
a material concomitant rise in FP rate at (Figs. 12 and
13). Testing on a larger sample size would provide further evi-
dence against which to compare these results. However, with the
advent of prostate-specific antigen testing and 18-gauge needle
core biopsy, prostate cancer is being diagnosed earlier, making
the presence of high-grade cancer at prostatectomy increasingly
rare, challenging the acquisition of a large data set for high-
grade versus low-grade classification evaluation.

VII. CONCLUSION

We have designed and evaluated a software system for
prostate cancer detection and classification on digitized, hema-
toxylin & eosin-stained digital histopathology images. Our
system uses two stages of AdaBoost-based classification.
The first provides high-level tissue component labeling of a
superpixel partitioning of the images. The second uses the
tissue component labeling to provide a classification of cancer
versus noncancer, and low-grade versus high-grade cancer. The
superpixel partitioning provided a more than 60-fold reduc-
tion in data size, increasing processing efficiency. Using our
database of 991 sub-images, our statistical testing measured
accuracies of 90% and 85% for the cancer versus noncancer
and high-grade versus low-grade classification tasks, respec-
tively. We also measured a false-negative (FN) rate for cancer
detection of 12% and for high-grade cancer detection (in our
high-grade versus low-grade classification experiment) of 5%.
Our system determines the high-level tissue component

labeling of superpixels without the use of any explicitly en-
coded domain knowledge, automatically learning the labeling
from a training set. It therefore can potentially be trained to
classify tissue components used by pathologists in analysis
of other organs (e.g., breast, brain, etc.). To the best of the
authors’ knowledge, this work represents the first application
of a superpixel image partitioning to the problem of digital
histopathology image processing. Tissue component labels
were applied based on morphometric, geometric, and appear-
ance information derived from the superpixel partitioning.
These labels encode high-level information, similar to that
used by pathologists for the task of cancer detection and
classification, and were found to support robust automation
of these tasks in this study. This system represents a first step
toward automated cancer quantification on prostate digital
histopathology imaging, which could pave the way for better
informed postprostatectomy patient care.
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