
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XXXX 200X 1

Order Preserving Moves for Graph Cut based
Optimization

Xiaoqing Liu, Member, IEEE, Olga Veksler, Member, IEEE, and Jagath Samarabandu, Member, IEEE

Abstract— In the last decade, graph-cut optimization has been
popular for a variety of labeling problems. Typically graph-cut
methods are used to incorporate smoothness constraints on a
labeling, encouraging most nearby pixels to have equal or similar
labels. In addition to smoothness, ordering constraints on labels
are also useful. For example, in object segmentation, a pixel
with a “car wheel” label may be prohibited above a pixel with
a “car roof” label. We observe that the commonly used graph-
cut α-expansion move algorithm is more likely to get stuck in
a local minimum when ordering constraints are used. For a
certain model with ordering constraints, we develop new graph-
cut moves which we call order-preserving. The advantage of order-
preserving moves is that they act on all labels simultaneously,
unlike α-expansion. More importantly, for most labels α, the
set of α-expansion moves is strictly smaller than the set of
order-preserving moves. This helps to explain why in practice
optimization with order-preserving moves performs significantly
better than α-expansion in presence of ordering constraints. We
evaluate order-preserving moves for the geometric class scene
labeling (introduced by Hoiem et al.) where the goal is to assign
each pixel a label such as “sky”, “ground”, etc., so ordering
constraints arise naturally. In addition, we use order-preserving
moves for certain simple shape priors in graph-cut segmentation,
which is a novel contribution in itself.

Index Terms— Energy minimization, graph cuts, max-flow,
SVM, geometric class labeling, shape prior.

I. INTRODUCTION

P IXEL labeling problems involve assigning a label from a
finite set of possibilities to each image pixel. Many problems

in computer vision can be formulated as pixel labeling problems.
Some examples are image restoration, stereo correspondence,
background subtraction, interactive segmentation, video editing,
etc. [1]. While pixel labeling problems can be solved with local
methods, global optimization framework gives better results [1].
In global optimization framework, the constraints on the solution
that come from prior knowledge and data can be explicitly
incorporated into an energy function, which is then optimized,
either exactly or approximately.

A frequent constraint in an energy function is the smoothness
of the labeling, that is most nearby pixels are expected to have
similar labels. A useful special case is Potts model [2], which
corresponds to assuming that the majority of nearby pixels have
exactly the same label. For Potts model, the graph-cut based α-
expansion [2] performs best in terms of speed and accuracy [1]
when compared to other popular minimization methods such as
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Fig. 1. An illustration of the five-part model. Color scheme for labels:
“bottom” is green, “left” is yellow, “center” is cyan, “right” is magenta, and
“top” is blue. This color scheme is consistent throughout the paper.

TRW [3] and BP [4]. For this reason, we restrict our attention to
graph-cut optimization.

In addition to coherence constraints, ordering constraints are
also useful in practice. For example, in [5] ordering constraints
handle occlusions in stereo reconstruction. In [6], [7], ordering
constraints are used for object segmentation. The object is divided
into several parts: roof, wheels, etc. Each part corresponds to a
label. Ordering constraints prohibit the “car wheel” to be above
the “car roof” label, etc. This rules out improbable segmentations
and therefore improves results. However α-expansion, the com-
monly used algorithm for optimization, is more likely to get stuck
in a local minimum when ordering constraints are used.

We propose new order-preserving moves for graph cut op-
timization. These moves are developed for a specific model
suitable for our applications. We assume that an image is to be
segmented into five parts, namely “center”, “left”, “right”, “top”,
and “bottom”, see Fig. 1. The ordering constraints can be read
from the names: a pixel labeled as “left” cannot be to the right
of a pixel labeled as “center”, a pixel labeled as “top” cannot be
below a pixel labeled as “center”, etc. In addition, we can enforce
more stringent constraints: if a pixel p labeled as “center” has a
neighbor q with a different label, then q must have label “left”,
“right”, “top”, “bottom” if it is to the left, right, above, or below p,
respectively. These additional constraints imply that the “center”
region is rectangular, see Fig. 1. Not all parts have to be present.

Order-preserving moves are strictly larger than expansion
moves for all labels except the “center”. However “center”
expansions are hardly useful because their number is severely
limited by ordering constraints. Another advantage is that unlike
the expansion, order-preserving moves act on all labels simulta-
neously, giving each pixel a larger choice of labels.

First we evaluate order-preserving moves on the application of
geometric class scene labeling, inspired by Hoiem et al. [8], [9].
The goal in [8] is a rough 3D reconstruction of a scene. Our five
part model is applicable to a variety of (mostly indoor) scenes.
Our only essential difference from [8] is a global optimization
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framework with the five part model.
Our second application is incorporating certain simple shape

priors, like a “rectangle” or a “trapezoid” in a segmentation of
an object from its background. When splitting an image into
parts with ordering constraints between them, we can enforce the
“center” region to be of a certain shape, for example, a rectangle,
as in Fig. 1. Usually the object/background segmentation is
formulated as a binary labeling. We use more than two labels to
incorporate a shape prior: the object corresponds to the “center”
label and the other labels correspond to the background. This is a
new approach to shape priors. It is the relative order of the parts
that enforces a certain shape for the object. In [10], they use a
similar idea but only for rectangular shapes.

Even though the order-preserving moves developed in this
paper are for a specific five-part model, the construction and ideas
behind them can be extended to other models that have a partial
label ordering. Our principal idea is to find a large subset of labels
such that exact optimization can be performed when the energy
is restricted to this subset. This idea is transferable.

A preliminary version of this paper appeared in [11]. In the
current version, we have expanded the properties and derivation
of the order-preserving moves. In particular, we include de-
tailed graph constructions of order-preserving moves and describe
their theoretical properties, including a comparison to expansion
moves. We add more experimental results and comparisons with
the previous work [9]. We also add more details on shape priors.

The paper is organized as follows. Sec. II reviews graph cut
optimization. Sec. III defines and explains properties of order-
preserving moves. Sec. IV gives detailed construction. Sec. V
and VI apply order-preserving moves for the geometric scene
labeling and shape priors.

II. OPTIMIZATION WITH GRAPH CUTS

This section reviews the graph-cut optimization framework
of [2]. Let G =< V, E > be a graph consisting of a set of
vertices V and a set of edges E connecting the vertices. Each
edge (u, v) ∈ E in G is assigned a non-negative cost w(u, v).
There are two special vertices called terminals identified as the
source, s and the sink, t. A cut C is a partition of V into two
disjoint sets S and T = V −S such that s ∈ S and t ∈ T . The cost
of the cut C is defined as: |C| =

∑

u∈S,v∈T

w(u, v). The minimum

cut is the cut with the smallest cost, and can be computed with
a max-flow/mincut algorithm [12]. We use the algorithm of [13],
which was designed specifically for computer vision applications
and has the best performance in practice.

In a pixel labeling problem the task is to assign to each image
pixel p a label from a finite set L. Let P be the set of all pixels
in an image, fp be the label assigned to p (i.e. p ∈ P , fp ∈ L),
and let f denote the collection of all pixel/label assignments. The
energy function is:

E(f) = λ
∑

p∈P

Dp(fp) +
∑

(p,q)∈N
Vpq(fp, fq) (1)

In Eq. (1), Dp(fp) and Vpq(fp, fq) are called the data and the
smoothness terms, respectively, and N is a neighborhood system
on P . We use the standard 4-connected N , which consists of
ordered pixel pairs (p, q) s.t. p < q. Pixels are indexed row-wise
with consecutive integers. Therefore, if p and q are neighbors and
p < q then either p is to the left of q, or p is above q.

The data term Dp(fp) specifies the penalty for pixel p to have
label fp, encouraging each pixel to have a label of small penalty.
The smoothness term Vpq(fp, fq) encourages spatial consistency
by penalizing neighbors p and q that are not assigned the same
label. For example for Potts model, Vpq(fp, fq) = 0 if fp = fq and
Vpq(fp, fq) = wpq if fp 6= fq , where wpq is a positive coefficient
that can depend on a particular pixel pair (p, q). To encourage
discontinuities to align with the image edges, typically wpq is
small if there is an intensity edge between p and q.

For Potts model, in case of two labels, the energy in Eq. (1)
can be minimized exactly, by finding a minimum cut on a certain
graph [2]. In [14] they show which two-label energies can be
optimized exactly with a graph cut. In the multi-label case, exact
optimization is NP-hard, but a solution optimal within a factor
of two can be found with the α-expansion [2]. The α-expansion
finds a local minimum with respect to expansion moves. Given
a labeling f and a label α, a move from f to fα is called an
α-expansion if fp 6= fα

p ⇒ fα
p = α, i.e the set of pixels labeled

as α “expands” in fα. The optimal α-expansion can be found
with a minimum cut [2]. The expansion algorithm iterates over
all labels α, finding the best α-expansion, until convergence.

In addition to spatial consistency, Vpq can model label ordering
constraints. For example, if p is a neighbor to the left of
q, to prohibit f(p) = “center” and f(q) = “left”, we set
Vpq(“center”, “left”) = ∞. After adding ordering constraints
to Potts model, the factor of 2 approximation does not hold, even
though the optimization problem may be easier, see Sec. III-D.

III. ORDER-PRESERVING MOVES

In this section we define and explain the properties of order-
preserving moves for our five part model. The following abbre-
viation is used: L, R, T , B, C, correspond to “left”, “right”,
“top”,“bottom”, and “center”, respectively. Table I gives Vpq

terms. For example, if p < q are horizontal neighbors, then
Vpq(L, R) = ∞ and Vpq(L, B) = wpq , where wpq > 0. Table I
is the Potts model plus ordering constraints. Under this model, a
labeling has a finite energy only if the “center” part is a rectangle,
and the L, R, T , and B parts are to the left, right, above, below
the C part, respectively. For example, all labelings in Fig. 4 have
a finite energy.

A. Motivation

With ordering constraints, α-expansion gets stuck in a local
minimum easier. In fact, the factor of two bound does not hold if
ordering constraints are added to the Potts model. Authors in [6],
[7], who use ordering constraints, cannot achieve good results
with α-expansion alone.

Fig. 2 is a simple example which illustrates the problem. Only
the labels T , C and B are possible. The data terms are in Figs. 2(a-
c), and the discontinuity cost wpq = 1. All pixels are initialized
with C, Fig. 2(d). After a T -expansion the result is as in Fig. 2(e).
After a B-expansion the result is as in (f). This is, in fact, the final
labeling since due to the ordering constraints, no other expansion
move gives a lower energy. The energy of this local minimum is
70. The global minimum, with the energy of 14, is in Fig. 2(g),
and it is very far from the local minimum. Our algorithm finds
the global optimum in Fig. 2(g), initialized with Fig. 2(d).

Note that with the ordering constraints in Table I, optimization
of the energy in Eq. (1) is no longer NP-hard, see Section III-D.
Therefore it is even less acceptable that the expansion algorithm
is more prone to getting stuck in a local minimum.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XXXX 200X 3

TABLE I
SMOOTHNESS TERMS Vpq

Horizontal Neighbors Vertical Neighbors

p = (x, y), q = (x + 1, y) p = (x, y), q = (x, y + 1)

fp\fq L R C T B fp\fq L R C T B
L 0 ∞ wpq wpq wpq L 0 ∞ ∞ ∞ wpq

R ∞ 0 ∞ ∞ ∞ R ∞ 0 ∞ ∞ wpq

C ∞ wpq 0 ∞ ∞ C ∞ ∞ 0 ∞ wpq

T ∞ wpq ∞ 0 ∞ T wpq wpq wpq 0 ∞
B ∞ wpq ∞ ∞ 0 B ∞ ∞ ∞ ∞ 0

(a) Data terms for T (b) Data terms for C (c) Data terms for B

(d) initial labeling (e) T -expansion from (d)

(f) B-expansion from (e) (g) Optimal labeling and also
the result of our algorithm

Fig. 2. Illustration of local minimum problems with α-expansion. The
numbers in (a-c) specify data costs for labels T , C, and B. Discontinuity
cost is 1. Initial labeling, which is all pixels labeled C, is in (d). After T -
expansion and B-expansion, shown in (e) and (f), respectively, the expansion
algorithm gets stuck in a local minimum, shown in (f). The optimum labeling
is in (g), and our algorithm would give the same result, starting from the same
initial labeling as α-expansion, in (d).

B. Definition of Order Preserving Moves

Our intuition is that to improve on α-expansion moves in
presence of ordering constraints, we have to act on more than
one label at the same time. We should allow a pixel to have a
choice of labels to switch to as opposed to just a single label α.
Let Lp be a subset of labels that p is allowed to switch to in
one move. Typically, graph-cut algorithms use the same rule for
choosing Lp for every pixel. For α-expansion, Lp consists of α

and the old label of p. For α-β swap [2], Lp = {α, β}. For global
optimization methods in [15], [16], Lp = L, but they can handle
only a restricted type of energies, and ours is not of that type.

Our insight is that by using different rules when selecting Lp

for different pixels, we can have a larger Lp for each pixel, as
compared to α-expansion, that is there are more labels to choose
from for each pixel in a single move. Notice that the choice of
Lp precisely defines the allowed moves. That is a move from
f to f ′ is allowed if f ′p ∈ Lp. We must, therefore, select Lp’s
in such a way that the allowed move of smallest energy can be
computed efficiently. In addition, Lp must have the old label of
pixel p, so that the set of allowed moves contains the old labeling.
This ensures that the best allowed move is not worse than the

(a) Vertical move f → fv (b) Horizontal move f → fh

Fig. 3. Illustration of order-preserving moves.

old labeling. We found two such moves and call them horizontal
order-preserving and vertical order-preserving.

First we give an informal illustration of a vertical move from
f to fv . The first requirement is that both f and fv have a finite
energy, i.e. they obey the ordering constraints. Consider Fig. 3(a).
Divide f into three rectangles with two vertical lines, one passing
through the border of the L and C regions (yellow and cyan)
and the other passing through the border of C and R (cyan and
magenta) regions. In fv , pixels in the left rectangle can have
labels to T , L or B, pixels in the middle rectangle can have
labels to T , C or B, and, finally, pixels in the right rectangle can
have labels T , R or B. Notice that the C region can disappear
after a vertical move, for example, a labeling can consist of only
T ’s. However if the C region remains, its width is not changed,
whereas its height can change arbitrarily. The name “vertical”
reflects the fact that C region, if present after the move, can
change in the vertical, but not in the horizontal direction.

A horizontal order preserving move from f to fh is illustrated
in Fig. 3(b). Labeling f is divided into three rectangles with
two horizontal lines, one passing through the border of the T

and C regions (blue and cyan) and the other passing through
the border of C and B (cyan and green) regions. In a horizontal
order-preserving move, pixels in the top rectangle can switch their
labels to L, T or R. Pixels in the middle rectangle can switch their
labels to L, C or R, and finally pixels in the bottom rectangle can
switch their labels to L, B or R. The name “horizontal” reflects
that the C region, if present after the move, can change in the
horizontal, but not in the vertical direction.

We now give a formal definition of a vertical order-preserving
move f → fv . First requirement is that f, fv have finite energy.
Let xp and yp be the coordinates of pixel p. Let x be the smallest
x coordinate of any pixel that has label C in f , that is x =

min{xp|fp = C}. Similarly, let x be the largest x coordinate of
any pixel that has label C in f , that is x = max{xp|fp = C}.
Let Lv

p is the set of allowed labels that p can switch to in a
single vertical move, defined as follows. If xp < x, then Lv

p =

{T, L, B}. If x ≤ xp ≤ x, then Lv
p = {T, C, B}. Finally, if xp >

x, then Lv
p = {T, R, B}. Note that a vertical move finds the global

minimum for the example in Fig. 2.
We now give a formal definition of a horizontal order-
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(a) vertical move from initial labeling (b) horizontal move from (a)

(c) vertical move from (b) (d) horizontal move from (c)

Fig. 4. A sequence of order-preserving moves on a real example. Initial
labeling (not shown) was all “center”.

preserving move f → fh. First requirement is that f, fh have
finite energy. For a horizontal move, Lh

p is defined as follows. Let
y be the smallest and y the largest y coordinate of any pixel that
has label C in f . If yp < y, then Lh

p = {L, T, R}. If y ≤ yp ≤ y,
then Lh

p = {L, C, R}. Finally, if yp > y, then Lh
p = {L, B, R}.

Notice that the definition of order preserving moves relies on
the fact that the C region is present. If this is not the case, then
a simplified variant of an order preserving move can be applied,
where each pixel has a choice of the same 3 labels. That is either
the left or the right rectangle of the illustration in Fig. 3(a) is used
for a vertical move, and either the top or the bottom rectangle in
Fig. 3(b) is used for a horizontal move. However, in practice, we
initialize with a labeling which has every pixel assigned label C,
and the C region does not disappear.

C. Optimizing with Order Preserving Moves

Algorithm 1: Optimization with order-preserving moves
foreach p ∈ P do fc

p = C

fv ← the optimal vertical order-preserving move from fc

fh ← optimal horizontal order-preserving move from fc

if E(fv) < E(fh) then fc = fv else fc = fh

repeat
fv ← optimal vertical order-preserving move from fc

fc ← optimal horizontal order-preserving move from fv

until E(fc) stops decreasing

We now explain our optimization procedure, summarized in
Algorithm 1. We maintain a current labeling fc, initialized to all
pixels labeled as C. We compute an optimal vertical move fh

and an optimal horizontal move fv from fc. Labeling fc gets
updated to whichever of fh and fv has a smaller energy. Then
we iteratively apply horizontal and vertical moves to fc until
convergence. Fig. 4 illustrates a sequence of labelings obtained for
a real example, run to convergence. For the first move (Fig. 4(a)),
only T , C, and B are allowed, since the initial labeling is all C’s.
That is why this move gives horizontal bands of T , C, and B.

D. Properties of Order Preserving Moves

In this section we discuss the properties of the order preserving
moves. Here is a summary of the main results. Expansions on
labels L, T , B, and R are less general moves than either a

horizontal or a vertical order preserving move, and expansion on
the C label is not a “large” (i.e. useful) move. The optimization
problem is not NP-hard and can be solved exactly (although
expensively) with either a horizontal or a vertical move.

We start with an intuitive argument about the advantage of
our new moves over expansion moves. An order-preserving move
gives every pixel a choice of 3 labels, while α-expansion gives a
choice of only 2 labels. In addition, α-expansion effectively acts
on only one label, since only the label α is allowed to increase
its territory during the move. Our order preserving moves act on
all labels simultaneously, since any label has a chance to increase
(as well as shrink) its territory during a single move.

We now show that T and B expansions are strictly contained in
the set of vertical order preserving moves, and L and R-expansion
moves are strictly contained in the set of all horizontal order
preserving moves. We provide the proof only for a T -expansion,
the proofs for other case are identical due to symmetry.

Proposition 1: fT be an T -expansion from a labeling f . Then
fT is also a vertical order preserving move from f .

Proof: When f has no pixels with label C the proof is trivial.
In this case, due to ordering constraints, both f and fT contain
at most three labels, and a simplification of an order preserving
move described at the end of Sec. III-B would cover expansion
on any individual label. Therefore for the remainder of the proof,
we assume that f has pixels with label C.

As before, let x be the smallest and x the largest x coordinate
of any pixel that has label C in f . As in Fig. 3(a), divide all
pixels vertically into three rectangles, P l, Pm and P r , as follows.
P l = {p|xp < x}, Pm = {p|x ≤ xp ≤ x}, and P r = {p|xp > x}.
Due to ordering constraints, if p ∈ P l then fp ∈ {T, L, B}, if
p ∈ Pm then fp ∈ {T, C, B}, and, if p ∈ P r then fp ∈ {T, R, B}.

Case1: Labeling fT contains pixels with label C. In this case,
due to the ordering constraints, {xp|fp = C} = {xp|fT

p = C}. In
particular, the smallest and largest x coordinate of pixel having
label C are the same in f and fT . Therefore, due to ordering
constraints, if p ∈ P l then fT

p ∈ {T, L, B}, if p ∈ Pm then
fT
p ∈ {T, C, B}, and, finally, if p ∈ P r then fT

p ∈ {T, R, B}.
This implies that f → fT is a vertical order preserving move.

Case2: Labeling fT does not have label C. Then any pixel with
label C in f must have label T in fT . Therefore if p ∈ Pm then
fT
p must have label T 1. As for the other two sets, if p ∈ P l then

fT
p ∈ {T, L}, and if p ∈ P r then fT

p ∈ {T, R}, which implies
that f → fT is a vertical order preserving move.

We already saw that the converse of Proposition 1 is not true.
For the example in Fig. 2, the move from (d) to (g) is a valid
vertical move, but not a valid expansion on any label.

Only C-expansion is not contained in the set of either hori-
zontal or vertical moves. However, C-expansion is a very weak
move when ordering constraints are present. The number of valid
C-expansions is less than the number of pixels in the image.
Consider Fig. 1(a). After a C-expansion, the top left corner of the
new C region must lie along the old boundary between regions
L and T , and the bottom right corner must lie along the old
boundary between regions R and B. Assuming an image is an
k × k square, there are approximately k2 expansions. While we
can still use C-expansion, we did not find it useful in practice.

Now it is clear that optimizing the energy in Eq. (1) with Vpq

terms in Table I is not NP-hard. Adding our ordering constraints

1If p ∈ P m then fT
p 6= B because ordering constraints would be violated

due to the absence of label C in Case 2.
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to the Potts model makes optimization easier. That is we have a
subclass of an NP-hard problem which is not NP-hard itself. Let
n be the height of the image. Let f∗ be the global optimum
of Eq. (1), and let Y ∗ = {yp|f∗p = C}. Y ∗ consists of k

consecutive y coordinates, 1 ≤ k ≤ n . There are exactly (n+1)n
2

possible candidates for the set Y ∗. We can iteratively find the
optimal horizontal order preserving move for each Y ∗ candidate,
and the one with the smallest energy is the global minimum.
Since the cost of computing the optimal horizontal move is linear
in practice, the total cost is quadratic, which is too expensive.
Dynamic approach of [17] could improve the speed.

In addition to the arguments above, we also show experimen-
tally in Sec. V-B that the energies obtained with order-preserving
moves are significantly better than those of α-expansion.

IV. COMPUTING THE OPTIMAL ORDER PRESERVING MOVE

In this section we give detailed implementation of order-
preserving moves for our five part model. We only explain how to
find the optimal vertical move. In practice, due to symmetry, we
compute the optimal horizontal move by transposing the image,
swapping labels L and T , R and B, computing the optimal vertical
move, and finally transposing the image back.

A. Computing the Optimal Vertical Order Preserving Move

Given a current labeling f , we need to find the vertical move
giving the largest decrease of the energy. As previously, x is the
smallest and x the largest x coordinate of any pixel that has label
C in f . Recall that Lv

p is the set of labels that p can switch to in
a vertical move. If xp < x, then Lv

p = {T, L, B}, if x ≤ xp ≤ x,
then Lv

p = {T, C, B}, and if xp > x, then Lv
p = {T, R, B}.

To find an optimal move, one can use results from [16], [18].
They define a submodular energy in case of multiple ordered
labels and give a graph construction for global optimization with a
minimum cut. A Vpq is submodular, if for any α ≤ β, and α′ ≤ β′,
we have Vpq(α, α′) + Vpq(β, β′) ≤ Vpq(α, β′) + Vpq(β, α′). An
energy is submodular if every Vpq is submodular [16].

It is easy but tedious to check that the vertical move energy
with Vpq’s in Table I and label order T < L < B, T < C < B,
and T < R < B is submodular. Notice that we do not have to
order labels L, C, R with respect to each other because a single
pixel under vertical move never has to choose between L, C, and
R. There is no way to order all labels L, C, R, B, T so that our
energy is submodular. Thus the main idea behind our moves is
choosing Lv

p’s for each p in such a way that the energy function
restricted to the corresponding move is submodular.

B. Graph Construction for Vertical Order Preserving Move

We now give a graph whose minimum cut corresponds to
the optimal vertical order preserving move. Our construction is
simpler than in [16]. The number of nodes is only twice larger
than for the expansion, so the efficiency is not compromised.

Figs. 5 and 6 illustrate the construction. We create two terminal
nodes s and t. Then for each image pixel p, we create two nodes,
p1 and p2. Let p0, p3 be other names for terminals s and t,
respectively. Each node pi is connected to pi+1 by an edge ep

i ,
for i = 0, 1, 2. For any p, if edge ep

0 is severed by the cut2, then p

is assigned label T ; if ep
2 is severed by the cut, then p is assigned

label B. The meaning of edge ep
1 depends on the value of xp.

2That is the endpoints of edge ep
0 are in two disjoint sets S and T .

(a) qx < x (b) qx = x (c) xp ≥ x ∧ qx ≤ x

(d) qx = x (e) xp ≥ x

Fig. 5. Part of graph construction for horizontal neighbors p < q. All five
possible cases are illustrated. Edges without arrows have the same cost in
both directions, for example, between p1 and q1 in (b). Edges with arrows
have different costs in both directions, for example, between p1 and q1 in (a).

Let f be the current labeling. Suppose edge ep
1 is severed by

the cut. If xp < x, then p is assigned label L, if xp > x, then p is
assigned label R, and, finally, if x ≤ xp ≤ x, then p gets label C.
In Figs. 5 and 6, each ep

i is color-coded, depending on the label p

gets assigned if ep
i is severed. Blue, yellow, green, magenta, cyan

correspond to labels T, L, B, R, C respectively.
If cutting ep

i corresponds to assigning pixel p label l ∈
{L, R, T, B, C}, then the weight of ep

i is Dp(l) plus an additional
factor, to be discussed below. To prevent cutting more than one
ep
i , we connect pi to pi−1 with an infinite cost edge for i = 1, 2, 3.

If pixels p and q are neighbors, we put edges between p1, p2

and q1, q2. The construction depends on whether p and q are
horizontal or vertical neighbors. First we discuss the case of
horizontal neighbors. Assume p < q, that is p is to the left of
q. Since the allowed labels of pixels p and q in a vertical move
depend on x coordinates, there are five different cases, illustrated
in Fig. 5(a-e). The graph construction is simple to understand. For
example, consider Fig. 5(a). The assignment Vpq(T, L) = ∞ is
implemented by the infinite weight edge from q1 to p1. Another
example is Vpq(L, B) = wpq , which is implemented through the
edge with capacity wpq from q2 to p2.

Let p < q be vertical neighbors now, i.e. p is above q. There are
three distinct cases, depending on the x coordinates of p and q. All
the three cases are handled with exactly the same construction.
In Fig. 6, we only illustrate the case xp = qx < x.

Let us identify labels T , L, and B with integers 0, 1 and 2,
respectively. Let l, l′ ∈ {L, R, T, B, C}. According to Table I, we
need to implement the following:

Vpq(l, l
′) =





0 if l = l′

wpq if l + 1 = l′

∞ otherwise
. (2)

Let c be the initial labeling energy. The infinite weight can be
replaced by c. Let r be an even integer s.t. 2r > c. Instead
of Vpq(l, l

′) in Eq.(2), we can use the equivalent Vpq(l, l
′) =

V 1
pq(l, l

′) + V 2
pq(l, l

′), where V 2
pq(l, l

′) = wpq · (l − l′)r, and

V 1
pq(l, l

′) =

{
c if l > l′

0 otherwise
.
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(a) (b)

Fig. 6. Part of graph construction for vertical neighbors p < q. Out of three
cases, only the case xp = qx < x is shown. For clarity the graph is broken
into two graphs in (a) and (b). The actual construction merges (a) and (b).

The construction Fig. 6(a) implements the V 1
pq(l, l

′), with
infinite weight replaced by c.

The penalty V 2
pq(l, l

′) is convex and therefore can be im-
plemented by the construction in [15], illustrated in Fig. 6(b).
For clarity, the edge weights are omitted. For i = 0, ..., 3,
and j = 0, ..., 3, each node pi is connected to qj , except the
source (s = p0 = q0) is not connected to the sink (t =

p3 = q3). The weight of the edge between pi and qj is
wpq

2

(
|i− j − 1|k − 2|i− j|k + |i− j + 1|k

)
.

Finally for i = 0, 1, 2, the weight of ep
i is defined as w(ep

i ) =

Dp(i) +
∑

q∈Np
wpq · h(i), where h(i) = 1

2 [(3− i)k + (i + 1)k],
and Np is the set of neighbors of p. Integers 0, 1, 2 are identified
with labels T , L, and B. The explanation of why this construction
works for V 2

pq(l, l
′) is in [19].

V. GEOMETRIC CLASS SCENE LABELING

In this section, we apply the order-preserving moves to the
geometric class scene labeling, inspired by Hoiem et al. [8].
In [8], the goal is to automatically extract a coarse 3D scene
structure from a single 2D image by assigning each image pixel
its rough geometric label, such as “sky”, “ground”, etc. Unlike
traditional 3D reconstruction, [8] extracts only an approximate
3D structure. Traditional 3D reconstruction [20] requires special
equipment, such as multiple cameras, or range scanners, etc. Fur-
thermore, the 3D reconstruction methods that are based on pixel
correspondences between images are often unreliable, especially
for indoor scenes which tend to be low-textured. Even though 3D
description from geometric scene labeling is coarse, it is useful
for many applications. In addition to [8], [9], there are other
single view approximate reconstruction methods. Most require
user interaction [21], [22], [23], [24]. Some are automatic [25],
[26], but make relatively restrictive assumptions about the scene.
See [27] for an extension of [8] to sloped surfaces. Another related
work is [28], who show that higher order interactions are useful
for the geometric class labeling problem.

Unlike [8], we address the problem in a global optimization
framework, using the five part model from Sec. III, and optimizing
the energy in Eq. (1) with order-preserving moves. Our model is
less general than [8]. Nevertheless, it is still appropriate for many
indoor and some outdoor environments. We assume that scene is
approximately a “box” and we are looking inside it. We cannot
handle “convex” scenes, i.e. looking at a corner of a building.

In a later version, Hoiem et al. [9] did try global optimization
framework, without a noticeable improvement. Our improvement
is probably due to the following factors. In [9], optimization
is performed on superpixel level, not on pixel level as we do.

(a) superpixels and final labeling (b) superpixels and final labeling

Fig. 7. Splitting of superpixels, illustrated for two scenes. The areas outlined
by a circle contain a large superpixel, brown in (a) and green in (b), which
is correctly broken in different regions in the final segmentation. The brown
superpixel is broken into the floor and the left wall, the green superpixel is
broken into the ceiling and the right wall.

Therefore [9] fails for a superpixel that contains pixels with
different true labels. Optimizing on pixel level, we are able to
break apart any superpixel, as needed. In particular, we are able to
better align the boundaries between the geometric labels with the
intensity edges, which helps, see Fig. 7. In addition, the stringent
set of ordering constraints and better optimization with order-
preserving moves contributes to the improvement.

Notice that the ordering constraints ensure that the boundaries
between the parts agree with the directions caused by the per-
spective effects under the standard camera orientation, that is the
boundary between the “left” and “bottom” parts is a diagonal
slanted down and to the left, etc.

A. Data term

Ideally, we would like to model Dp(fp) in Eq. (1) as:

Dp(fp) = − log Pr(fp|Fp), (3)

where Fp is some observed feature vector at pixel p and
Pr(fp|Fp) is the conditional probability of pixel p given fea-
ture Fp. However, for geometric labels, image data at a single
pixel does not contain enough information to construct a useful
likelihood model in Eq. (3).

We take an approach of Hoiem et al. [8], who observe that
an image region frequently does contain enough data to reliably
classify it with a geometric label. We first partition images into
“superpixels”3 using the algorithm of [29]. Fig. 7 shows some
superpixels. Then for each superpixel we compute a large set of
features similar to those in [8]. The features are the statistics on
location, color, geometry, texture and edges of the superpixels.
These statistics include the location of the centroid, 10th and
90th percentile of the superpixel position, orientation, ratio of
MajorAxis/MinorAxis, shape, eccentricity, mean RGB and HSV
values, mean response of the Compass Filters and mean absolute
response of DOOG filters. Finally, we use the superpixel feature
vectors as training data for the SVM classifier [30].

The output of SVM is an uncalibrated value and not a proba-
bility distribution. We use the method proposed by Wu et al. [31],
which is based on Platt [32] to convert the output of SVM into
the distribution Pr(S = l|FS), where l is a label, FS is a feature
vector computed on superpixel S, and S = l stands for the event
that all pixels inside superpixel S have the same label l. Thus,
for a given l, we learn the probability that all pixels inside a
superpixel S have label l (under the assumption that all pixels
within a superpixel should have the same label).

Ideally, we would like to learn the probability that a single pixel
p has label l. As we already mentioned, we cannot learn these
probabilities directly since there is not enough image information

3A superpixel is an image region returned by a segmentation algorithm.
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Fig. 8. Sample indoor images.

at an individual pixel p. Our solution is to simply to apply the
distributions learned on the superpixels to the pixel based data
term Dp(fp). That is Dp(fp) = − log Pr(Sp = fp|FSp), where
Sp is the superpixel that contains p and log Pr(fp|FSp) is the
learned log probability of label fp given the superpixel feature
vector FS s.t. p ∈ S. This approach makes sense since the energy
in Eq. (1) does not require the true pixel based negative log
probabilities. It is sufficient to come up with a reasonable penalty
scheme for the Dp(fp) term, that is the scheme that for a given
pixel p imposes higher penalties for the less likely labels. It is a
reasonable assumption that if Pr(S = l1) < Pr(S = l2), then for
most pixels p ∈ S, Pr(p = l1) < Pr(p = l2).

B. Results

We have collected 600 images from different indoor envi-
ronments, and downloaded 84 outdoor street images from the
Web and PASCAL database. Figs. 8 and 9 show some samples.
All images were manually labeled. We used half of the images
for training and half for testing, separately for indoor/outdoor
collections.

In Figs. 10 and 11, for indoor and outdoor images, we compare
the results of: (b) SVM classification, (c) α-expansion without
ordering constraints, and (d) our order-preserving moves. First,
let us compare the labelings produced by SVM (Fig. 10 (b) and
Fig. 11 (b)) to the labelings produced with graph cut optimization
(Fig. 10 (c,d) and Fig. 11 (c,d)). As expected, the SVM labelings
are not nearly as spatially consistent as those obtained with graph
cuts. Furthermore, incorporating spatial smoothness corrects not
only small spurious regions, but also sometimes large erroneously
labeled regions. For example, in the 4th row in Fig. 10 (b), SVM
fails to label most of the floor correctly. The spatial smoothness
constraints help to label most of the floor correctly for the same
image in Figs. 10(c,d). Also in the 1st row in Fig. 11 (b),
SVM fails to label large areas of ground correctly. The spatial
smoothness constraints helps label most of the ground correctly
for the same images in Figs. 11(c,d).

We now compare graph cuts with and without ordering con-
straints. Figs. 10 and 11 have the results of graph cuts without
ordering constraints computed with α-expansion in columns (c),
and the results with ordering constraints computed with the order
preserving moves in columns (d). Implausible regions are frequent
in columns (c) both in Fig. 10 and Fig. 11. For example, the back
wall patch appears in the middle of the left wall in row 3; the
left wall patches appear in the middle of the back wall in row
1 and floor in row 3. In almost all images shown in Fig. 10
(c), the back wall is present with a significantly distorted shape
compared to Fig. 10 (d). In Fig. 11(c), in rows 2−4, the left-side

Fig. 9. Sample outdoor images.

(a) (b) (c)

Fig. 12. Indoor result comparison: (a) original image, (b) α-expansion with
ordering constraints, (c) order-preserving moves.

patches and the right-side patches are connected directly without
the back-side patches in between. Clearly, ordering constraints
tend to guide optimization away from implausible solutions.

We now compare the order-preserving moves and α-expansion
on the same energy, i.e. the energy with ordering constraints. The
order-preserving moves always give a smaller energy compared to
α-expansion. On average, the energy is 27.3% smaller (σ = 9.8%).
Some results are in Figs. 12 and 13. As expected, α-expansion
gets stuck in a local minimum easier. For many outdoor scenes
almost all the back-side parts are tiny, only a few pixels in size.

Figs. 14 and 15 show more results, illustrating the accuracy
we can achieve without user interaction. Not all geometric parts
have to be present, for example, the last image in the 1st row in
Fig. 14 does not have a right wall, but we produce correct results.

Since the data term in our energy function is based on the
probabilities generated by SVM, when SVM gives reasonable
probabilities, our algorithm can significantly improve SVM re-
sults. However, when SVM results are far from reasonable, the
order-preserving moves can worsen them even further, trying to
satisfy the ordering constraints that can not be reasonably satisfied
(see Fig. V-B for some of the failure cases). Therefore, the overall
accuracy improvement (see Table II) over SVM computed for all
the images is not that large. However, when SVM results are not
reasonable, they are hardly useful for applications anyway.

To illustrate how our accuracy improvement depends on the
accuracy of SVM results, we put SVM results in 10 equal bins,
ordered from least accurate to most accurate. The higher the bin
number, the more accurate are the SVM labelings in that bin.
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(a) (b) (c) (d)

Fig. 10. Indoor result comparison: (a) original images (b) SVM labeling, (c) α-expansion without ordering constraints (d) order-preserving moves.

(a) (b) (c) (d)

Fig. 11. Outdoor result comparison: (a) original images (b) SVM labeling, (c) α-expansion without ordering constraints (d) order-preserving moves.

Fig. 16 shows the accuracy of the algorithms for each bin. For the
worst bin (unreliable SVM results), accuracy of order-preserving
moves is worse than that of SVM labeling for outdoor images. For
the best bins (very accurate SVM results), order-preserving moves
do not improve SVM results significantly since there is not much
room for improvement. However, in the middle range (from about
4th bin to the 8th bin), there is a noticeable improvement over
SVM and α-expansion, especially for the outdoor images. For
example, in the 6th bin for the outdoor images, order-preserving
moves have about 80% accuracy, followed by approximately 75%

accuracy for α-expansion and SVM.
Fig. 17 shows the percentage of labelings that have the at least

the accuracy rate specified on the horizontal axis. For example,
for indoor images, 52% of order-preserving labelings have the
accuracy rate of at least 90%, whereas only 33% and 46% of SVM
and α-expansion labelings, respectively, have this rate. Order-
preserving moves always have a higher percentage of images at
any given accuracy rate in the range between 75% and 100%.

Some failures are in Fig. V-B. Most failures occur when the
“center” data terms are far from reasonable, as in (b). The ordering
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(a) (b) (a) (b) (a) (b)

Fig. 14. Some results on indoor images: (a) original images, (b) order-preserving moves.

(a) (b) (a) (b) (a) (b)

Fig. 15. Some results on outdoor images: (a) original image, (b) order-preserving moves.
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(a) (b) (c)

Fig. 13. Outdoor result comparison: (a) original images, (b) α-expansion
with ordering constraints, (c) order-preserving moves.
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(b) outdoor images

Fig. 16. Accuracy comparison: bins sorted by quality vs. accuracy rate.
SVM results are grouped in 10 equal bins, ordered from least accurate to
most accurate.

constraints are not violated in (c), but the “center” region is too
thin to see at this resolution.

Even a labeling with a relatively good overall accuracy may
be unsuitable for applications. For a virtual-walk through, it is
the quality of the spidery mesh (Sec. V-C) that is important. We
computed the percentage of “successful” labelings based on the
spidery mesh. A labeling is successful if a spidery mesh generated
from it satisfies the following. At least 7 out of 8 radial lines
have less than 10 degree slope difference and 5 pixel intercept
difference from the ground truth spidery mesh (the ground truth
spidery mesh is generated from the ground truth labeling).

Table II summarizes the performance of SVM, α-expansion
without and with ordering constraints, and the order-preserving
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Fig. 17. Accuracy rate vs. % of images.

(a) (b) (c)
Failure cases: (a) original images, (b) SVM labeling, (c) Order-
preserving moves.

moves (in that order). Order-preserving moves algorithm is a
clear winner when it comes to the percentage of “successful”
labelings and also shows a modest improvement for the overall
accuracy rate. Table II also shows that order-preserving move
method is computationally more efficient than α-expansion. The
average processing time in Table II was calculated on a PC with
2.4GHz CPU and 2048MB memory. The time includes superpixel
segmentation, feature extraction, data terms calculation, and the
corresponding energy minimization. We use the efficient max-
flow algorithm of [13] for min-cut computation.

We also compare our results to Hoiem [9], using their code 4.
Given an input image, they assign each pixel its geometric class
label, and also output confidence values for each geometric class.
Since we have different training data and do not have access to
their code to train the classifier, we do the following to make

4http://www.cs.uiuc.edu/homes/dhoiem/software/



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, XXXX 200X 11

TABLE II
PERFORMANCE SUMMARY

Percentage of Successful Labelings (%)
SVM α-exp. no OC α-exp. with OC OP moves

Indoor 59.7 73.3 77.1 78.1
Outdoor 41.4 55.1 51.7 65.6

Overall Accuracy Rate (%)
SVM α-exp. no OC α-exp. with OC OP moves

Indoor 83.0 84.1 84.7 85.0
Outdoor 74.0 75.2 71.0 75.3

Processing Time (seconds)
SVM α-exp. no OC α-exp. with OC OP moves

Indoor 34.5 45.5 85.5 62.3

Outdoor 29.3 43.8 286.4 56.5

TABLE III
CONFUSION MATRIX FOR THREE CLASS PROBLEM

(ORDER-PRESERVING MOVES/HOIEM et al. [9])

Indoor
B (%) V (%) T (%)

B 86.5/79.3 13.4/20.7 0.11/0.0

V 2.1/2.6 95.2/96.1 2.7/1.3

T 0.0/0.0 10.5/24.5 89.5/75.5

Overall accuracy: 90.5/83.7 (%)

Outdoor
B (%) V (%) T (%)

B 85.3/83.9 14.7/16.1 0.0/0.0

V 4.8/2.5 91.1/95.3 4.1/2.2

T 0.0/0.0 12.5/33.2 87.5/66.8

Overall accuracy: 87.9/82.0 (%)

the comparisons fair. Instead of using the data terms produced
by our SVM classifier, we use the confidence values produced
for each geometric class as the data term in our optimization
framework. Therefore what we are measuring is how much spatial
smoothness, ordering constraints, and optimization with order-
preserving moves can improve on the classification approach
of [9]. Another issue we have to address before comparison is
the number of classes. In [8], they have three main classes “sky”,
“ground”, and “vertical”. The “vertical” class is further subdivided
into “facing left”, “facing right”, “facing camera”, “porous”, and
“solid non-planar”. The classes “sky”, “ground”, “facing left”,
“facing right”, “facing camera” are equivalent to our classes “top”,
“bottom”, “left”, “right”, “center”. However, classes “porous” and
“solid non-planar” are not equivalent to any of our classes. To
address this issue, we perform two different experiments.

First, we reformulate the problem as 3 class classification, with
classes “top”, “vertical”, “bottom”. The vertical class combines
our “left”, “right”, and “center” classes, and for [8] it combines

(a) (b) (c)

Fig. 18. (a) original image, (b) labeled image, (c) generated spidery mesh.

TABLE IV
CONFUSION MATRIX FOR FIVE CLASS PROBLEM

(ORDER-PRESERVING MOVES/HOIEM et al. [9])

Indoor images
B (%) L (%) C (%) R (%) T (%)

B 88.8/87.6 4.5/5.2 1.3/1.9 5.4/5.2 0.1/0.0

L 7.6/9.1 86.3/82.5 3.4/5.2 0.8/1.4 1.9/1.8

C 5.1/5.6 15.0/13.9 58.9/62.7 18.9/15.9 2.1/2.0

R 2.6/3.2 1.4/1.9 4.1/5.2 88.7/86.4 3.3/3.3

T 0.0/0.0 3.9/3.8 3.1/5.2 5.3/5.6 87.6/85.4

Overall accuracy: 84.1/82.9 (%)

Outdoor images
B (%) L (%) C (%) R (%) T (%)

B 96.8/94.5 1.1/1.4 1.5/2.7 0.6/1.4 0.0/0.0

L 7.3/7.8 72.9/62.6 15.9/25.1 0.0/1.5 3.8/3.1

C 7.0/9.1 16.1/17.6 64.4/54.4 6.1/9.4 6.4/9.5

R 10.5/10.6 0.0/2.5 20.3/31.4 61.0/52.4 8.2/3.0

T 0.2/0.2 4.3/6.4 14.6/10.3 2.0/3.0 78.9/80.2

Overall accuracy: 74.8/68.8 (%)

(a) (b) (c)

(d) (e) (f)

Fig. 19. Virtual scene walk-through from our labeling: (a) a spidery mesh,
(b) walk forward, (c) look left, (d) look right, (e) look down, (f) look up.

all their classes except the “sky” and “ground”, since all the other
classes correspond to the “vertical” structures. When combining
subclasses, their confidence levels are added up to form the
confidence level for the larger class. The results are in Table III,
where for each table entry the format is (order-preserving moves
accuracy)/(accuracy in [9]). For example, for the “bottom” class,
our accuracy is 86.5%, and the accuracy in [9] is 79.3%.

We also evaluated the five class problem by simply ignoring the
confidence maps for the “porous” and “solid non-planar” classes,
and renormalizing the confidence values for each pixel to sum up
to 1. This makes sense because we are excluding irrelevant classes
from consideration. The results are in Table IV. In both cases
(Table III and Table IV), our algorithm significantly improves on
the performance of the classifier in [9]. It is interesting to note
that in the three class case, our improvement over [9] is larger.
This may be because in the three class case we do, in fact, find
the global optimum of the energy function, whereas in the five
class case we are not guaranteed the global optimum.

We also evaluated our algorithm on the original data from [9].
This database contains outside images that are mostly inappro-
priate for our five-part model. Our overall accuracy rate for
the 5 main classes was 57.6%, compared to 64.3% of the
approach in [9]. This is as expected, since the majority of scenes
significantly deviate from our model. We also hand-selected 44
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(a) (b)

Fig. 20. 3D reconstruction results: (a) original images, (b) novel views.

images from the datable in [9] that are appropriate for our model.
On this smaller subset, our accuracy is 74.7%, which compares
favorably to the 72.6% accuracy of [9] on the same subset.

C. Applications

We now illustrate the use of the obtained scene structure for
automatic 3D reconstruction from a single view and virtual scene
walk-through. We use a spidery mesh to fit perspective projection
and mimic 3D camera transformations to navigate through the
scene [21]. Spidery mesh is composed of four parts (vanishing
point, radial lines, inner and outer rectangles), which partitions
the 2D image into five regions (left, right, rear, floor, and ceiling).
Since we have already labeled the indoor image into exactly
these five regions, generating the spidery mesh is trivial. We fit
the radial lines with the RANSAC [33] based on the boundary
between differently labeled regions. Vanishing point is calculated
as the weighted average of the intersection of the radial lines,
the inner rectangle is the “center” region, and the rest are outer
rectangles. Fig.18 shows an example of spidery mesh generation.

Parts of the virtual scene walk-through for an indoor image are
in Fig. 19. Some of the novel view 3D reconstruction results for
the indoor images are shown in Fig. 20.

Fig. 21 shows that even a relatively good SVM labeling (more
than 90% accuracy, in this case) may fail to produce satisfactory
results. The room appears to have crooked walls and floor.

(a) (b) (c)

(d) (e) (f)

Fig. 21. Scene walk-through using an SVM labeling: (a) spidery mesh, (b)
walk forward, (c) look left, (d) look right, (e) look down, (f) look up.

VI. SHAPE PRIOR FOR SEGMENTATION

Shape priors for segmentation in general [34], [35], [36] and
segmentation with a graph-cut [37], [38] is an area of much
interest recently. General segmentation with a shape prior is
usually based on local optimization, and therefore the solution
is prone to getting stuck in a local minimum. The graph-cut
methods in [37], [38] have to register the shape model with the
image during the segmentation process, which is a difficult task
in itself.

Instead of a shape prior specific to some object, like in [37],
[38], we implement simple generic shapes such as “rectangle”,
“trapezoid”, etc. By splitting an image into parts with ordering
constraints between them, we can enforce the “center” region
to be of a certain shape, for example, a rectangle, see Fig. 4.
Usually the object/background segmentation is formulated as a
binary labeling: the labels are the object and the background.
We use more than two labels to incorporate a shape prior: the
object corresponds to the “center” label and the other labels are
the background. This is a new approach to shape priors. It is
the relative order of the parts that enforce a certain object shape.
In [10], they use a similar idea but only for rectangles.

We now explain how to incorporate simple geometric shape
priors in graph-cut segmentation of an object from its background.
For a rectangle, we use the same Vpq as in Table I, except now
any Vpq not involving label C is set to 0, since a discontinuity
between, say L and B labels does not correspond to the border
between the object and the background.

We consider a trapezoid with parallel sides in horizontal
orientation, and the shorter side on top (for other trapezoids,
an image can be rotated). To get a trapezoid, we relax the
following constraints in Table I: for vertical neighbors, we set
Vpq(L, C) = Vpq(R, C) = wpq , instead of ∞. This change allows
the borders between the L and C regions and C and R regions
to be diagonals, slanted to the left and to the right, respectively.
This shape is not, strictly speaking, a true trapezoid, since we
cannot enforce the borders between the L and C regions and C

and R to be straight lines.
For a parallelogram shape prior, we need to set Vpq(L, C) =

Vpq(C, R) = wpq instead of ∞ in Table I(b). Essentially, the
shape prior implemented with our five-part model is limited to
rectangles, trapezoids, and parallelograms. For other shapes, we
would need models with more than five parts and we would need
to generalize order-preserving moves to those models.

For a rectangle prior, the order preserving moves stay exactly
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the same. For the trapezoid and parallelogram, some hard con-
straints have been relaxed, so in the graph, the corresponding
infinite weights are replaced by finite weights in Figs. 5 and 6.

We can use object-specific data terms based on brightness,
user interaction, etc. However here, to study the effect of the
shape prior in isolation from regional influences, we opted to
find regions with strong intensity edges on the boundary and
agreeing with the shape prior. An object-specific Dp can always
be added, of course. We do have to set Dp for any p on the
image border. We set each border pixel p to strongly prefer
its own border, i.e. for p on the left border, Dp(L) = 0 and
Dp(C) = Dp(R) = Dp(T ) = Dp(B) = ∞, etc.

Our cost function is the sum of wpq’s on the object boundary.
To avoid a trivial one-pixel solution, we make wpq’s negative
whenever there is a stronger than average intensity edge between p

and q, biasing segmentation towards a longer boundary coinciding
with intensity edges. Specifically, we set wpq = σ − |Ip − Iq|,
where Ip is the image intensity of pixel p, and σ is the average
absolute intensity difference between neighboring pixels.

In general, making wpq < 0 is not always possible in graph-
cut optimization framework, but it is possible for our verti-
cal/horizontal moves. Let us consider the vertical order preserving
move, since the horizontal move is handled identically. First recall
that for neighboring pixels p and q, Vpq(l, l

′) may be negative only
if exactly one of l or l′ is label C. For horizontal neighbors p and
q this corresponds to the construction in Figs. 5 (b) or (d). In this
case, the edge with wpq can be simply removed from the graph
and the negative wpq can be added to the yellow edge marked with
C, i.e. the edge connecting pixel q1 to q2 in (b) and p1 to p2 in
(d). The reason why a negative cost can be always added to these
yellow edges is that the reverse edges (i.e. the edge connecting
pixel q2 to q1 in (b) and p2 to p1 in (d)) have infinite weight.

In a vertical move, the number of vertical neighbors p and q

such that Vpq is non-zero is a constant equal to the width of
the central region, which stays fixed during the vertical move.
Therefore, if pixels p and q are vertical neighbors we simply add
a large enough positive constant (specifically we add |wpq| such
that wpq is the smallest in the graph) to all vertical neighbors to
remove all the negative costs from the graph.

Figs. 22 and 23 show the results with a rectangular and a trape-
zoid prior, illustrating the ability to pick out interesting regions
obeying the corresponding shape priors without any knowledge
of the object/background regional properties. All results were
obtained with the same parameter settings.

VII. CONCLUSIONS

We show the importance of choosing a right optimization
method for a given optimization problem. We explain why with
the ordering constraints, the popular α-expansion does not work
as well. For a five part model with ordering constraints, we
develop new graph-cut moves that are more general than α-
expansion in theory and work significantly better in practice. The
limitation of current approach is that it is model-specific, and
while it is possible to extend it to more general models, significant
time overhead is required in designing order-preserving moves for
a new model. In the future, we plan to explore, given a model
with ordering constraints, how to infer the set of all possible
order-preserving moves automatically.

Fig. 23. Trapezoid shape prior. Left: originals, right: segmentations.
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